
Function Interpolation for Learned Index
Structures

Naufal Fikri Setiawan, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic

School of Computing and Information Systems,
University of Melbourne, Australia

[naufal.setiawan, brubinstein, renata.borovica]@unimelb.edu.au

Abstract. Range indexes such as B-trees are widely recognised as ef-
fective data structures for enabling fast retrieval of records by the query
key. While such classical indexes offer optimal worst-case guarantees, re-
cent research suggests that average-case performance might be improved
by alternative machine learning-based models such as deep neural net-
works. This paper explores an alternative approach by modelling the task
as one of function approximation via interpolation between compressed
subsets of keys. We explore the Chebyshev and Bernstein polynomial
bases, and demonstrate substantial benefits over deep neural networks. In
particular, our proposed function interpolation models exhibit memory
footprint two orders of magnitude smaller compared to neural network
models, and 30-40% accuracy improvement over neural networks trained
with the same amount of time, while keeping query time generally on-par
with neural network models.

Keywords: Indexing · Databases · Function Approximation.

1 Introduction

Databases use indexes to organise data for fast data retrieval, with B-trees and
variants offering optimal worst-case lookup being the most popular. Viewed
through the lens of machine learning, querying a B-tree is analogous to a model
prediction, wherein a specific query key—an instance feature vector—is mapped
to a record’s location—a predicted label. Recent research has introduced the
tantalising possibility of replacing classical range indexes with a model learned
from data (e.g., a neural network [16]) to perform queries on a pre-sorted set
of records, with the aim being to either reduce index space requirements or to
improve average-case query time. More broadly, significant efforts have explored
the possibility to develop approximate and data-aware structures for specialised
purposes [7, 17].

For large datasets, maintaining a B-tree can become resource intensive in
terms of I/O operations and space requirements. While the space complexity of
a B-tree [2] is O(N) in the number of database records, query time is O(logN)—
space costs are justified given that B-tree’s perfect retrieval accuracy minimises
subsequent access times. By comparison, deep neural networks [11] have proven



capable of generalising in a variety of problem domains: even large network
models are compact relative to dataset size, presenting an opportunity to strike
desirable trade-offs between the space and time complexity for use in databases,
assuming prediction accuracy can be controlled. One cost of such learners is
construction time, in that their effective use requires hyperparameter tuning
(i.e., grid search over learning rates, network topology, activation functions, and
regularisation strategies). While GPUs can be used to accelerate the training of
deep neural networks in domains such as computer vision, commodity database
servers rarely have access to such hardware [19].

The reduction of index construction and key lookup to supervised learning
is via 1) pre-sorting record locators by the key in an auxiliary data structure
such as an array or B-tree, and 2) learning to predict a rank from the key.
Normalised by the dataset size, this corresponds to fitting a monotonic function
with co-domain the unit interval. A core observation in [16] is that such functions
are cumulative distribution functions. Based on the association with probability
theory, they apply tools from machine learning in supervised regression.

This paper introduces classical polynomial interpolation methods as an alter-
native approach to supervised regression when learning index models. We note
that not only is there no need to generalise from training data to unseen test
data in such a case—the typical requirement in statistical learning theory [23]—
but that there is no latent population distribution on keys, rather a set (with
uniform measure). As such we argue for a function approximation view [5] as
opposed to a statistical learning view.

We examine both Chebyshev and Bernstein polynomial bases for function
approximation. We find that these methods can outperform single neural network
models in terms of query time. Polynomial models also generally occupy less
space than neural networks. Fitting of a polynomial model, in most observed
cases, also requires fewer resources and less time than do training of neural
networks. A key computational requirement of neural networks, that can go
unreported, is hyperparameter tuning which also contributes to learned index
construction cost. On the contrary, the only hyperparameter needed to create a
polynomial model is just the specified degree m.

In the following we discuss related work pertaining to learned and classical
indexes. Section 3 summaries necessary background in data structures and poly-
nomial interpolation methods. We describe our main contribution, an approach
to index structures based on polynomial approximation, in Section 4. Experi-
mental results are presented in Section 5, and Section 6 offers our conclusions.

2 Related Work

Indexes have for decades attracted the interest of database researchers and prac-
titioners due to substantial query processing speed-ups on offer. We here discuss
recent efforts pertaining to reducing the size of indexes through data-, workload-
and hardware-aware optimisations or recently introduced learned models.



Space-Aware Indexes. Since traditional B+trees consume a substantial
amount of memory space, many alternative approaches have explored techniques
to reduce their size, including prefix or suffix truncation, or key normalisation [10,
12]. The past decade has also witnessed an increasing number of techniques where
the index structure is adjusted to fit the properties of modern hardware, such
as CSB+ trees, FAST trees, and Adaptive Radix Trees [21, 18, 15]. Partial and
adaptive indexes similarly aim to reduce the memory footprint of indexes by
building an index over a subset of data only, driven by user queries [24, 14]. Such
techniques are orthogonal to (and could be extended with) our approach that
uses function interpolation to approximate the positions of the keys within the
leaves of the index.

Learning Indexes. When it comes to reducing the size of indexes the closest
to our work is the line of research on approximating indexes with statistical
machine learning models, such as learning indexes [16], fitting trees [7], or hybrid
models such as sandwiched bloom filters or interpolation friendly B-trees [13,
20]. While the former two use learned models to actually replace the index
structure to some extent (they still may use small indexes at the lowest levels to
improve approximation accuracy), the latter two focus on improving the index
performance by extending indexes with learned models as “helper functions”.

3 Background

We now briefly overview the framing of range indexes as approximating a cu-
mulative distribution function, and summarise key results from approximation
theory.

3.1 Range Indexes as Cumulative Distribution Functions

The B-tree, and range indexes in general, can be seen as a model that maps a key
to a position on disk with perfect accuracy. As records stored in a B-tree require
ordering on a column, the positions of records are proportional to a cumulative
distribution function (CDF): a monotonic increasing function mapping key space
into [0, 1]. Suppose we have N records in the database and we are querying a
specific key k, then we may conclude that the requested records position as:

pos = N × Pr(x ≤ k) . (1)

Any model that can approximate the function f(k) = Pr(x ≤ k) can replace
the role of a B-tree, provided that an error correction step follows predictions
in order to retrieve the data when the model guesses an inaccurate position.
This observation was made in [16], where deep neural networks (DNNs) were
proposed as a means to approximate cumulative distribution functions.

The modelling choice of (regularised) supervised learning as in a typical
DNN [16] presumes that the task of fitting f(k) is one of inductive learning
wherein the ultimate goal is to minimise risk as measured by expected loss of



predictions on random draws of labelled examples from a latent population dis-
tribution.

We argue further in Section 4 that on fixed datasets1 the problem of indexing
does not require the model to extrapolate outside of existing data. That is,
making good predictions on future unseen data is irrelevant to approximating
f(k) on existing and known keys.

3.2 Polynomial Interpolation

Interpolation uses a family of functions with uniform domain B = {f1, f2, · · · }
(a basis) such that any function to be approximated ψ that shares the same
domain as the fi satisfies ψ(x) ≈ limn→∞

∑∞
n=0 αnfn(x) for some αi coefficients.

Compare this situation with supervised regression. Function approximation seeks
accurate reconstruction over the entire domain of target φ, while supervised
regression trains to fit on a small finite sample of training instances and aims to
generalise to any likely inputs in the future.

Since function approximation approaches adopt specific but fixed function
bases, only the vector of the coefficients 〈α0, α1, · · · , αN 〉 need be stored per
target φ. This allows an interpolation polynomial to act as a lossy compression
of a B-tree. The number of coefficients that need to be stored depends on the
rate of convergence of the interpolation function and the accuracy that is desired.
Most polynomial approaches require that target φ be continuous and piecewise
smooth in order to provide theoretical guarantees on accuracy, but not in order to
yield some approximation. To implement interpolation as a compressed learned
index, we simply interpolate over the function ψ that maps a numeric key to a
position in an auxiliary array (as the database may be sorted based on different
keys rather than the one we are using for the index).

We next summarise the two major polynomial interpolation methods used
in the remainder of this paper.

Chebyshev Interpolation Method The Chebyshev polynomials of the first
kind are used in numerical methods in which good approximations and error
bounds are needed [4], for example in the solution of least-squared problems.
Chebyshev interpolation is regarded as accurate, due to its ability to minimise
Runge’s phenomenon as with other polynomials that sample from the Chebyshev
nodes (the oscillation behaviour that can occur between sample points of the
function being interpolated) [3].

Definition 1 (Chebyshev Polynomial). The Chebyshev polynomials of the
first kind are defined by the recurrence relation

Tn(x) =


1 , if n = 0,

x , if n = 1,

2xTn−1(x)− Tn−2(x) , o.w.

. (2)

1 It is sufficient but not necessary to prohibit insertions/deletions as done in [16].



Proposition 1. An equivalent expression for the Chebyshev polynomials is Tn(x) =
cos (n arccosx) for x ∈ [−1, 1].

To express other functions in terms of the Chebyshev polynomials we project
into the basis by performing the discrete Chebyshev transformation on the func-
tion ψ that we want to interpolate [9].

Definition 2 (Discrete Chebyshev Transform). The coefficients of the Cheby-
shev polynomial of the first kind (of degree N) that interpolates ψ are given by:

αi =
pi
N

N−1∑
k=0

ψ

(
− cos

(
π

N

(
k +

1

2

)))
cos

(
mπ

N

(
N + k +

1

2

))
, (3)

where p0 = 1 and pi = 2 when i > 0.

The Chebyshev interpolation method is used to estimate the erf function
that is evaluated as part of the cumulative distribution functions of the normal
and log-normal distributions [22]. This fact will prove convenient later as the
keys in datasets may be distributed in one of these ways.

Bernstein Interpolation Method The Bernstein polynomials form another
important basis. They were originally used in a constructive proof of the Stone-
Weierstrass approximation theorem which states that any continuous function
can be uniformly approximated by a polynomial. They are also used as the basis
for Bézier curves and privacy-preserving function release [1].

Definition 3 (Bernstein Polynomials). The v-th Bernstein polynomial of
order n is defined by the expression

Bn
v (x) =

(
n

v

)
xv(1− x)n−v , (4)

which corresponds to the Binomial probability mass function representing the
probability of observing v heads out of n i.i.d coin flips each with heads probability
x.

Definition 4 (Bernstein Interpolation). Let ψ be an arbitrary continuous
function with domain [0, 1]. The order n Bernstein interpolation of ψ is defined
by

Bn[ψ](x) =

n∑
i=1

(
n

i

)
ψ

(
i

n

)
xn(1− x)n−i , (5)

which corresponds to the expectation EV∼Binom(n,x)[ψ(V )].



4 Indexes by Function Approximation

We next detail the construction and application of indexes based on polynomial
interpolation.

As observed in Section 3, the existing literature on learned indexes leverages
inductive learning: fitting models on existing (training) data to minimise loss on
future (test/population) data.

To see why inductive learning is an inappropriate formulation of the range
index problem, consider the B-tree and its classical structure variants. The B-
tree is prevalent in database systems despite it being an (efficient) lookup table.
It does not generalise to new, unseen keys, in that an existing B-tree cannot be
used to ‘guess’ the locations of keys of records not yet stored or encountered.

The astute machine learning reader may then wonder whether our goal should
be one of transductive learning [8] in which one seeks to minimise loss on specific,
given, test cases. While this appears closer to our task, the only test keys we seek
to accurately query are in the training set. Further, there is no randomness in
the locations of stored records, as would warrant supervised learning. Therefore
we advocate for learning without accounting for population sampling or label
randomness—pure function approximation.

4.1 Interpolant Construction

To obtain from a database D, a cumulative distribution function for structure
construction, we must first extract the (sorted) set of keys. Suppose we choose
a column K to be summarised with a range index, then an intermediary array
is needed that allows us to map the key that we choose with the actual stored
position of the record. Start by generating an array A of pairs 〈key, pos〉 that
is sorted on key. Refer to Figure 1(a). The position of the entry 〈key, pos〉 in A
will then define an unnormalised cumulative distribution function.

Formally, cumulative distribution functions are right continuous, monotonic
and have range space minimum 0 and maximum 1, as depicted in Figure 1(b).
Both polynomial interpolation methods considered require the target function
ψ to be continuous and piecewise smooth (i.e., accuracy of the approximation
ψ(x) ≈ limi→∞

∑∞
n=0 fi(x) will not typically be guaranteed when ψ is not piece-

wise smooth and continuous). For this reason, we transform the step-function
cumulative distribution function seen in Figure 1(b) to a piecewise linear, con-
tinuous function as in Figure 1(c). In this step, we also rescale the key from
the domain of [KMIN,KMAX] to the preferred domain of the interpolation func-
tion [IMIN, IMAX]. In this paper, this is taken as the unit [0, 1] for the Bernstein
interpolation method, and [−1, 1] for the Chebyshev interpolation method.

Lastly we choose a degree n and interpolation method (either Chebyshev
or Bernstein) for application to the smoothed cumulative distribution function
to obtain the parameters αi for the chosen polynomial basis coefficients. The
dashed line ψ(x) in Figure 1(d) is the original piecewise linear function that
passes through all the data points, the (orange) interpolated polynomial example
here is B5[ψ].



KMIN KMAX

0

2

4

6

8

10

12

14

Key

P
o
s
it
io
n

(a)

KMIN KMAX

0

0.2

0.4

0.6

0.8

1.0

Key

P
(x

≤
k
e
y
)

(b)

IMIN IMAX

0.0

0.2

0.4

0.6

0.8

1.0

Key (Normalized)

P
(x

≤
k
e
y
)

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Key (Normalized)

P
(x

≤
k
e
y
)

(d)

Fig. 1. Transforming (a) key positions to (b) normalised but step-function CDF, (c)
piece-wise linear continuous smoothed CDF, (d) polynomial-interpolated CDF.

Model for ψkeyi

Array A

<key, pos>

<key, pos>

<key, pos>

<key, pos>
pos | null

Fig. 2. The polynomial model creates a prediction ˆposA, then the linear seek error
correction algorithm starts looking for the entry with key starting at ˆposA.

4.2 Query Processing

The lookup process of any record in the database then consists of three steps
depicted in Figure 2 and described as follows:

1. Prediction. First we predict the position of a query key as a location inside
the auxiliary index array A. We call this prediction ˆposA.

2. Error Correction. As predictions are only approximate, some correction/follow-
up search might be necessary. Any incorrect prediction is corrected by linearly
seeking through the auxiliary array until the requested key is found or it can be
concluded that the key does not exist.



3. Retrieval. After the 〈key, pos〉 mapping is found in the auxiliary array we can
retrieve the record from its actual position on disk.

5 Experimental Results

To investigate how polynomial interpolation performs compared to conventional
indexes such as the B-tree, and neural network learned indexes, we performed
several experiments reported here. We first explore the model creation time,
memory footprint, and query accuracy and time, and then present a sensitivity
analysis of interpolation methods with respect to their interpolation degree.

The neural network is set to have 2 hidden layers and 32 neurons. We opted
not to use a GPU to reflect the setup of most common database servers—all
training and computation was performed by CPU. Neural networks were imple-
mented using the torch package [6] and the B-Tree data structure was imple-
mented using the OIBTree Python module.

Datasets. We use three different datasets each containing two million entries and
build a neural network index on top of it as well as a regular B-tree. These three
datasets are created randomly to follow the uniform, normal and log-normal
distributions.

Hardware. All experiments are performed on a commodity laptop with 4× Intel
i7 CPU cores and 16 GB of RAM. For our implementation we use Linux 5.2.14
and CPython 3.7.4 running on gcc 9.

5.1 Model Creation Time

In our first experiment, we benchmark the time needed to create each polynomial
model from degree 1 to degree 50. We use the notation Bn and Cn for Bernstein
and Chebyshev polynomials of degree n respectively. We have repeated the ex-
periment on each dataset ten times in succession and report the average time
across all, since the overall observed discrepancy was less than 100ms. Neural
networks are not included in this experiment since they are able to be trained
further for better accuracy while interpolation models have their accuracy and
parameters ‘set in stone’ after creation.

Table 1. Model creation time (in seconds) results for B-tree, and Polynomial indexes.

Number of
Entries B-tree B5 B10 B15 B20 B25 C5 C10 C15 C20 C25

500,000 7.102 0.786 0.773 0.762 0.765 0.783 0.527 0.581 0.634 0.727 0.820

1,000,000 14.953 1.570 1.551 1.583 1.557 1.547 1.093 1.205 1.362 1.551 1.760

1,500,000 23.611 2.357 2.357 2.350 2.366 2.357 1.661 1.850 2.081 2.395 2.691

2,000,000 34.575 3.279 3.286 3.371 3.277 3.366 2.324 2.631 2.942 3.245 3.809

The results in Table 1 show that on existing data, the polynomial models are
able to be created significantly faster than B-trees (by a factor of 10) for a



specified number of entries. This is due to operations performed when assembling
the B-tree, since rebalancing a B-tree can be expensive. The time complexity of
creating a fresh, full B-tree index is O(n log n), where n is the number database
records. On the contrary, for m degree of the polynomial approximation, cre-
ation of the Bernstein polynomial is fixed O(n), improvable to O(m log n), while
creation of the Chebyshev polynomial is O(m2 log n).

5.2 Memory Footprint

We next evaluate the size of the polynomial models in comparison to the B-tree
and neural network structures, across multiple datasets. We obtain consistent
results for all three datasets and hence report only the average results. While
conducting this experiment, it is important to note that B-trees do not need
to store the 〈key, pos〉 pairs inside an auxiliary array as these pairs are already
stored in the leaves of the B-trees themselves. In this experiment, we refer to the
storage of the pair as the ‘data segment’. In the case of a B-tree, the term ‘data
segment’ refers to the leaf slots where the 〈key, pos〉 is stored. In the case of the
polynomial models, ‘data segment’ refers to the auxiliary array.

Table 2. Memory footprint results for B-tree, and Neural Network (in megabytes MB
and kilobytes KB).

Dataset Entries B-tree (MB) Neural Network (KB)

500K 33.034 210.73
1M 66.126 210.73

1.5M 99.123 210.73
2M 132.163 210.73

Table 3. Memory footprint results for the polynomial index models (in bytes B).

Dataset Entries B5 B10 B15 B20 B25 C5 C10 C15 C20 C25

500K 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442
1M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

1.5M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442
2M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

Table 2 and Table 3 show the memory footprint of the alternatives with the
data segment stripped off. This metric shows how much memory overhead is
added for the index structure. The overhead introduced by B-tree scales with
the size of the data as pointer overheads are needed. The polynomial models
require the storage of coefficients only. Similarly, neural networks have a fixed
number of parameters, causing them to be independent of the size of database.

According to Table 3, the size of polynomials does not increase with the size
of the dataset. This property is also exhibited by the neural networks, although
the memory footprint of the polynomial indexes is still 2 orders of magnitude
lower. The higher memory footprint in the case of neural networks is attributed
to the larger number of parameters that a neural network has.



5.3 Query Accuracy and Time

We next examine the retrieval accuracy using the polynomial models, and com-
pare them against the classical B-Tree and Neural Network. We present the
model prediction time, root mean squared error (RMSE) of the prediction, and
the total query time (involving all three steps discussed in Section 4.2).

Table 4. Prediction time (in ns), prediction root-mean-squared-error (RMSE) and
total query time (in ns) for Normal (No), Uniform (Un) and Log-normal (Ln) datasets.

Dataset Prediction Time (ns) RMSE Query Time (ns)

Model Type No Un Ln No Un Ln No Un Ln

B5 133 46.6 148 25805.22 109.55 80214.85 23500 133 92200
B10 158 71.9 189 18014.59 84.90 70304.07 16500 111 65300
B15 196 103 238 14155.66 70.70 57078.78 12400 133 58500
B20 237 133 288 11687.71 68.70 47333.16 9780 151 48100
B25 277 166 336 9973.57 62.58 39566.59 8080 192 40200
C5 17.9 9.87 27.2 1430.38 57.92 12779.95 10.6 56.3 11800
C10 20.1 11.0 28.4 166.03 52.71 2137.22 11.4 51.6 1860
C15 22.8 12.8 29.2 65.02 45.031 1224.74 68.8 92.2 1020
C20 22.9 14.6 30.4 60.39 28.53 951.37 62.0 48.1 751
C25 25.9 16.4 31.7 57.14 26.39 474.905 62.1 40.2 415

B-Tree 24.4 41.5 40.1 N/A 31.5 56.3 46.0

Neural Network 433 148 806 105.84 22.67 711.12 402 516 1100

The time taken to predict a key is generally very low in the scenarios exam-
ined, being less than 500ns for all models. However, the total query times for all
of the models are always far higher than the time taken simply to predict a key,
since most of the cost of retrieving a key is in the error correction. Referring to
Table 4, we see that the Bernstein polynomials are far less accurate compared
to the Chebyshev polynomials, causing them to take a greater amount of time.
A majority of the Bernstein polynomials take longer than our baseline models
(i.e., the B-tree and neural network models).

Some of the higher-order Chebyshev models are however significantly faster
than the neural networks. Starting at C10 onwards the Chebyshev polynomials
are able to outperform the neural networks in terms of speed. While the error
is generally larger, the Chebyshev polynomial models do not have the opera-
tion overhead that neural networks have (attributed to activation functions and
matrix multiplication) and are able to outperform the neural network as a result.

5.4 Rate of Convergence of Polynomial Models

The results presented in Figure 3 show the sensitivity of the polynomial models
with respect to the degree increase.

For the normal dataset, the Bernstein polynomial converges more slowly
than the Chebyshev polynomial model, and the Chebyshev polynomial of lower
degrees performs far better than the Bernstein polynomial in lower degrees in



5 10 15 20 25
0

200

400

600

800

1000

1200

1400

Interpolation Degree

R
M
S
E

(a)

5 10 15 20 25
0

5000

10000

15000

20000

25000

Interpolation Degree

R
M
S
E

(b)

Fig. 3. Rates of convergence of the (a) Chebyshev and (b) Bernstein interpolations for
the normally distributed dataset.

terms of accuracy. This, consequently leads to them being faster as there is less
work required during error correction.

In the log-normal dataset (not presented here due to lack of space), both
polynomial models have high errors relative to their performance in the other
datasets (see Table 4). The Chebyshev model still performs better than the
Bernstein model and still converges faster. To illustrate, C10 is 83% faster than
C5 while B10 is only 12% faster than B5.

The uniform distribution is a special case where the Chebyshev model does
not converge as fast as it does with the other data sets. However, errors are
already minimal even with low-degree models and again, the Chebyshev model
still performs better than the Bernstein model.

As seen from Figure 3(a), the fast rate of convergence of the Chebyshev
polynomials allows us to accurately model the cumulative distribution function
using a much smaller memory footprint. The Chebyshev interpolation method
converges to an interpolant function at an exponential rate [3].

6 Conclusion

We advocate for a function approximation approach to range indexes as an al-
ternative to learned indexes typified by deep neural networks. We argue that
supervised learning approaches unnecessarily avoid overfitting in favour of gen-
eralisation, and unnecessarily model uncertainty in ground-truth labels. In the
range index problem of databases, such considerations are inappropriate.

The two methods introduced in this paper—polynomial bases with corre-
sponding interpolation/fitting operators—have lightweight overhead in construc-
tion time and memory footprint compared to neural networks. Moreover poly-
nomial approximation techniques are far simpler to implement. As such, our
methods represent feasible options as replacement models for learned indexes,
and a tantalising direction for further investigation.



References

1. Aldà, F., Rubinstein, B.I.P.: The Bernstein mechanism: Function release under
differential privacy. In: AAAI. pp. 1705–1711 (2017)

2. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: SIGFIDET. pp. 107–141 (1970)

3. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge
phenomenon for the approximation of non-periodic functions, Part I: Single-
interval schemes. Communications in Computational Physics 5(2-4), 484–497
(2009)

4. Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rig-
orous computing. In: Proceedings of the 2010 International Symposium on Sym-
bolic and Algebraic Computation. pp. 147–154. ACM (2010)

5. Cheney, E.W.: Introduction to approximation theory. McGraw-Hill (1966)
6. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: A Matlab-like environment

for machine learning. In: BigLearn NIPS workshop (2011)
7. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: A

data-aware index structure. In: SIGMOD. pp. 1189–1206 (2019)
8. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI. pp.

148–155 (1998)
9. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. So-

ciety for Industrial and Applied Mathematics (2007)
10. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:

ICDE (1998)
11. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)
12. Graefe, G., Larson, P.A.: B-tree indexes and cpu caches. In: ICDE. pp. 349–358

(2001)
13. Hadian, A., Heinis, T.: Interpolation-friendly b-trees: Bridging the gap between

algorithmic and learned indexes. In: EDBT. pp. 710–713 (2019)
14. Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In: CIDR. pp. 68–78

(2007)
15. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,

V.W., Brandt, S.A., Dubey, P.: Fast: Fast architecture sensitive tree search on
modern cpus and gpus. In: SIGMOD. pp. 339–350 (2010)

16. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned
index structures. In: SIGMOD (2018)

17. Kubica, J.M., Moore, A., Connolly, A.J., Jedicke, R.: Spatial data structures for
efficient trajectory-based queries. Tech. Rep. CMU-RI-TR-04-61, Carnegie Mellon
University (2004)

18. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: Artful indexing for
main-memory databases. In: ICDE. pp. 38–49 (2013)

19. Microsoft: Hardware and software requirements for installing SQL server
20. Mitzenmacher, M.: A model for learned bloom filters, and optimizing by sandwich-

ing. In: NIPS. pp. 462–471 (2018)
21. Rao, J., Ross, K.A.: Making b+-trees cache conscious in main memory. In: SIG-

MOD. pp. 475–486 (2000)
22. Schonfelder, J.: Chebyshev expansions for the error and related functions. Mathe-

matics of Computation 32(144), 1232–1240 (1978)
23. Shalev-Shwartz, S., Ben-David, S.: Understanding machine learning: From theory

to algorithms. Cambridge university press (2014)
24. Stonebraker, M.: The case for partial indexes. SIGMOD Record 18(4), 4–11 (1989)


