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ABSTRACT
On-demand ride-sharing services such as Uber and Lyft have gained
tremendous popularity over the past decade, largely driven by the
omnipresence of mobile devices. Ride-sharing services can pro-
vide economic and environmental benefits such as reducing traffic
congestion and vehicle emissions. Multi-hop ride-sharing enables
passengers to transfer between vehicles within a single trip, which
significantly extends the benefits of ride-sharing and provides ride
opportunities that are not possible otherwise. Despite its advan-
tages, offering real-time multi-hop ride-sharing services at large
scale is a challenging computational task due to the large combi-
nation of vehicles and passenger transfer points. To address these
challenges, we propose exact and approximation algorithms that
are scalable and achieve real-time responses for highly dynamic
ride-sharing scenarios in large metropolitan areas. Our experiments
on real-world datasets show the benefits of multi-hop ride-sharing
services and demonstrate that our proposed algorithms are more
than two orders of magnitude faster than the state-of-the-art. Our
approximation algorithms offer a comparable trip quality to our ex-
act algorithm, while improving the ride-sharing request matching
time by another order of magnitude.

CCS CONCEPTS
• Information systems → Location based services; • Ap-

plied computing → Transportation.
KEYWORDS

Real-time, road networks, ride-sharing, multi-hop.

ACM Reference Format:
Yixin Xu, Lars Kulik, Renata Borovica-Gajic, Abdullah Aldwyish, Jianzhong
Qi. 2020. Highly Efficient and Scalable Multi-hop Ride-sharing. In Proceed-
ings of SIGSPATIAL (Conference’20). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Ride-sharing has been widely adopted for on-demand transporta-
tion services as it offers more affordable trips by allowing passen-
gers with similar routes to share the use of vehicles. Ride-sharing
creates economic and environmental benefits due to the higher
occupancy rates of vehicles and reduced overall travel distances.
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Figure 1: A multi-hop ride-sharing example.
A fundamental problem in ride-sharing is determining how to

dispatch vehicles to trip requests. Dispatching (i.e., request match-
ing) algorithms have been proposed to improve the efficiency and
effectiveness of ride-sharing services [1–8]. However, most of them
only consider direct trips but do not investigate the possibility of
multi-hop trips. A multi-hop trip dispatches more than one vehicle
to serve a request and the passengers will transfer between the
dispatched vehicles. The benefits of enabling multi-hop trips have
been documented in many studies [9–12]. The proposed approaches
provide more flexible trips, leading to an increased matching ratio,
lower travel costs of vehicles, and reduced congestion.

Figure 1 shows an example road network that denotes the travel
times (in minutes) at the edges. A passenger requests a trip from 𝐴

to𝐺 and needs to arrive within 25 minutes at their destination. Two
vehicles 𝑐𝑎 and 𝑐𝑏 offer shared trips and their scheduled routes are
highlighted in red and blue, respectively. None of the vehicles can
serve the request on time if they can only accept small detours (e.g.,
5 minutes of additional trip time for other passengers). Nevertheless,
the passenger can arrive on time through a multi-hop trip: vehicle
𝑐𝑎 carries the passenger from 𝐴 to 𝐷 and vehicle 𝑐𝑏 carries the
passenger from 𝐷 to 𝐺 .

Despite its advantages, multi-hop ride-sharing has only be ap-
plied to small networks for a limited number of vehicles and passen-
gers [9–12] as they exhaustively enumerate all possibilities. Most
of the existing multi-hop ride-sharing algorithms find multi-hop
trips by searching for overlapping routes between passengers and
vehic,les and enumerate all possible routes of vehicles and pas-
sengers, which leads to an exponential time complexity as even a
slight detour generates a different route. Thus, previous methods
are restricted to small road networks (at most 10000 nodes). Effi-
cient solution for multi-hop ride-sharing in real-world scenarios
for large city road networks remains challenging.

To fully exploit the benefits of multi-hop ride-sharing, we pro-
pose scalable real-time multi-hop dispatching algorithms for large
scale real-world scenarios. We propose pruning strategies to reduce
the search space using the time constraints of requests, thus achiev-
ing real-time responses. We propose two algorithms that cater for
different scenarios: Station-first and Vehicle-first.
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The Station-first algorithmfirst computes possible transfer points
and then finds feasible vehicles. Its efficiency depends on the num-
ber of transfer points and is preferable when the transfer points are
sparse. However, it might be less desired when more transfer points
with a higher density are available. The Vehicle-first algorithm first
prunes candidate vehicles that can serve a request (stage one) and
then computes an optimal transfer point for each candidate trip
(stage two). Based on the key observation that the time constraints
of the committed requests limit the area (called the reachable area)
that a vehicle can reach, we prune vehicles by computing whether
or not their reachable areas cover the new request. We then solve
the problem of finding an optimal transfer point by reducing it
into a variation of a group nearest neighbor query problem [13].
The Vehicle-first algorithm avoids checking on all possible transfer
points and achieves higher efficiency with dense transfer points.

Since in real applications the provision of real-time responses
to requests may be more important than finding the optimal trip,
e.g., when it rains and a passenger quickly needs to find a trip.
We propose two strategies to accelerate the Vehicle-first algorithm.
The first strategy reduces the number of paired vehicles returned
in stage one. In the exact Vehicle-first algorithm, we represent
reachable areas of vehicles through ellipses (denoted as bounding
ellipses) and pair vehicles if their bounding ellipses overlap. As the
actual reachable areas are often smaller than the bounding ellipses
due to the road network constraints, we infer the actual reachable
areas instead of using the ellipses, which leads to fewer overlapping
vehicles and candidate trips. Recent studies [14, 15] show that deep
learning has great potential in computing road network distances.
Thus, we predict the actual reachable areas using deep learning. We
achieve accurate predictions by integrating the bounding ellipses.
The second approximation strategy is performed in the second stage
of the Vehicle-first algorithm, i.e., computating the optimal transfer
points. Instead of exhaustively checking all potential transfer points,
we only check a few estimated transfer point that seems optimal,
which substantially reduces the search time.

The contributions of this paper are summarized as follows:

• We propose scalable real-time multi-hop ride-sharing dis-
patching algorithms. To the best of our knowledge, this is
the first work applicable to real-world ride-sharing scenarios
with large sets of transfer points.

• We propose two algorithms to cater for different application
scenarios. Both algorithms apply efficient and effective prun-
ing to reduce the search space and achieve high efficiency.

• We propose approximation strategies to reduce response
times by utilizing deep learning and efficient indices.

• We experimentally verify the benefits of multi-hop ride-
sharing and demonstrate the efficacy and efficiency of the
proposed algorithms over real-world datasets. Our algo-
rithms are two to three orders of magnitude faster than the
state-of-the-art. The efficiency can be improved by another
order of magnitude if applying approximation strategies.

2 RELATEDWORK
Studies of ride-sharing algorithms originate from the static dial-
a-ride problem [16] and have developed towards large-scale and
real-time application scenarios.

Single-hop ride-sharing. Most studies on ride-sharing have
focused on the single-hop dispatching problem where every pas-
senger is transported by only one vehicle [1–6, 17–19]. Single-hop
dispatching algorithms typically work in two stages – pruning and
selection. The pruning stage quickly filters out infeasible matches
violating the constraints of requests. The selection stage processes
the remaining vehicles to find an optimal match based on given
optimization goals. Popular optimization goals include minimizing
the total travel distance of vehicles [1, 5, 6, 17] and maximizing the
system profit [4, 18, 19].

Multi-hop ride-sharing. Existing multi-hop algorithms mostly
model the problem using time-expanded graphs (TEG) [9, 10, 12]. In
a TEG, the TEG nodes have two keys: location id and time, repre-
senting that the vehicle can reach the location at the specified time.
The TEG nodes record possible visits of vehicles with time informa-
tion. These nodes are connected by TEG edges to denote possible
connections such that possible routes can be tracked following
the edges. A TEG edge that connects two TEG nodes of different
locations is called a transfer edge, whereas a waiting edge connects
two TEG nodes of the same location but different timestamps.

The first adoption of TEG in multi-hop ride-sharing is [12]. They
reduce the problem of multi-objective optimization into a multi-
objective shortest path problem and solve it using an evolutionary
algorithm after building the TEGs. Several algorithms are proposed
to accelerate the search ofmulti-hopmatches on TEG graphs. Drews
et al. [10] apply A* algorithm on the TEG graph to find the bestmulti-
hop option. Masoud et al. [9] reduce the number of nodes in a TEG
by only considering points within areas bounded by ellipses. They
further develop dynamic programming algorithms to accelerate
search on TEGs for the best routes [9]. Despite the reduced search
spaces, their algorithms are still based on TEGs and thus are only
able to handle small road networks and few transfer points (the
maximum evaluated network has only 10000 nodes). Besides, they
assume a vehicle can at most occupy one more request along a
pre-defined path, while we study a real-world taxi ride-sharing
scenario in which vehicles are roaming in the street and can serve
multiple requests at a time.

Several other studies assign multiple trip requests jointly and
focus on improving the defined optimization goals instead of the
matching efficiency. Hou et al. [20] aim to optimize the matching
ratio. They first enumerate the multi-hop options for all passengers
and then assign requests to passengers ordering by the developed
strategies, e.g., first assign requests requiring less detour. Coltin et
al. [21] also enumerate all multi-hop options before dispatching,
aiming to minimize the total travel distance of all vehicles and
the transfer costs of requests. None of these works can apply to
real-world scenarios due to the overhead of the exhaustive search.

Herbawi et al. [11] model the problem using time windows and
apply a similar idea to our Station-first algorithm (Section 4), i.e., re-
ducing the multi-hop dispatching problem to single-hop. However,
they employ genetic algorithms that are only applicable to small
networks (only 50 vehicles and 150 requests are experimentally eval-
uated), while we adopt a state-of-the-art single-hop dispatching
algorithm that is more scalable and efficient [6].

Group nearest neighbor query. Given a set of query points
and a set of data objects, a group nearest neighbor (GNN) query
finds the nearest object with the minimum sum (or max) distance
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to all query points. GNN and its variants have been studied in
the literature [13, 22–24]. GNN algorithms can be categorized into
two classes: incremental network expansion (INE) and incremental
Euclidean distance restriction (IER). INE algorithms gradually expand
the search space from the query points until the optimal object is
found. Instead, the IER algorithms use the Euclidean GNN distances
as lower bounds to guide the search towards the optimal network
GNN object. The IER algorithm achieves faster response time in
most cases except when the query points are dense [13, 22, 23].

3 PRELIMINARIES
3.1 Basic Concepts
We consider a multi-hop ride-sharing system on a road network
which is represented as a directed graph 𝐺 = ⟨𝑉 , 𝐸⟩, where 𝑉 de-
notes a set of nodes and 𝐸 represents a set of edges connecting these
nodes. Each edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) is associated with a weight representing
the travel cost from node 𝑣𝑖 to 𝑣 𝑗 . We denote their travel distance
as 𝑑 (𝑣𝑖 , 𝑣 𝑗 ) and their travel time as 𝑡 (𝑣𝑖 , 𝑣 𝑗 ). A location is denoted
as a transfer point if transfer at the location is allowed.

Trip request. A trip request 𝑟𝑖 = ⟨𝑡, 𝑠, 𝑒, 𝜏𝑠 , 𝜏𝑒 , 𝜂⟩ has six ele-
ments: the issue time 𝑡 ; the source location 𝑠 , the destination lo-
cation 𝑒 , the latest pickup time 𝜏𝑠 , the latest dropoff time 𝜏𝑒 and
the number of passengers 𝜂. A set of trip requests is represented
as 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}. Similar to previous works [1, 5, 6], we use
the maximum waiting time 𝑟𝑖 .𝑤 and detour ratio 𝑟𝑖 .𝜖 to define the
latest arrival times: 𝜏𝑠 = 𝑡 +𝑤 , 𝜏𝑒 = 𝑡 +𝑤 + 𝑡 (𝑠, 𝑒) × (1 + 𝜖).

Vehicle. A vehicle 𝑐𝑖 = ⟨𝑙, 𝑆,𝑢, 𝑣⟩ has four elements, the current
location 𝑙 , the trip schedule 𝑆 , the vehicle capacity𝑢, and the vehicle
speed 𝑣 . A set of vehicles is represented as 𝐶 = {𝑐1, 𝑐2, ..., 𝑐𝑛}.

Vehicle schedule. We denote the trip schedule of vehicle 𝑐𝑖
as a sequence of locations 𝑐𝑖 .𝑆 = ⟨𝑝0, 𝑝1, 𝑝2, ..., 𝑝𝑚⟩, where 𝑝𝑖 is
a node in the road network representing a stop that is a source,
destination or transfer point of an assigned request. We distinguish
stops locating at the same place considering their different time
constraints and request information. A vehicle not committed to
any request has only one stop in its trip schedule (current location
𝑝0). We call the route between two consecutive stops a segment.

Following previous works [5, 6, 17], we maintain three arrays
to record the trip schedule information: 𝑎𝑟𝑟 [] records the earliest
arrival time of each stop, 𝑙𝑎𝑡 [] records the latest arrival time of each
stop and 𝑠𝑙𝑘 [] records the maximum allowed detour time before
each stop to ensure the service constraints of all passengers.

𝑎𝑟𝑟 [] is calculated by accumulating the shortest travel time be-
tween stops, i.e., 𝑎𝑟𝑟 [𝑘] = 𝑎𝑟𝑟 [𝑘−1] +𝑡 (𝑝𝑘−1, 𝑝𝑘 ). 𝑙𝑎𝑡 [] is the latest
arrival time of the referred stop, restricted by the corresponding
request. 𝑙𝑎𝑡 [𝑘] − 𝑎𝑟𝑟 [𝑘] specifies the maximum allowed detour
time before stop 𝑘 respecting the latest arrival time of the stop 𝑘 .
A detour before 𝑝𝑘 delays the arrival time of all following stops
of 𝑝𝑘 . 𝑠𝑙𝑘 [𝑘] records the maximum allowed detour time satisfying
the arrival times of the stop 𝑘 and that of all stops scheduled after
𝑘 , i.e., 𝑠𝑙𝑘 [𝑘] = 𝑚𝑖𝑛(𝑙𝑎𝑡 [𝑖] − 𝑎𝑟𝑟 [𝑖]), 𝑖 = 𝑘, ...,𝑚. The maximum
allowed travel time between a segment (𝑝𝑘−1, 𝑝𝑘 ) is thus computed
as𝑚𝑎𝑥 (𝑝𝑘−1, 𝑝𝑘 ) = 𝑎𝑟𝑟 [𝑘] − 𝑎𝑟𝑟 [𝑘 − 1] + 𝑠𝑙𝑘 [𝑘].

After a stop 𝑝𝑘 , the vehicle can only visit a restricted area to
satisfy the maximum allowed travel time of the segment (𝑝𝑘 , 𝑝𝑘+1),
i.e.,𝑚𝑎𝑥 (𝑝𝑘 , 𝑝𝑘+1). We denote such an area as the reachable area

after 𝑝𝑘 , i.e., 𝑟𝑒𝑎𝑐ℎ(𝑝𝑘 ). The slack time and maximum allowed
travel time after the last stop 𝑝𝑚 are infinite, and the reachable area
after the last stop 𝑝𝑚 covers the whole space.

Similar to previous studies [5, 6, 17, 25, 26], we keep the order of
existing trip schedules and insert new stops to the exiting schedules.
The insertion position 𝑘 indicates that the new stop is inserted after
the stop 𝑝𝑘 . Note that insertions cannot before 𝑝0 that represents
the current location of the vehicle.

A trip schedule is valid if it satisfies the following conditions:

• Stop order. A vehicle needs to visit the source of a request
before visiting the transfer point or visit the transfer point
before visiting the destination of the request.

• Time constraint. The estimated arrival time of a stop rep-
resenting the source or destination of a request must be no
later than its latest arrival time.

• Capacity. The number of on-board passengers cannot exceed
the capacity of the vehicle at any time.

3.2 Problem Definition
We focus on direct trips and trips with one transfer point (i.e., 2-
hop trips), since previous studies [9, 10, 20, 27] have shown that
allowing more than one transfer in a trip brings marginal benefits.

For a direct trip, a vehicle will be dispatched to pick up the
request and deliver the passenger(s) to their destination directly. As
for a multi-hop (i.e., 2-hop) trip, two vehicles will be dispatched to
the request with a transfer point assigned. The first vehicle carries
the request from the source to the transfer point where the request
transfers to the second vehicle to continue the remaining trip until
the destination is reached. We denote the trip from the source to the
transfer point as the first itinerary and the trip from the transfer
point to the destination as the second itinerary.

A match of a new request 𝑟𝑛 , denoted by 𝑟𝑛 .𝑚 = ⟨𝑐1, 𝑐2, 𝜙 , Γ⟩,
consists of four elements: the vehicle carrying the first itinerary 𝑐1,
the vehicle carrying the second itinerary 𝑐2, the transfer point 𝜙 ,
and the insertion positions Γ = {𝑠, 𝜙1, 𝜙2, 𝑒} including four values:

(1) Γ(𝑠): insertion position of the source to the first vehicle’s
schedule.

(2) Γ(𝜙1): insertion position of the transfer point to the first
vehicle’s schedule.

(3) Γ(𝜙2): insertion position of the transfer point to the second
vehicle’s schedule.

(4) Γ(𝑒): insertion position of the destination to the second ve-
hicle’s schedule.

We use 𝜙1 and 𝜙2 to distinguish the transfer points in the two
vehicle schedules if necessary. For direct matches, 𝑐2 equals to 𝑐1,
and the insertions related to transfers are null, i.e., Γ(𝜙1), Γ(𝜙2).

Example 3.1. In Figure 1, a multi-hop trip 𝑟𝑛 .𝑚 = ⟨𝑐𝑎, 𝑐𝑏 , 𝐷, Γ =

{𝑐𝑎 .1, 𝑐𝑎 .1, 𝑐𝑏 .2, 𝑐𝑏 .2}⟩ of 𝑟𝑛 indicates that 𝑟𝑛 will be first carried by
𝑐𝑎 and then transfer to 𝑐𝑏 at the location 𝐷 . Both source (𝐴) and the
transfer point (𝐷) will be inserted after the first stop of 𝑐𝑎 , updating
the trip schedule from 𝐴 → 𝑀 to 𝐴 → A → D → 𝑀 . Similarly,
both the transfer point (𝐷) and the destination (𝐺) will be inserted
after the second stop of the vehicle, updating the trip schedule from
𝐵 → 𝐷 → 𝐻 to 𝐵 → 𝐷 → D → G → 𝐻 .



Conference’20, November 2020, Washington, DC, USA Yixin Xu, Lars Kulik, Renata Borovica-Gajic, Abdullah Aldwyish, Jianzhong Qi

For a multi-hop trip, the assigned two vehicles may reach the
transfer point at different times. If the first vehicle arrives earlier,
the passengers have to stay at the transfer point to meet the second
vehicle. If the second vehicle arrives earlier, the second vehicle
needs to wait at the transfer point until the first vehicle comes.

Afeasiblemulti-hopmatch.A feasiblemulti-hopmatch should
satisfy the time constraints of the new request and all existing re-
quests. We consider the following service constraints:

• 𝑟𝑛 must be picked up and dropped off on time, i.e.,𝑎𝑟𝑟 [Γ(𝑠)]+
𝑡 (𝑝Γ (𝑠) , 𝑟𝑛 .𝑠) ≤ 𝑟𝑛 .𝜏𝑠 ; 𝑎𝑟𝑟 [Γ(𝑒)] + 𝑑𝑒𝑡 (𝜙2) + 𝑡 (𝑝Γ (𝑒) , 𝑟𝑛 .𝑒) ≤
𝑟𝑛 .𝜏𝑒 , where 𝑑𝑒𝑡 (𝑥) denotes the additional trip time to visit
the location 𝑥 . 𝑑𝑒𝑡 (𝜙2) includes waiting time of the second
vehicle at 𝜙 if necessary.

• The detour time of the first vehicle cannot exceed its maxi-
mum allowed detour time to ensure the latest arrival times
of all committed requests, i.e., 𝑑𝑒𝑡 (𝑟𝑛 .𝑠) ≤ 𝑠𝑙𝑘 [Γ(𝑠) + 1];
𝑑𝑒𝑡 (𝑟𝑛 .𝑠) + 𝑑𝑒𝑡 (𝜙1) < 𝑠𝑙𝑘 [Γ(𝜙1) + 1].

• The detour time of the second vehicle cannot exceed its
maximum allowed detour time, i.e.,𝑑𝑒𝑡 (𝜙2) ≤ 𝑠𝑙𝑘 [Γ(𝜙2)+1];
𝑑𝑒𝑡 (𝜙2) + 𝑑𝑒𝑡 (𝑟𝑛 .𝑒) ≤ 𝑠𝑙𝑘 [Γ(𝑒) + 1].

Matching Objective. Although our proposed algorithms are
applicable to other optimization goals, we simplify the discussion
by studying a popular optimization objective – minimizing the
travel distance of vehicles [1, 5, 6, 17]. Assume that the overall
scheduled travel distance of all vehicles was 𝑇 before dispatching
requests, and the distance becomes𝑇 ′ after dispatching all requests
𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}, the goal is to minimize the additional distance
𝑇 ′ −𝑇 to serve all requests.

As the optimization problem is NP-hard [1, 17] we apply a pop-
ular strategy [1, 5, 6, 17] that sequentially matches passengers
ordered by their issue times. For every new request, we dispatch
an optimal trip that minimizes the additional travel distance𝑇 ′ −𝑇
to serve it. We compute the optimal direct trip using the state-
of-the-art single-hop dispatching algorithm [6] and the optimal
multi-hop trip using the proposed multi-hop dispatching algorithm.
An optimal one among them is assigned to the request.

We keep dispatches unchanged once allocated and assume ve-
hicles to follow the scheduled routes. We leave the discussion of
handling incidents such as cancellation of requests for future work.

4 STATION-FIRST ALGORITHM
Next, we present our Station-first algorithm that first identifies
potential transfer points and then searches for possible vehicles by
adopting the state-of-the-art single-hop algorithm GeoPrune [6].

4.1 GeoPrune
When a new request 𝑟𝑛 arrives, GeoPrune computes a waiting circle
circle(𝑟𝑛 .s) and a detour ellipse ellipse(𝑟𝑛 .𝑠 , 𝑟𝑛 .𝑒) to assist searching
for possible vehicles. The waiting circle bounds the locations of
potential vehicles. The detour ellipse indicates the area that the
request may detour to ensure the latest arrival time at the desti-
nation. The circles and ellipses are represented by their minimum
bounding rectangles (MBRs) for quicker retrieval and updates.

(1) circle (𝑝1). The waiting circle of 𝑝1 is centered at 𝑝1 with
radius equal to (max_speed × (𝑙𝑎𝑡 [𝑝1] - curr_time)).

(2) ellipse (𝑝1, 𝑝2). The detour ellipse between 𝑝1 and 𝑝2 con-
siders 𝑝1 and 𝑝2 as two focal points and the major length
being (max_speed ×𝑚𝑎𝑥 (𝑝1, 𝑝2)).

max_speed is the maximum vehicle speed, 𝑙𝑎𝑡 [𝑝1] is the latest ar-
rival time at 𝑝1, curr_time is the current system time, and𝑚𝑎𝑥 (𝑝1, 𝑝2)
is the maximum allowed travel time between 𝑝1 and 𝑝2.

During the matching process, GeoPrune records the reachable
area between every two consecutive stops (a segment) using a
detour ellipse. Indexing these detour ellipses enables a quick assess-
ment of whether a location is reachable by a vehicle. GeoPrune finds
the following vehicles as candidates to serve 𝑟𝑛 (pruning stage):

(1) a vehicle with its last stop covered by circle(𝑟𝑛 .s);
(2) a vehicle with at least one detour ellipse of its existing sched-

ules covering the source 𝑟𝑛 .𝑠 and at least one detour ellipse
of its existing schedule covering the destination 𝑟𝑛 .𝑒;

(3) a vehicle with at least one detour ellipse of its existing sched-
ule covering the source 𝑟𝑛 .𝑠 and its last stop covered by the
request detour ellipse.

After obtaining the vehicle candidates, GeoPrune checks the in-
sertion feasibility to every vehicle candidate and selects the optimal
match to return to the passenger (selection stage).

Example 4.1. Assume all nodes in the road network in Figure 1
are transfer points. The schedule of 𝑐𝑎 is 𝐴 −𝑀 and the reachable
area between 𝐴 −𝑀 is bounded by the red ellipse. The schedule of
𝑐𝑏 is 𝐵 − 𝐷 − 𝐻 , and the reachable areas of 𝐵 − 𝐷 and 𝐷 − 𝐻 are
bounded by two blue ellipses, respectively. When a new request
arrives, GeoPrune constructs its waiting circle and detour ellipse
(with dashed green boundaries). Assume the last stops of both
vehicles are outside of the waiting circle, then no vehicle satisfies
the condition (1) listed above. As neither vehicle has the detour
ellipses covering both the source and the destination, no vehicle
satisfies the condition (2). The request detour ellipse covers the
last stop of neither vehicle, so no vehicle satisfies the condition (3).
Thus, the request cannot be served by a direct trip.

4.2 Multi-hop Station-First Algorithm
We next detail our multi-hop Station-first algorithm. The basic idea
of the algorithm is to split a request trip by a transfer point and then
apply the GeoPrune algorithm on the two generated itineraries.

Stage 1: Identify possible transfer points. We only examine
transfer points within the detour ellipse, i.e., ellipse(𝑟𝑛 .𝑠 , 𝑟𝑛 .𝑒). Vis-
iting any points outside of the request detour ellipse will violate the
latest arrival time of the request [6, 9] and thus points outside of the
ellipse cannot be a transfer point. We build an R-tree on all possible
transfer points on the road network (𝑇𝑡𝑠 𝑓 ) and run a range query
using ellipse(𝑟𝑛 .𝑠 , 𝑟𝑛 .𝑒) to retrieve the possible transfer points.

Stage 2: Check each possible transfer point.We then check
the feasibility of every possible transfer point. A transfer point 𝜙
splits the request trip into two itineraries (𝑟𝑛 .𝑠, 𝜙) and (𝜙, 𝑟𝑛 .𝑒). We
derive their time constraints so as to apply the single-hop algorithm.

For the source 𝑟𝑛 .𝑠 , the earliest arrival time (𝑒𝑎𝑟 ()) is the request
issue time, and the latest arrival time (𝑙𝑎𝑡 ()) is the latest pickup time,
i.e., 𝑒𝑎𝑟 (𝑟𝑛 .𝑠) = 𝑟𝑛 .𝑡 , 𝑙𝑎𝑡 (𝑟𝑛 .𝑠) = 𝑟𝑛 .𝜏𝑠 . For the destination 𝑟𝑛 .𝑒 , the
earliest arrival time is the request issue time plus the shortest trip
time of the request, i.e., 𝑒𝑎𝑟 (𝑟𝑛 .𝑒) = 𝑟𝑛 .𝑡 + 𝑡 (𝑟𝑛 .𝑠, 𝑟𝑛 .𝑒). The latest
arrival time is the latest drop-off time, i.e., 𝑙𝑎𝑡 (𝑟𝑛 .𝑒) = 𝑟𝑛 .𝜏𝑒 .



Highly Efficient and Scalable Multi-hop Ride-sharing Conference’20, November 2020, Washington, DC, USA

Figure 2: Detour ellipses of Figure 1.
The time constraints of the transfer point𝜙 depend on its location

and are different in the two itineraries. The earliest arrival time of
𝜙 in the first itinerary (𝜙1) is the issue time of the request 𝑟𝑛 .𝑡 plus
the direct trip time from 𝑟𝑛 .𝑠 to 𝜙 , i.e., 𝑒𝑎𝑟 (𝜙1) = 𝑟𝑛 .𝑡 + 𝑡 (𝑟𝑛 .𝑠, 𝜙).
The system must reserve a time longer than the direct trip from
𝜙 to 𝑟𝑛 .𝑒 to ensure the latest arrival time of the request. Thus, the
latest arrival time at 𝜙 is 𝑙𝑎𝑡 (𝜙1) = 𝑟𝑛 .𝜏𝑒 - 𝑡 (𝜙, 𝑟𝑛 .𝑒).

We apply GeoPrune to compute all feasible matches to serve
the first itinerary before setting time constraints for the second
itinerary. The selection stage needs to enumerate all insertion posi-
tions of source and destination for every vehicle candidate and find
all feasible insertion positions. The first itinerary may find multiple
matches with different estimated arrival times at the transfer point
(𝑒𝑠𝑡 (𝜙1)) and thus define different second itineraries.

The transfer point is regarded as a source in the second itinerary
(𝜙2). Its earliest arrival time is its estimated arrival time in the first
itinerary, i.e., 𝑎𝑟𝑟 (𝜙2) = 𝑒𝑠𝑡 (𝜙1). Its latest arrival time is the same as
that of the first itinerary, i.e., 𝑙𝑎𝑡 (𝜙2) = 𝑙𝑎𝑡 (𝜙1) = 𝑟𝑛 .𝜏𝑒 - 𝑡 (𝜙, 𝑟𝑛 .𝑒).

We again apply GeoPrune on each generated second itinerary to
compute all feasible matches. The combination of a feasible match
of the first itinerary and that of the corresponding second itinerary
forms a feasible multi-hop match. Among all feasible multi-hop and
direct matches, we select and return the optimal one to the request.

Algorithm complexity. Assume there are |𝑃 | transfer points,
|𝐶 | vehicles and the maximum number of stops of the vehicle sched-
ule is |𝑆 |. For each transfer point, GeoPrune is applied once on
the first itinerary. The maximum number of feasible matches of
the first itinerary is |𝐶 | |𝑆 |2 as there are |𝐶 | vehicles and each ve-
hicle has |𝑆 | positions to insert the source and |𝑆 | positions to
insert the destination. Each feasible match of the first itinerary
defines a second itinerary and each generated second itinerary
conducts GeoPrune once (at most |𝐶 | |𝑆 |2). Every second itinerary
may also has at most |𝐶 | |𝑆 |2 insertion positions. Thus, the Geo-
Prune will be conducted at most (|𝐶 | |𝑆 |2 + 1) times for each trans-
fer point and at most |𝐶 |2 |𝑆 |4 insertion positions will be checked
with 𝑂 (1) checking time. Combining with the GeoPrune complex-
ity 𝑂 (

√
|𝐶 | |𝑆 | + |𝐶 | |𝑆 | log( |𝐶 | |𝑆 |)), the overall complexity of the

Station-first algorithm is 𝑂 ( |𝑃 | ( |𝐶 |2 |𝑆 |4 + |𝐶 |2 |𝑆 |3 log( |𝐶 | |𝑆 |))).
5 VEHICLE-FIRST ALGORITHM
The Station-first algorithm examines all possible transfer points,
which may become expensive when there are many such points.
Next, we propose an algorithm called Vehicle-first that examines
fewer transfer points while preserving exact solutions.

The intuition is that two vehicles can be paired up in a trip only if
their reachable areas (ellipses) overlap and the transfer points must
be within the detour ellipses of both vehicles and the request. By

using efficient data structures, we can quickly locate overlapping
ellipses and identify possible vehicle pairs and insertion positions.

A vehicle pair and the specified insertion positions form a multi-
hop trip candidate. Our further analysis shows that the optimal
transfer point of each trip candidate only depends on three or
four stops of vehicles, which enables us to reduce the problem
into a variation of group nearest neighbor query (GNN) in road
networks. Repeatedly running GNN queries on each trip candidate
lacks efficiency when there are many candidates vehicle pairs. We
hence propose a novel algorithm to accelerate this process. The
algorithm can be easily extended to other goals by customizing the
algorithm of finding the optimal transfer points.

5.1 Stage 1: Find Possible Insertion Positions
We first explain how to identify possible vehicle pairs and the in-
sertion positions of source, destination and the transfer point. We
first compute circle(𝑟𝑛 .𝑠) and ellipse(𝑟𝑛 .𝑠 , 𝑟𝑛 .𝑒) for a given request
𝑟𝑛 and then run a two-phase refinement process to find the possible
trip candidates. The first phase locates the possible insertions of
the source 𝑟𝑛 .𝑠 and destination 𝑟𝑛 .𝑒 to a vehicle schedule. The sec-
ond phase detects the overlap areas between vehicles and identify
possible insertions of the transfer point.

Phase 1: Identify possible insertions of source and
destination. There are two types of insertion positions to add a
new stop to the schedule of a vehicle: insert-between and insert-
after. An insert-between position indicates an insertion between
two existing stops of the vehicle schedule while an insert-after
position indicates appending the new stop after the last stop.

The same as GeoPrune [6], we construct two R-trees to index
the detour ellipses and the last stops of vehicles respectively: 𝑇𝑠𝑒𝑔
and 𝑇𝑒𝑛𝑑 . We run four queries to identify possible insertions of the
source and destination (and thus the possible vehicles).

(1) insert-between for source 𝑟𝑛 .𝑠 : querying segments with the
detour ellipse covering 𝑟𝑛 .𝑠 , 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑠).

(2) insert-after for source 𝑟𝑛 .𝑠: querying vehicles with the last
stop covered by circle(𝑟𝑛 .𝑠), 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑐𝑖𝑟𝑐𝑙𝑒 (𝑟𝑛 .𝑠)).

(3) insert-between for destination 𝑟𝑛 .𝑒 : querying segments with
the detour ellipse covering 𝑟𝑛 .𝑒 , 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑒).

(4) insert-after for destination 𝑟𝑛 .𝑒: querying vehicles with the
last stop covered by circle(𝑟𝑛 .𝑒),𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑐𝑖𝑟𝑐𝑙𝑒 (𝑟𝑛 .𝑒)).

We discard an insertion position if it violates the time constraints
of any stop. Assume that the previous stop in the new schedule is 𝑝𝑘
and the new stop is 𝑝 , if the estimated arrival time of 𝑝 (computed
by summing up the estimated arrival time of 𝑝𝑘 and the travel time
from 𝑝𝑘 to 𝑝) is later than its allowed latest arrival time, we discard
the insertion position. Besides, if the insertion position refers to a
segment (𝑝𝑘 , 𝑝𝑘+1), we discard the insertion position if the caused
detour time is larger than the slack time of the segment. The range
query 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒 (𝑐𝑖𝑟𝑐𝑙𝑒 (𝑟𝑛 .𝑒)) may return many vehicles due to
the possibly large querying circle. However, most of the vehicles
may have late arrival times at their last stops and the last stops may
be far from the destination. Checking the time constraints helps to
safely discard these infeasible vehicles.

Phase 2: Identify overlap reachable areas. After running the
four queries, vehicles that can be scheduled to visit the source or
the destination of the request are obtained. In Phase 2, we pair up
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such vehicles by detecting the overlap reachable areas of them by
the constraints: 1) The transfer point must be within the detour
ellipse of the request. 2) In the first vehicle’s schedule, the insertion
position of the transfer point must be no earlier than that of the
source. 3) In the second vehicle’s schedule, the insertion position of
the transfer point must be no later than that of the destination.

For each pair of source insertion and destination insertion be-
longing to two different vehicles, we check if there is a reachable
area after the source insertion overlaps with a reachable area before
the destination insertion. If we detect an overlap within the request
ellipse, we create a multi-hop trip candidate with the two vehicles
and insertion positions specified. The possible transfer points must
be within the overlapped reachable areas and the request ellipse.
We denote such an area as the transfer window of the trip candidate.

Example 5.1. In Figure 2, we first search for vehicles that can
reach source 𝐴 and destination𝐺 , respectively. For source 𝐴, only
the first ellipse of 𝑐𝑎 (the red ellipse) covers𝐴. Assuming the waiting
circle of 𝑟𝑛 .𝑠 covers the last stop of neither vehicle, 𝐴 can only be
inserted after the first stop in 𝑐𝑎 ’s schedule. As for destination 𝐺 ,
the second ellipse of 𝑐𝑏 (the blue ellipse on the right) covers 𝐺 .
Assuming the waiting circle of 𝐺 covers both last stops of 𝑐𝑎 and
𝑐𝑏 ,𝐺 has three possible insertion positions: after the second stop of
𝑐𝑏 , after the last (third) stop of 𝑐𝑏 , and after the last (second) stop of
𝑐𝑎 . Next, we check the time constraints of these insertion positions.
We assume that inserting 𝐺 to the last stop of 𝑐𝑏 violates the latest
arrival time of 𝐺 and discard this insertion possibility. We then
pair up the possible insertion positions of 𝐴 and 𝐺 . The insertion
pair (Γ(𝑠), Γ(𝑒)) = (𝑐𝑎 .1, 𝑐𝑎 .2) is infeasible because the source and
destination must be served by two different vehicles. Thus, only
one insertion pair is remained: (Γ(𝑠), Γ(𝑒)) = (𝑐𝑎 .1, 𝑐𝑏 .2).

We then check the transfer possibility for the remaining insertion
pair (Γ(𝑠), Γ(𝑒)) = (𝑐𝑎 .1, 𝑐𝑏 .2). We check if there is any reachable
area after the first stop of 𝑐𝑎 overlap with that before the second
stop of 𝑐𝑏 . Since the first ellipse 𝑐𝑎 overlaps with the first and
second ellipses of 𝑐𝑏 , the possible insertions of the transfer point
are: 1) after the first stop of 𝑐𝑎 and after the first stop of 𝑐𝑏 , 2) after
the first stop of 𝑐𝑎 and after the second stop of 𝑐𝑏 , yielding two
multi-hop trip candidates: 1) ⟨𝑐𝑎, 𝑐𝑏 , 𝜙, Γ = (𝑐𝑎 .1, 𝑐𝑎 .1, 𝑐𝑏 .1, 𝑐𝑏 .2)⟩; 2)
⟨𝑐𝑎, 𝑐𝑏 , 𝜙, Γ = (𝑐𝑎 .1, 𝑐𝑎 .1, 𝑐𝑏 .2, 𝑐𝑏 .2)⟩. Their optimal transfer points
are not decided yet and bounded by the overlap areas.

5.2 Stage 2: Find the Optimal Transfer Point
The remaining challenge is how to quickly find an optimal match
with optimal transfer point. A naive solution of finding the optimal
transfer point of a trip candidate is to check all transfer points
within the transfer window. Such a solution is inefficient when
many transfer points are possible. Next, we reduce the problem
into a variation of the GNN query to enable a more efficient solution.

5.2.1 Problem Reduction. Given a multi-hop candidate, the addi-
tional distance equals to the travel distance of the new schedules of
the two vehicles minus the travel distance of their existing sched-
ules. As the travel distance of the existing schedules is a constant,
the problem of minimizing the additional distance is reduced to
minimizing the travel distance of the new schedule.

If we append both source and transfer point to the first vehicle’s
trip schedule, the transfer point will be the last stop and only the

source stop will be connected to the transfer stop in the new sched-
ule. If we insert both source and the transfer point in the middle
of the first vehicle’s schedule, there will be two stops connecting
the transfer point, one at the front and one afterward. On the other
hand, in the schedule of the second vehicle, the destination stop
must be placed after the transfer stop. Hence, the transfer stop
cannot be the last stop and there must be two stops connecting the
transfer point in the second vehicle’s schedule.

We denote the stops connecting the transfer point in the new
schedule as GNN stops and the sum of distances from a point to
the GNN stops as the GNN distance. The additional distance of
a multi-hop match can be computed as the sum of two parts: a
constant part that equals to the travel distance connecting non-
GNN stops in the new schedules minus the travel distance of the
existing trip schedules, and a variable part representing the GNN
distance. Finding the optimal transfer point is thus reduced to
finding a transfer point with minimum sum of distances to three or
four fixed (GNN) stops while satisfying the time constrains, which
is a variation of a group nearest neighbor (GNN) in a road network.

Example 5.2. Consider amulti-hop option ⟨𝑐𝑎, 𝑐𝑏 , 𝜙, Γ = (𝑐𝑎 .1, 𝑐𝑎 .1,
𝑐𝑏 .2, 𝑐𝑏 .2)⟩. The schedule of 𝑐𝑎 changes from 𝐴 −𝑀 to 𝐴 −𝐴 − 𝜙 −
𝑀 . The travel distance of the existing schedule 𝐴 − 𝑀 is a con-
stant 𝑑 (𝐴,𝑀). The travel distance of the new schedule equals to
𝑑 (𝐴,𝜙) + 𝑑 (𝜙,𝑀) (𝑑 (𝐴,𝐴) = 0), which is changing with the choice
of 𝜙 . Similarly, the schedule of 𝑐𝑏 changes from 𝐵 − 𝐷 − 𝐻 to
𝐵 −𝐷 −𝜙 −𝐺 −𝐻 . The travel distance of the existing schedule is a
constant 𝑑 (𝐵, 𝐷) +𝑑 (𝐷,𝐻 ). The travel distance of the new schedule
is𝑑 (𝐵, 𝐷)+𝑑 (𝐷,𝜙)+𝑑 (𝜙,𝐺), 𝑑 (𝐺,𝐻 ).𝑑 (𝐵, 𝐷) and𝑑 (𝐺,𝐻 ) are fixed
while 𝑑 (𝐷,𝜙)𝑑 (𝜙,𝐺) vary based on 𝜙 . The problem of minimizing
the additional distance is reduced to minimizing 𝑑 (𝐴,𝜙) +𝑑 (𝜙,𝑀)+
𝑑 (𝐷,𝜙) + 𝑑 (𝜙,𝐺), which is further reduced to finding a feasible
transfer point to minimize the sum distance to 𝐴,𝑀, 𝐷,𝐺 .

5.2.2 Collaborative IER. Applying an existing GNN algorithm to
each multi-hop trip lacks efficiency when many multi-hop candi-
dates remains. Observing that many multi-hop trips may share
overlap transfer windows that will be searched multiple times and
cause redundant computation, we propose to collaboratively pro-
cess all multi-hop candidates while only explore the space once.

IER.We first describe an existing GNN algorithm Incremental
Euclidean Restriction (IER) [13]. IER traverses the R-tree indexing all
transfer points from top to bottom. Given an R-tree node 𝑅𝑛𝑜𝑑𝑒 , the
GNN distance of any point indexed under𝑅𝑛𝑜𝑑𝑒 must be larger than
the sum Euclidean distance from the GNN query points (GNN stops
in our problem) to the minimum bounding box of 𝑅𝑛𝑜𝑑𝑒 . To exploit
this property, the algorithm maintains a priority queue to sort R-
tree nodes by their sum Euclidean distance to the GNN query points.
Initializing the queue as the root of 𝑇𝑡𝑠 𝑓 , IER iteratively extracts
minimum elements from the queue and inserts its children nodes to
the queue. Hence, points with smaller Euclidean GNN distances will
be visited first. If the extracted element refers to a transfer point,
we check its feasibility (Section 3.2) and update the optimal GNN
distance 𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 . If the key of the next element in the queue is
larger than 𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡 , IER terminates as the sum network distance
of any unchecked nodes must be larger than the current best result.

Collaborative IER. The basic idea is that when reaching an
R-tree node, instead of computing the GNN lower bound of a single
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multi-hop candidate, we consider the lower bounds of allmulti-hop
candidates. The algorithm is guided to first visit the transfer points
with smaller lower bounds respecting all multi-hop candidates,
which enables earlier termination and reduced search space.

Every R-tree nodemaintains three additional variables during the
traversal: activemulti-hop candidates (𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑎𝑛𝑑), lower bound of
these active candidates (𝑎𝑐𝑡𝑖𝑣𝑒_𝐿𝐵), and the minimum lower bound
of these active candidates(𝑚𝑖𝑛_𝐿𝐵). 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑎𝑛𝑑 stores all multi-
hop candidates with their transfer window intersecting the MBR
of the R-tree node, while all other multi-hop trips are infeasible to
transfer within the indexed area. For each candidate in 𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑎𝑛𝑑 ,
the lower bound of minimum additional distance considering any
transfer points within the indexed area is recorded in 𝑎𝑐𝑡𝑖𝑣𝑒_𝐿𝐵.
Note that the recorded lower bound of a multi-hop candidate is the
lower bound of theminimum additional distance that considers both
the GNN distance and the constant part. The minimum 𝑎𝑐𝑡𝑖𝑣𝑒_𝐿𝐵
of all active multi-hop candidates is indicated by𝑚𝑖𝑛_𝐿𝐵.

The same as IER, we maintain a priority queue that sorts R-tree
nodes by their minimum lower bound𝑚𝑖𝑛_𝐿𝐵. We initialize the
queue with the R-tree root and iteratively dequeue top elements.
After each dequeue, we process the children nodes of the dequeued
node. We remove those multi-hop candidates that are no longer
active in the children nodes if their transfer windows become non-
overlapping with the indexed. We also update the lower bounds
of all active candidates for each child node. We insert a child node
to the queue if its active multi-hop is not empty and set the key
as the updated minimum lower bound. If the extracted node is a
leaf node, we check the feasibility of the corresponding transfer
point considering all its active multi-hop candidates. We update the
optimal additional distance 𝑏𝑒𝑠𝑡_𝑎𝑑𝑑_𝑑𝑖𝑠𝑡 if a smaller distance is
achieved. When the key of the top element in the queue exceeds the
recorded optimal distance 𝑏𝑒𝑠𝑡_𝑎𝑑𝑑_𝑑𝑖𝑠𝑡 , we terminate the search
and return the optimal multi-hop match and optimal transfer point.

Algorithm complexity. Querying the possible insertion posi-
tions of source and destination takes 𝑂 (

√
|𝑆 | |𝐶 | + |𝑆 | |𝐶 |) time. The

source (or destination) has |𝐶 | |𝑆 | possible insertion positions, each
of which has at most |𝑆 | positions to insert the transfer position.
The overall number of trip candidates is thus at most |𝐶 |2 |𝑆 |4. In the
worst case, the algorithm visits all nodes during the R-tree traversal
(𝑂 ( |𝑉 |+log |𝑉 |)) and each node processes all routes (𝑂 ( |𝑉 | |𝐶 |2 |𝑆 |4)).
The overall complexity is therefore 𝑂 (log |𝑉 | + |𝑉 | |𝐶 |2 |𝑆 |4).
5.3 Performance Enhancement Through Deep

Learning and Approximation
The above algorithms guarantee the finding of the optimal multi-
hop trip. We propose two approximation strategies to accelerate
the two stages of the Vehicle-first algorithm while achieving near-
optimal matches. The first strategy employs deep learning to shrink
the representation of reachable areas such that fewer vehicles will
overlap and be paired up. The second strategy approximates the
optimal transfer point such that fewer points need to be checked.
5.3.1 Learning the Reachable Area. The exact algorithms use el-
lipses to bound the reachable areas and guarantee the pruning
correctness. However, it may bring extra computation as the ac-
tual reachable areas considering the network distance are usually
smaller than the ellipses. If we use actual reachable areas instead
of the ellipses in Vehicle-first algorithm, fewer trip candidates may
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Figure 3: Reachable area prediction (left: Boundary Predic-
tion; right: Gap & GapCustom Prediction).
survive the pruning, thus improving the query efficiency. Comput-
ing the actual reachable areas online is costly due to the expensive
graph traversal. We predict the reachable areas using deep learning
considering the high accuracy and low prediction cost [14, 15].

The model is a multi-layer feed-forward network with 12 hidden
layers. The architecture follows encoder-decoder architecture style
where number of neurons in each layer is (64, 64, 128, 128, 256, 256,
256, 256, 128, 128, 64, 64). We use ReLU as the activation function
for the hidden layers and linear for the output layer.

Given a road network, a reachable area is determined by three
factors: source, destination, and time budget. Each location has two
coordinates (longitude and latitude) and thus an input to our neu-
ral network is comprised of five elements: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑜𝑛, 𝑠𝑜𝑢𝑟𝑐𝑒_𝑙𝑎𝑡 ,
𝑑𝑒𝑠𝑡_𝑙𝑜𝑛, 𝑑𝑒𝑠𝑡_𝑙𝑎𝑡 , 𝑡𝑖𝑚𝑒_𝑏𝑢𝑑𝑔𝑒𝑡 . For fast retrieval and updates, we
still represent reachable areas as rectangles. The prediction goal is
thus to obtain the four boundaries of a rectangle, i.e., 𝑙𝑒 𝑓 𝑡 , 𝑏𝑜𝑡𝑡𝑜𝑚,
𝑟𝑖𝑔ℎ𝑡 , 𝑡𝑜𝑝 . We consider the following three prediction strategies:

Boundary prediction. The strategy predicts the four bound-
aries of the actual reachable rectangle directly, as shown in the left
of Figure 3. The training uses the Mean Square Error (MSE) as the
loss function to minimize the differences between the predicted
boundaries and the actual boundaries.

Gap prediction. This strategy uses the bounding information
provided by the MBRs of ellipses, which is inspired by the key
observation that the actual reachable area is always a sub-area of the
bounding ellipse (rectangle). Instead of predicting the boundaries
directly, for each boundary, we predict the gap between the MBR of
the bounding ellipse and theMBR of the actual reachable area:Δ𝑙𝑒 𝑓 𝑡 ,
Δ𝑏𝑜𝑡𝑡𝑜𝑚 , Δ𝑟𝑖𝑔ℎ𝑡 and Δ𝑡𝑜𝑝 (right of Figure 3). We use the MSE as
the loss function to minimize the difference between the predicted
gaps and the actual gaps when training. Let the boundaries of
the bounding ellipse be 𝑏𝑜𝑢𝑛𝑑_𝑙𝑒 𝑓 𝑡 , 𝑏𝑜𝑢𝑛𝑑_𝑟𝑖𝑔ℎ𝑡 , 𝑏𝑜𝑢𝑛𝑑_𝑡𝑜𝑝 , and
𝑏𝑜𝑢𝑛𝑑_𝑏𝑜𝑡𝑡𝑜𝑚, the predicted rectangle can be inferred as:

(1) 𝑝𝑟𝑒𝑑_𝑙𝑒 𝑓 𝑡 = 𝑏𝑜𝑢𝑛𝑑_𝑙𝑒 𝑓 𝑡 + Δ𝑙𝑒 𝑓 𝑡 ;
(2) 𝑝𝑟𝑒𝑑_𝑟𝑖𝑔ℎ𝑡 = 𝑏𝑜𝑢𝑛𝑑_𝑟𝑖𝑔ℎ𝑡 − Δ𝑟𝑖𝑔ℎ𝑡 ;
(3) 𝑝𝑟𝑒𝑑_𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑏𝑜𝑢𝑛𝑑_𝑏𝑜𝑡𝑡𝑜𝑚 + Δ𝑏𝑜𝑡𝑡𝑜𝑚 ;
(4) 𝑝𝑟𝑒𝑑_𝑡𝑜𝑝 = 𝑏𝑜𝑢𝑛𝑑_𝑡𝑜𝑝 − Δ𝑡𝑜𝑝 .

GapCustom prediction. If the predicted gap is larger than the
actual gap, the predicted area will be smaller than the actual reach-
able area. Thus, some feasible vehicle pairs (with overlapped actual
reachable areas) may be missed if the predicted areas no longer
overlap. To avoid such false negative pairs, we propose the GapCus-
tom prediction that applies a customized loss function to the Gap
prediction and penalizes predictions larger than the actual gaps:
L = 1

𝑛

∑𝑛
𝑖=1 𝜑 (𝑦_𝑡𝑟𝑢𝑒 − 𝑦_𝑝𝑟𝑒𝑑))2.

where 𝜑 is the penalty factor: 𝜑 = 1 if 𝑦_𝑝𝑟𝑒𝑑 ≤ 𝑦_𝑡𝑟𝑢𝑒 whereas
𝜑 > 1 if 𝑦_𝑝𝑟𝑒𝑑 > 𝑦_𝑡𝑟𝑢𝑒 . In our experiments, we choose the
penalty factor 𝜙 = 10 for larger prediction.
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The predicted boundaries can not produce a closed rectangle
if 𝑝𝑟𝑒𝑑_𝑙𝑒 𝑓 𝑡 > 𝑝𝑟𝑒𝑑_𝑟𝑖𝑔ℎ𝑡 or 𝑝𝑟𝑒𝑑_𝑏𝑜𝑡𝑡𝑜𝑚 > 𝑝𝑟𝑒𝑑_𝑡𝑜𝑝 . For such
cases, we still represent the reachable area using the bounding
ellipse. Besides, as the applied gap value must be non-negative, we
treat a predicted negative gap as zero in the Gap prediction and
GapCustom prediction, indicating no shrink on the boundary.

5.3.2 Quickly locating the optimal transfer point. The Vehicle-first
algorithm checks the feasibility of multiple transfer points before
returning an optimal feasible one. In an extreme case, no transfer
point is feasible and the algorithm needs to check all transfer points
within the transfer window. To accelerate the process, we propose
an approximation strategy to check only a few transfer points for
each vehicle pair. The basic idea is to estimate the optimal transfer
point in the road network with the optimal Euclidean GNN transfer
points. Specifically, for each candidate trip, we only check 𝑘 transfer
points (𝑘 = 5 in our experiments) with the top-𝑘 minimum sum
Euclidean distance to the GNN stops, which can be quickly obtained
by using data structures such as R-trees [13, 23].

6 EXPERIMENTS
In this section, we study the empirical performance of the proposed
algorithms. We run all experiments on Linux OS with 2.7 GHz
CPU and 32 GB memory. We train the deep learning models using
tensorflow in Python and implement all other algorithms in C++.
We first investigate the benefits of allowing transfers in ride-sharing
under different parameter settings and then compare the efficiency
and effectiveness of the proposed algorithms.

6.1 Experimental Setup
Dataset.We show the experiments on a real-world road network
dataset extracted from OpenStreetMap: Chengdu (CD) with 254,423
nodes and 467,773 edges. We apply a public real-world dataset of
trip requests [28] on this dataset. We observe similar algorithm per-
formance on another real-world road network datasetNew York City
(166,296 nodes and 405,460 edges) with real-world trip requests [29],
and omit the results due to the space limit. We transform the co-
ordinates into Universal Transverse Mercator (UTM) for pruning
based on Euclidean distance. Similar to previous studies [1, 6, 17],
the locations are mapped to their nearest road network nodes, and
the number of passengers is assumed to be one per request. We
iteratively sample the transfer points by applying the k-medoids
clustering on the network nodes, i.e., the smaller sets of transfer
points are generated by clustering large sets of transfer points.

We generate the training and testing datasets by sampling the
source, destination, and time budget and normalize them before
training themodel.We generate 50,000 samples and randomly select
40,000 of them as the training dataset and the rest as the test dataset.
We train our model using Tensorflow with the maximum number of
training epochs specified as 5000. The learning rate and the batch
size are selected as 0.001 and 100, respectively. We split 20% data
from the training dataset as the evaluation dataset, which is used to
evaluate the model at the end of each training epoch. We monitor
the loss value on the validation dataset and terminate the training
if the validation loss stays unimproved for more than 50 epochs.

Matching strategies.We consider both single-hop and multi-
hop settings. No-multiHop: a ride-sharing system where no transfer
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Figure 4: Effect of the number of vehicles.

is allowed during the matching. MultiHop: a ride-sharing system
where both single-hop and two-hop trips may be returned.

Comparing algorithms.We compare the following algorithms:
SF. the Station-first algorithm described in Section 4.
VF. the Vehicle-first algorithm described in Section 5.
SF-pred. SF plus reachable area prediction (Section 5.3.1).
VF-pred. VF plus reachable area prediction (Section 5.3.1).
VF-apxgnn. VF plus GNN approximation (Section 5.3.2).
VF-apxgnn-pred.VF plus both reachable area prediction and GNN

approximation.
Metrics. We measure the following metrics: # unmatched re-

quests – number of requests that cannot find feasible matches;
average trip distance – average trip distance per request; matching
time – average time required to respond a request.

Default setting. By default, we run experiments on a scenario
when the vehicles are insufficient to serve all requests directly. We
simulate on 4,096 vehicles with 1,000 transfer points and set the
detour ratio and maximumwaiting time of requests as 0.4 and 4𝑚𝑖𝑛.

The state-of-the-art multi-hop matching algorithm [9] requires
more than one week to match requests under the default setting. To
compare the performance, we extract a small area from the central
network of Chengdu (910 nodes and 1610 edges). We randomly
generate 200 vehicles and 100 requests while considering all nodes
as possible transfer points. Due to the hardness of enumerating all
possible paths, [9] only computes 𝑘 ′ shortest paths between two
locations to construct the TEGs. Our experiments show that when
𝑘 ′ = 50, [9] costs more than 42s while our algorithms can respond
in 0.04s. Besides, the resulted total travel distance of [9] is almost
twice as long as ours because of the 𝑘 shortest path simplification.
6.2 Benefits of Multi-hop Trips
We first study the benefits of multi-hop trips with the effect of
number of vehicles, detour ratio, and number of transfer points.

Effect of the number of vehicles. Figure 4 shows the effect
of allowing multi-hop trips as the number of vehicles varies. Over-
all, enabling multi-hop creates more trip matches and reduces the
average trip distance, which confirms that multi-hop is an effec-
tive strategy to improve the system performance. Interestingly, the
matching quality diminishes for multi-hop with only a few vehicles
(less than 210). A possible reason is that a small number of vehicles
can be easily fully occupied even by direct trips, and the multi-hop
trips lead to extra visits to transfer points.

Effect of the detour ratio. Figure 5 illustrates the effect of
multi-hop with different detour willingness of passengers. The
matching quality of multi-hop ride-sharing is observed to outper-
form that of single-hop ride-sharing in all cases. The advantage
of multi-hop becomes more noticeable with higher detour ratios
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Figure 6: Effect of the number of transfer points.

Prediction Boundary Gap GapCustom
𝐼𝑜𝑇 94.62% 93.25% 97.68%

Table 1: Prediction quality.
since passengers are more likely to share routes if they relax their
time constraints. A reasonably high detour ratio may be observed
in real-world applications for long-distance travelers who seek to
save the travel cost by accepting longer arrival times.

Effect of the number of transfer points. Figure 6 shows the
system performance when varying the number of transfer points.
Overall, providing more transfer points matches more requests and
reduces the trip distance, despite slight fluctuations in the number
of unmatched requests impacted by the greedy dispatching strategy.

6.3 Prediction Quality
We next investigate the prediction quality of the models proposed
in Section 5.3.1. We use the metric Intersection over True (𝐼𝑜𝑇 ) that
is calculated by dividing the intersection between the actual area
and the predicted area by the actual area. 𝐼𝑜𝑇 indicates the fraction
of the actual reachable area that is correctly predicted. A higher
𝐼𝑜𝑇 implies more correctly predicted areas.

As shown in Table 1,all prediction strategies can successfully
predict more than 90% of the actual reachable areas (as indicated by
IoT ), which confirms the effectiveness of applying deep learning to
estimate the reachable areas. The GapCustom prediction yields the
highest IoT because the customized loss function produces larger
predicted areas within the bounding ellipses, while the Boundary
prediction may predict many areas outside of the actual reachable
areas and the Gap prediction may cause excessive shrinkage.

Figure 7 compares the performance of different prediction strate-
gies on the ride-sharing dispatching process. In No-pred, the reach-
able areas are still represented as ellipses. All prediction strategies
achieves comparable travel distance and we omit the results due
to the space limit. All prediction strategies are observed to reduce
the matching time by more than 50% while achieving comparable
matching quality. GapCustom prediction yields the best balance
between the matching time and the matching quality. It applies
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Figure 10: Average trip distance.

the customized loss function to improve the matching ratio of Gap
prediction while requiring a slightly longer matching time. Gap
prediction offers faster matching time than GapCustom prediction
in almost all cases but results in fewer matched requests and longer
travel distance. The Boundary prediction needs longer matching
time in almost all cases except when the number of transfer points
is 10, in which case the obtained number of matched requests is
substantially smaller than other strategies.

6.4 Algorithm Performance
Figure 8 illustrates the performance of proposed algorithms. Fig-
ure 8a shows the effect of the detour ratio. All algorithms require
longer timewhen increasing the detour ratio asmore trip candidates
need to be examined. The Station-first algorithm is more sensitive
to the detour ratio. The reason is that its complexity largely depends
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on the number of examining transfer points. A larger detour ratio
results in a larger reachable area that covers more transfer points.

Figure 8b shows the effect of the number of transfer points on
the matching time. The Station-first strategy is faster than the
Vehicle-first strategy when the number of transfer points is small.
However, its matching time becomes remarkably more expensive
when the number of transfer points is increased, while the Vehicle-
first strategy is barely affected. Therefore, the Station-first algorithm
is shown to perform better for scenarios with only a few transfer
points. When more transfer points are desired, the Vehicle-first
algorithm becomes more efficient and favorable.

We evaluate the effectiveness of the reachable area prediction
on both Station-first and Vehicle-first algorithms. Interestingly, the
reachable area prediction largely reduces the matching time of the
Vehicle-first algorithm but is unable to accelerate the Station-first
algorithm. The reason is that large parts of the checking candidates
are generated from the waiting circle of the second itinerary in the
Station-first algorithm. Shrinking the reachable area cannot help
to reduce the number of candidates.

As shown in Figure 8, both approximation strategies accelerate
the Vehicle-first algorithm. The largest improvement is achieved
when applying the two strategies together (one more order of mag-
nitude faster compared to the exact Vehicle-first algorithm). Sur-
prisingly, predicting the reachable areas improves the number of
matched requests for both Vehicle-first and Station-first algorithms
slightly (as shown in Figure 9). The reason might be that the smaller
reachable areas reduce the matching possibility of requests visiting
remote areas, leading to more vehicles moving around the central
areas where more trips are requested and served. Approximating
the transfer point saves more matching time than the reachable area
prediction. It largely reduces the cost of finding optimal transfer
points that requires expensive shortest path computations. Com-
pared to only checking one optimal transfer point in Euclidean
space, checking top-𝑘 points reduces missing trips and improves
approximation quality. Applying approximation strategies achieves
comparable travel distance of both algorithms (Figure 10).

7 CONCLUSION
We studied a real-time and scalable multi-hop ride-sharing system
that allows transfers between vehicles. Our experiments show that
offering multi-hop trips can increase service request matching ra-
tio by up to 10% while reducing the average trip distance by 12%.
Such an improvement enables more than ten thousand requests
to be matched that were previously discarded in big cities such
as Chengdu and NYC everyday. We propose exact algorithms to
compute multi-hop trips, which achieves more than two orders of
magnitude faster response time than the state-of-the-arts while
improving the matching quality significantly. We further acceler-
ate the matching efficiency by another order of magnitude using
approximation strategies such as deep learning.

Our work supports the deployment of multi-hop ride-sharing in
real-world scenarios and creates opportunities for many interesting
future directions, e.g., price-aware or demand-aware multi-hop ride-
sharing. It is also worth investigating more advanced deep learning
models by considering real-time traffic conditions to predict more
accurate reachable areas and achieve higher matching efficiency.
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