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ABSTRACT
On-demand ride-sharing is rapidly growing. Matching trip requests

to vehicles efficiently is critical for the service quality of ride-

sharing. To match trip requests with vehicles, a prune-and-select

scheme is commonly used. The pruning stage identifies feasible

vehicles that can satisfy the trip constraints (e.g., trip time). The

selection stage selects the optimal one(s) from the feasible vehi-

cles. The pruning stage is crucial to lowering the complexity of the

selection stage and to achieve efficient matching. We propose an ef-

fective and efficient pruning algorithm called GeoPrune. GeoPrune

represents the time constraints of trip requests using circles and el-

lipses, which can be computed and updated efficiently. Experiments

on real-world datasets show that GeoPrune reduces the number of

vehicle candidates in nearly all cases by an order of magnitude and

the update cost by two to three orders of magnitude compared to

the state-of-the-art.

CCS CONCEPTS
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computing→ Transportation.
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1 INTRODUCTION
Ride-sharing is becoming a ubiquitous transportation means in

our daily lives. In August 2018, there were 436,000 Uber rides and

122,000 Lyft rides per day in New York [5]. The growing number of

rides calls for efficient algorithms to match numerous trip requests

to optimal vehicles in real-time.

Matching trip requests to vehicles is commonly referred to as

the dynamic ride-sharing matching problem [19, 27]. The goal is to

assign each trip request to a vehicle such that a given optimization
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Figure 1: Illustration of our key idea

objective is achieved while satisfying the service constraints of

trip requests (such as the waiting time and detour time). Various

optimization goals have been studied, such as minimizing the total

travel distance of vehicles [17, 19, 25, 27], maximizing the number

of served requests [8], and maximizing the system profit [9, 30].

To find matches for trip requests, existing algorithms typically

employ two stages: pruning and selection. The pruning stage fil-

ters out infeasible vehicles that cannot meet the service constraints

of trip requests, e.g., vehicles that are too far away. From the remain-

ing vehicles, the selection stage selects the optimal vehicles and

adds the new trip requests to their routes. The computation time

of the selection stage largely depends on the effectiveness of the

pruning stage (i.e., the number of remaining vehicles) as it usually

requires exhaustive checks on all remaining vehicles regarding the

optimization goal. The pruning stage is thus crucial for both the

efficiency of the selection stage and the overall matching efficiency.

We study efficient pruning of infeasible vehicles for fast match-

ing. We focus on finding vehicles that satisfy the service constraints

of trip requests rather than any particular optimization goal. Thus,

our solution is generic and can be easily integrated with selection

algorithms for various optimization goals. We consider essential

service constraints in ride-sharing studies, the latest arrival times
of trip requests [8–10, 17–19, 22, 25–27, 30]. Vehicles violating the

constraints are infeasible matches and filtered out.

Pruning infeasible vehicles in real-time is challenging. First, ride-

sharing is a highly dynamic process. New requests are arriving

frequently and vehicles are moving continuously. A pruning algo-

rithm has to not only effectively prune infeasible vehicles but also

quickly update any information needed for future pruning. Second,

the pruning process needs to consider the constraints of not only

the new trip request but also the trip requests that are currently

being served by the vehicles. Checking all these constraints poses

significant challenges to the algorithm efficiency.

Existing pruning algorithms maintain dynamic indices over the

road network. A simple pruning strategy is to partition the road

network space into grid cells and dynamically record the grid cell

https://doi.org/10.1145/3400903.3400912
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where each vehicle resides. Tomatch a trip request, only the vehicles

in the nearby grid cells of the trip request source location need

to be examined [27]. Such a strategy finds nearby vehicles but

overlooks the future directions of vehicles and requests. Thus, it may

return many infeasible vehicles. To obtain a higher efficiency, two

approximate algorithms, Tshare [19] and Xhare [25], were proposed.
Tshare precomputes pair-wise distances between grid cells and

records the cells on the route of each vehicle. To match a request,

Tshare checks the cells within a distance threshold of the request

source/destination and retrieves vehicles passing these cells in a

certain time range. Xhare, on the other hand, clusters the road

network and records reachable clusters for vehicles given the time

constraints. To match a request, Xhare returns all vehicles that can

make a detour to the cluster where the request source/destination

resides. Both algorithms may fail to find all feasible vehicles due

to approximation errors such as in distance estimation, and their

indices may have high storage and update costs.

To overcome the limitations above, we propose novel pruning

strategies based on geometric properties of service constraints. Our

strategies are built upon the following intuition. As Figure 1 shows,

consider a vehicle 𝑐 that has been assigned to a request 𝑟1 with

a trip from point 𝑠 to point 𝑒 . Vehicle 𝑐 is now at 𝑠 and needs to

reach 𝑒 within time 𝑡1 (e.g., 𝑡1 minutes), as constrained by 𝑟1’s latest

drop-off time. To meet the time constraint 𝑡1, vehicle 𝑐 can visit a

point 𝑝 on its way to 𝑒 only if𝑑𝑖𝑠𝑡 (𝑠, 𝑝)/𝑣𝑚𝑎𝑥 +𝑑𝑖𝑠𝑡 (𝑝, 𝑒)/𝑣𝑚𝑎𝑥 ≤ 𝑡1,

where dist is the Euclidean distance between two points, and 𝑣𝑚𝑎𝑥

is the maximum vehicle speed. Obviously, the vehicle may need

to travel longer than the Euclidean distance as its movement is

constrained by the roads. Also, it may not be able to always travel

at the maximum speed. Thus, even if point 𝑝 satisfies this inequality,

vehicle 𝑐 may still be unable to visit 𝑝 . On the other hand, if point 𝑝
does not satisfy this inequality, vehicle 𝑐 must not visit 𝑝 . The above
inequality defines an ellipse as shown in the figure. Any point

outside this ellipse violates the inequality and must not be visited

by 𝑐 . Thus, if there is another request 𝑟2 from a different user at

point 𝑝 ′, we can safely prune vehicle 𝑐 from consideration if 𝑝 ′ is
not in the ellipse of 𝑐 . This forms the basis of our pruning strategies.

Following the idea above, we propose an efficient geometry-
based pruning algorithm (GeoPrune) for ride-sharing that bounds

the search space for vehicles using ellipses. We further index these

ellipses using efficient data structures such as R-trees for fast search

and updates. The construction of the ellipses is independent of the

underlying road network and thus our algorithm is applicable to

dynamic traffic-aware scenarios when vehicles may travel with

different routes and speed. For every new trip request, our algorithm

returns the pruning results by applying several point/range queries

on the R-trees. Among the candidates, the optimal one is computed

and returned with a separate selection algorithm satisfying the

optimization goal. Once a trip request is assigned to a vehicle, we

insert its source and destination to the vehicle route. Experimental

results show that GeoPrune can prune most infeasible vehicles,

which substantially reduces the computational costs of the selection

stage and improves the overall matching efficiency.

The ellipse idea was explored in several matching problems [15,

21, 32]. However, their exhaustive search is inapplicable in the

real-time dynamic ride-sharing settings where the relevant ellipses

need to be retrieved and updated frequently and efficiently. Besides,

existing algorithms represent the pruning area of every vehicle

using a single ellipse to cover its entire route. Such an ellipse maybe

too loose to achieve effective pruning. In contrast, our algorithm

uses multiple ellipses to tightly bound the pruning area of a vehicle,

which achieves more effective pruning.

Our main contributions are as follows:

• We propose novel pruning strategies to filter infeasible vehi-

cles for trip requests. Our pruning strategies are based on

geometric properties, which eliminate expensive precom-

putation and update costs, making them suitable for large

networks and highly dynamic scenarios.

• Based on the pruning strategies, we propose an algorithm

named GeoPrune that can filter out most infeasible vehi-

cles. It significantly reduces the computational costs of the

selection stage and the overall matching process. Our the-

oretical analysis shows that the running time of GeoPrune

is 𝑂 (
√
|𝑆 | |𝐶 | + |𝑆 | |𝐶 | log( |𝑆 | |𝐶 |)), where |𝑆 | is the maximum

number of stops of the vehicle schedules and |𝐶 | is the num-

ber of vehicles. GeoPrune takes 𝑂 ( |𝑆 | log2 ( |𝑆 | |𝐶 |)) time to

update the states for a newly assigned trip request. During ev-

ery time slot, GeoPrune takes𝑂 ( |𝑆 | log( |𝑆 | |𝐶 |) + |𝐶 | log2 |𝐶 |)
time to update for moving vehicles.

• Experiments on real datasets confirm the effectiveness and

efficiency of our algorithm. Comparing with the state-of-the-

art, it reduces the number of potential vehicles in nearly all

cases by an order of magnitude and the update time by two

to three orders of magnitude.

2 PRELIMINARIES
Wefirst present basic concepts and define our ride-sharingmatching

problem. Table 1 summarizes the frequently used symbols.

2.1 Definitions
We consider ride-sharing on a road network that is represented

as a directed graph 𝐺 = ⟨𝑁, 𝐸⟩, where 𝑁 is a set of vertices and

𝐸 is a set of edges. Each edge 𝑒 (𝑛𝑖 , 𝑛 𝑗 ) is associated with weight

𝑑 (𝑛𝑖 , 𝑛 𝑗 ) indicating the travel distance between vertices 𝑛𝑖 and 𝑛 𝑗 .

We denote the estimated travel time between 𝑛𝑖 and 𝑛 𝑗 as 𝑡 (𝑛𝑖 , 𝑛 𝑗 )
(which may be calculated based on their road network distance or

fetched from a navigation service such as Google Maps).

Trip request. A trip request 𝑟𝑖 = ⟨𝑡, 𝑠, 𝑒,𝑤, 𝜖, 𝜂⟩ consists of six
elements: the issue time 𝑡 , the source location 𝑠 , the destination

location 𝑒 , the maximum waiting time 𝑤 , the maximum detour

ratio 𝜖 , and the number of passengers 𝜂. A set of trip requests is

represented as 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑛}.
For a trip request 𝑟𝑖 , the issue time 𝑟𝑖 .𝑡 records the time when

the trip request is sent. The maximum waiting time 𝑟𝑖 .𝑤 limits the

latest pickup time of the request to be 𝑟𝑖 .𝑙𝑝 = 𝑟𝑖 .𝑡 + 𝑟𝑖 .𝑤 . The maxi-

mum detour ratio 𝑟𝑖 .𝜖 limits the extra detour time of the request.

Together with the maximum waiting time, it constraints the latest
drop-off time of the request to be 𝑟𝑖 .𝑙𝑑 = 𝑟𝑖 .𝑡 + 𝑟𝑖 .𝑤 + 𝑡 (𝑠, 𝑒) × (1+𝜖).
Alternatively, a request can directly set the latest pickup and drop-

off times or simply set the latest drop-off time and the latest pickup

time is then calculated as 𝑟𝑖 .𝑙𝑝 = 𝑟𝑖 .𝑙𝑑 − 𝑡 (𝑠, 𝑒) − 𝑟𝑖 .𝑡 . The difference
between the latest drop-off time and the issue time, i.e., 𝑟𝑖 .𝑙𝑑 − 𝑟𝑖 .𝑡 ,
is its maximum allowed travel time.
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Table 1: Frequently Used Symbols

Notation Description

𝐺 = ⟨𝑁, 𝐸⟩ a road network with vertex (edge) set 𝑁 (𝐸)

𝑡 (𝑛𝑖 , 𝑛 𝑗 ) the estimated shortest travel time between

vertices 𝑛𝑖 and 𝑛 𝑗

𝑅 = {𝑟𝑖 } a set of trip requests

𝐶 = {𝑐 𝑗 } a set of vehicles

𝑟𝑖 =

⟨𝑡, 𝑠, 𝑒,𝑤, 𝜖, 𝜂⟩
a trip request issued at time 𝑡 with source 𝑠 ,

destination 𝑒 , maximum waiting time𝑤 ,

maximum detour ratio 𝜖 and 𝜂 passengers

𝑟𝑖 .𝑙𝑝, 𝑟𝑖 .𝑙𝑑 the latest pickup and drop-off times of 𝑟𝑖

𝑟𝑖 .𝑤𝑐, 𝑟𝑖 .𝑟𝑑 the waiting circle and the detour ellipse of 𝑟𝑖

𝑐 𝑗 = ⟨𝑙, 𝑆,𝑢, 𝑣⟩ a vehicle at 𝑙 with planned trip

schedule 𝑆 , capacity 𝑢 and traveling speed 𝑣

(𝑝𝑘−1, 𝑝𝑘 ) the segment between 𝑝𝑘−1 and 𝑝𝑘

𝑣𝑑 [𝑘] the detour ellipse of (𝑝𝑘−1, 𝑝𝑘 )

Example 2.1. Assume two trip requests 𝑟1 = ⟨9:00 am, 𝑠1, 𝑒1, 5 min,
0.2, 1⟩ and 𝑟2 = ⟨9:07 am, 𝑠2, 𝑒2, 5min, 0.2, 1⟩ in Figure 2. The
shortest travel times from 𝑠1 to 𝑒1 and from 𝑠2 to 𝑒2, i.e., 𝑡 (𝑠1, 𝑒1)
and 𝑡 (𝑠2, 𝑒2), are both 15min. Then, the time constraints of 𝑟1 and
𝑟2 are: 𝑟1 .𝑙𝑝=9:00 am+5min=9:05 am, 𝑟2 .𝑙𝑝=9:07 am+5min=9:12 am,
𝑟1 .𝑙𝑑=9:05 am+15min×1.2=9:23 am, 𝑟2 .𝑙𝑑=9:12 am+15min×1.2=9:30 am.

Vehicle. A vehicle 𝑐𝑖 is represented as 𝑐𝑖 = ⟨𝑙, 𝑆,𝑢, 𝑣⟩, where 𝑙
denotes the location of the vehicle, 𝑆 represents the trip schedule
of the vehicle (detailed later), 𝑢 is the vehicle capacity, and 𝑣 is the

travel speed. We use 𝐶 = {𝑐1, ..., 𝑐𝑛} denotes a set of vehicles.
We track the occupancy status of the vehicles [13]. A vehicle is

empty if it has not been assigned to any trip requests. Otherwise,

the vehicle is non-empty and needs to follow their trip schedules.

2.2 Vehicle schedule
Trip schedule. The trip schedule of a vehicle 𝑐𝑖 , 𝑐𝑖 .𝑆 = {𝑝0, 𝑝1, ...,
𝑝𝑚}, is a sequence of source or destination locations (points on the

road network) of trip requests, except for 𝑝0 that records the current

location of the vehicle, i.e., 𝑝0 = 𝑐𝑖 .𝑙 . We call a source or destination

location on a trip schedule a stop, and the path between every two

adjacent stops 𝑝𝑘−1 and 𝑝𝑘 a segment, denoted as (𝑝𝑘−1, 𝑝𝑘 ).
Example 2.2. Figure 2 shows an example trip schedule. The current

time is 9:00 am and the vehicle is at 𝑙 . Two trip requests (𝑟1, 𝑟2) are as-
signed to the vehicle and the vehicle schedule is (𝑙, 𝑟1 .𝑠, 𝑟2 .𝑠, 𝑟1 .𝑒, 𝑟2 .𝑒).

Trip schedule recorder.We follow a previous study [27] and

record the earliest estimated arrival time, latest arrival time, and
slack time of 𝑐𝑖 .𝑆 with three arrays 𝑎𝑟𝑟 [], 𝑑𝑑𝑙 [], and 𝑠𝑙𝑘 []:

(1) Earliest estimated arrival time 𝑎𝑟𝑟 [𝑘] records the estimated

arrival time to stop 𝑝𝑘 via the trip schedule.

(2) Latest arrival time 𝑑𝑑𝑙 [𝑘] records the latest acceptable arrival
time at stop 𝑝𝑘 . If 𝑝𝑘 is the pickup point of a request 𝑟 𝑗 , 𝑑𝑑𝑙 [𝑘] is
the latest pickup time of 𝑟 𝑗 , 𝑑𝑑𝑙 [𝑘] = 𝑟 𝑗 .𝑙𝑝 . If 𝑝

𝑘
is the drop-off

point of 𝑟 𝑗 , 𝑑𝑑𝑙 [𝑘] is the latest drop-off time of 𝑟 𝑗 , 𝑑𝑑𝑙 [𝑘] = 𝑟 𝑗 .𝑙𝑑 .

(3) Slack time 𝑠𝑙𝑘 [𝑘] records the maximum extra travel time

allowed between (𝑝𝑘−1, 𝑝𝑘 ) to satisfy the latest arrival time of

𝑝𝑘 and all stops scheduled after 𝑝𝑘 . For stop 𝑝𝑖 , it only allows

3min 5min 10min 8min

𝑝0 (l) 𝑝1 (r1.s) 𝑝2 (r2.s) 𝑝3 (r1.e) 𝑝4 (r2.e)

Figure 2: A vehicle schedule example at 9:00 am.
Table 2: Recorded Data for the Trip Schedule in Figure 2.

𝑝𝑘 𝑎𝑟𝑟 [𝑘] 𝑑𝑑𝑙 [𝑘] 𝑑𝑑𝑙 [𝑘] − 𝑎𝑟𝑟 [𝑘] 𝑠𝑙𝑘 [𝑘]
𝑝1 9:03 am 9:05 am 2min 2min

𝑝2 9:08 am 9:12 am 4min 4min

𝑝3 9:18 am 9:23 am 5min 4min

𝑝4 9:26 am 9:30 am 4min 4min

𝑑𝑑𝑙 [𝑖] −𝑎𝑟𝑟 [𝑖] detour time to ensure its latest arrival time. A detour

between 𝑝𝑘−1 and 𝑝𝑘 will not only affect the arrival time of 𝑝𝑘 but

also that of all stops scheduled after 𝑝𝑘 . Thus, a detour between 𝑝𝑘−1

and 𝑝𝑘 must guarantee the latest arrival time of 𝑝𝑘 and all stops

scheduled after 𝑝𝑘 , i.e., 𝑠𝑙𝑘 [𝑘] = 𝑚𝑖𝑛{𝑑𝑑𝑙 [𝑖] − 𝑎𝑟𝑟 [𝑖]}, 𝑖 = 𝑘, ...,𝑚.

𝑠𝑙𝑘 [𝑘] can be calculated by referring to 𝑠𝑙𝑘 [𝑘 + 1], i.e., 𝑠𝑙𝑘 [𝑘] =
𝑚𝑖𝑛{(𝑑𝑑𝑙 [𝑘] − 𝑎𝑟𝑟 [𝑘]), 𝑠𝑙𝑘 [𝑘 + 1]}. The maximum allowed travel
time between (𝑝𝑘−1, 𝑝𝑘 ) is 𝑎𝑟𝑟 [𝑘] − 𝑎𝑟𝑟 [𝑘 − 1] + 𝑠𝑙𝑘 [𝑘].

Example 2.3. The arrays of the trip schedule in Figure 2 are shown
in Table 2. The earliest estimated arrival time of the stops is computed
based on the arrival time of previous stops and the shortest travel
time between stops, e.g., 𝑎𝑟𝑟 [1]=9:00 am+3min= 9:03min, 𝑎𝑟𝑟 [2]
=9:03 am+5min= 9:08min. The latest arrival time of the stops is de-
termined by the corresponding trip requests, e.g., the latest arrival
time of 𝑝1 is the latest pickup time of 𝑟1, i.e., 𝑑𝑑𝑙 [1] = 𝑟1 .𝑙𝑝=9:05 am.
𝑑𝑑𝑙 [𝑘] − 𝑎𝑟𝑟 [𝑘] represents the allowed detour time before visiting 𝑝𝑘

to ensure 𝑑𝑑𝑙 [𝑘], e.g., 𝑝1 allows 9:05 am-9:03 am=2mins detour be-
fore it and 𝑝2 allows 9:12 am-9:08 am =4mins detour before it. 𝑠𝑙𝑘 [𝑘]
records the minimum allowed detour time of 𝑝𝑘 and all stops after
𝑝𝑘 , e.g., a detour before 𝑝3 will not only affect the arrival time of 𝑝3

but also that of 𝑝4. Thus, 𝑠𝑙𝑘 [3] =𝑚𝑖𝑛{5min,4min}=4min.

Valid trip schedule. To form a valid trip schedule, the following
trip constraints need to be satisfied:

(1) Point order constraint: Trip schedule 𝑐𝑖 .𝑆 must visit the pickup

location 𝑟 𝑗 .𝑠 before the drop-off location 𝑟 𝑗 .𝑒 , for any trip request

𝑟 𝑗 assigned to vehicle 𝑐𝑖 .

(2) Time constraint. Trip schedule 𝑐𝑖 .𝑆 must meet the constraints

for every request 𝑟 𝑗 assigned to vehicle 𝑐𝑖 , i.e., 𝑟 𝑗 needs to be picked

up before 𝑟 𝑗 .𝑙𝑝 and be dropped off before 𝑟 𝑗 .𝑙𝑑 .

(3) Capacity constraint. At any time when 𝑐𝑖 is traveling with

trip schedule 𝑐𝑖 .𝑆 , the number of passengers in the vehicle must be

within the vehicle capacity.

Feasible match. Given a new trip request 𝑟𝑛 , assigning 𝑐𝑖 to

serve 𝑟𝑛 is feasible if adding 𝑟𝑛 into the trip schedule of 𝑐𝑖 yields a

valid trip schedule. Vehicle 𝑐𝑖 is then a feasible vehicle for 𝑟𝑛 .
Similar to the previous studies [11, 27, 28], we assume that the

source and the destination of the new trip request are inserted or

appended to the current schedule of the matching vehicle.

2.3 Matching objective
Problem definition. Given a road network𝐺 , a set of vehicles𝐶 , a

set of requests 𝑅, and an optimization objective𝑂 , we aim to match

every request 𝑟 ∈ 𝑅 with a feasible vehicle 𝑐 ∈ 𝐶 to optimize 𝑂 .
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We examine a popular optimization objective, minimizing the
total increased travel distance (time) [8, 17, 19, 25, 27]. Suppose that
the total travel time of the current trip schedules of all vehicles is𝑇 ,

and the total travel time becomes𝑇 ′ after assigning vehicles in𝐶 to

serve requests in 𝑅, our optimization goal 𝑂 is to minimize 𝑇 ′ −𝑇 .
Minimizing the total increased distance for all vehicles is NP-

complete [19], and the future trip requests are unknown. A common

solution is to greedily assign each trip request to an optimal ve-

hicle [10, 19, 27, 28] ordering by their issue time. For every trip

request, we assign it to a feasible vehicle such that the increased

distance of the vehicle trip schedule is minimized.

2.4 Pruning and selection
We take a two-stage approach to solve the problem:

(1) Pruning. Given a new request 𝑟𝑛 , the pruning stage filters

out infeasible vehicles and returns a set of vehicle candidates 𝐶 ′.
(2) Selection. Given a set of vehicle candidates 𝐶 ′, the selection

stage finds the optimal feasible vehicle in 𝐶 ′.
In what follows, we develop algorithms for the pruning stage. Ob-

serving that empty vehicles can be pruned by applying existing spa-

tial network algorithms [6, 23], we distinguish non-empty/empty

vehicles and focus on pruning non-empty vehicles.

3 GEOMETRIC-BASED PRUNING
When a new trip request arrives, we find an optimal feasible vehicle

and add the source and destination of the new trip request to the

vehicle trip schedule. As discussed before, the trip schedule of

the vehicle must satisfy the service constraints of all trip requests

assigned to it including the new trip request. This is the basis of

our pruning strategies.

There are two possibilities to add a stop to a trip schedule, either

inserting it into a segment of the schedule or appending it to the end.

For example, to add a new stop 𝑝 to the trip schedule in Figure 2,

we can either insert it to a segment to form a new schedule such as

(𝑝0, 𝑝, 𝑝1, 𝑝2, 𝑝3, 𝑝4) (we cannot insert before 𝑝0 because 𝑝0 is the
current location of the vehicle) or append it to the end where the

schedule becomes (𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝). We say that a stop is added
to a schedule if it is either inserted or appended to the schedule and

the adding is valid if it still generates a valid trip schedule.

We first detail the criteria to determine whether adding the

source or the destination of a new trip request is valid. These are

based on constraints of the new trip and the existing trip schedule.

Then, we summarize these criteria into three pruning rules.

3.1 Constraints based on existing trip requests
Given a segment (𝑝𝑘−1, 𝑝𝑘 ), if we insert a new stop 𝑝 to it, the path

from 𝑝𝑘−1 to 𝑝𝑘 becomes (𝑝𝑘−1, 𝑝, 𝑝𝑘 ). The travel time from 𝑝𝑘−1

to 𝑝𝑘 becomes 𝑡 (𝑝𝑘−1, 𝑝) + 𝑡 (𝑝, 𝑝𝑘 ), which must be no larger than

the maximum allowed travel time of the segment 𝑎𝑟𝑟 [𝑘] − 𝑎𝑟𝑟 [𝑘 −
1] + 𝑠𝑙𝑘 [𝑘] to satisfy the constraints of exiting trip requests.

The maximum allowed travel time limits the area that the vehicle

can reach between 𝑝𝑘−1 and 𝑝𝑘 . Our key observation is that such a

reachable area can be bounded using an ellipse 𝑣𝑑 [𝑘], and we call

it the detour ellipse of the segment.

Definition 1. The detour ellipse 𝑣𝑑 [𝑘] of a segment (𝑝𝑘−1, 𝑝𝑘 )
is an ellipse with 𝑝𝑘−1 and 𝑝𝑘 as its two focal points, and the major

3min 5min 10min 8min

𝑝1 (r1.s) 𝑝2(r2.s) 𝑝3(r1.e) 𝑝4(r2.e)𝑝0 (l)

𝑝’𝑝∗

Figure 3: Detour ellipses of the trip schedule in Figure 2.

axis length 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 equals to the maximum allowed travel time
multiplied by the vehicle speed 𝑣 , i.e., 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 = (𝑎𝑟𝑟 [𝑘] −
𝑎𝑟𝑟 [𝑘 − 1] + 𝑠𝑙𝑘 [𝑘]) · 𝑣

Lemma 1. For a segment (𝑝𝑘−1, 𝑝𝑘 ), if a point 𝑝 is outside of 𝑣𝑑 [𝑘],
𝑡 (𝑝𝑘−1, 𝑝) + 𝑡 (𝑝, 𝑝𝑘 ) will exceed the maximum allowed travel time.
The segment is therefore invalid for inserting 𝑝 .

Proof. According to the definition of ellipses, if a point 𝑝 is

outside of the ellipse, the sum of the Euclidean distances |𝑝𝑘−1𝑝 | +
|𝑝𝑝𝑘 | must be greater than 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . Since any road network

distance between two points is no smaller than their Euclidean

distance (triangle inequality), the sum of road network distances

𝑑 (𝑝𝑘−1, 𝑝) +𝑑 (𝑝, 𝑝𝑘 ) is at least as large as |𝑝𝑘−1𝑝 | + |𝑝𝑝𝑘 | and thus

must also be greater than 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . The time required to travel

such a distance thus exceeds the maximum allowed travel time and

violates the latest arrival time of existing stops. □

Example 3.1. Figure 3 shows the detour ellipses of the trip schedule
illustrated in Figure 2. For segment (𝑝2, 𝑝3), the slack time is 4min
and thus the maximum allowed travel time from 𝑝2 to 𝑝3 is 10min
+ 4min = 14min. We make an ellipse with 𝑝2 and 𝑝3 as the two
focal points and the major axis length being 14min multiplied by
the vehicle speed, i.e., |𝑝2𝑝∗ | + |𝑝∗𝑝3 | = (14min ·𝑣) for a point 𝑝∗

on the ellipse. If a point 𝑝 ′ is outside this ellipse, then the Euclidean
distance |𝑝2𝑝 ′ | + |𝑝 ′𝑝3 | > (14min ·𝑣). The road network distance
𝑑 (𝑝2, 𝑝 ′) + 𝑑 (𝑝 ′, 𝑝3) will also be greater than (14min ·𝑣) and the
corresponding travel time with speed 𝑣 will exceed 14min, which
violates the service constraint of exiting trip requests. Therefore, it is
invalid to insert 𝑝 ′ between (𝑝2, 𝑝3).

Lemma 1 shows that any point outside of the constructed ellipse

is unreachable and thus the ellipse provides an upper bound of

reachable areas. Next, we further show that the ellipse is also a

lower bound of the reachable area regardless of the underlying road

network, i.e., the ellipse is tight.

Lemma 2. The detour ellipse 𝑣𝑑 [𝑘] tightly bounds the points that
the vehicle can reach between segment (𝑝𝑘−1, 𝑝𝑘 ) without violating
the constraints of its existing tripe schedule.

Proof. We prove by contradiction. Suppose that there is a smaller

ellipse 𝑣𝑑 [𝑘] ′ with the same foci as ellipse 𝑣𝑑 [𝑘] and a major axis

length of 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 −𝜖 (𝜖 > 0 is a sufficiently small value), which

bounds all reachable points. This ellipse is fully enclosed by 𝑣𝑑 [𝑘].
Now consider a point 𝑝∗ on the boundary of 𝑣𝑑 [𝑘], which is outside
𝑣𝑑 [𝑘] ′ by definition. If the underlying road network happens to con-
tain two straight routes from 𝑝𝑘−1 to 𝑝∗ and from 𝑝∗ to 𝑝𝑘 , which
allows the vehicle to travel with the maximum speed. Then, 𝑝∗ is
reachable and it is outside 𝑣𝑑 [𝑘] ′. This contradicts the claim that

𝑣𝑑 [𝑘] ′ bounds all reachable points and completes the proof. □
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Most existing ride-sharing matching algorithms do not con-

sider the variations in traffic, and they assume a constant travel

speed [22]. We replace the constant speed assumption with a max-
imum speed when computing the ellipses. This enables our ap-

proach to avoid false negatives if vehicles travel at varying speeds:

all feasible vehicles are kept (by Lemma 1) as long as they do not

exceed the maximum speed. We later show that using the maximum

speed still preserves pruning efficiency. In practical implementation,

we may also use different maximum speeds for different areas, e.g.,

in Victoria (a state in Australia), the speed limit in most built-up

areas is under 60 km/h while that in rural areas is under 120 km/h.

The ellipse construction is independent of the vehicle trajecto-

ries. It only relies on the maximum allowed travel time and the

endpoints of a trip segment. Vehicles are not restricted to follow the
shortest paths but are flexible to take any dynamic routes at varying
speeds. We record the ellipses of vehicles and update them only

if the corresponding segments change. Specifically, when a trip

request is assigned to a vehicle, we update the vehicle trip schedule

and recompute the ellipses. Meanwhile, when the vehicles reach

stops on their trip schedules, the corresponding segments become

obsolete. We remove the ellipses of such obsolete segments.

Due to the real-time traffics and dynamic paths of vehicles, the

actual arrival times at stops may be delayed and thus affect the

vehicles’ reachable area. 𝑎𝑟𝑟 [] records the earliest arrival times

and the ellipses always bound the reachable area. These allow lazy

updates to vehicle ellipses when vehicles move, i.e., we do not need

to recompute the ellipses when the actual arrival time is delayed.

3.2 Constraints based on the new request
Next, we analyze the service constraints of new requests.

Latest pickup time constraint. Recall that 𝑟𝑛 .𝑤 denotes the

maximum waiting time to ensure the latest pickup time of the new

request 𝑟𝑛 . We define a waiting circle with 𝑟𝑛 .𝑤 .

Definition 2. The waiting circle of 𝑟𝑛 , denoted by 𝑟𝑛 .𝑤𝑐 , is a
circle centered at 𝑟𝑛 .𝑠 and with 𝑟𝑛 .𝑤 · 𝑣 as its radius.

Lemma 3. If it is valid to add 𝑟𝑛 .𝑠 after a stop 𝑝𝑘 in 𝑐𝑖 .𝑆 , then 𝑝𝑘

and all stops before 𝑝𝑘 must be covered by 𝑟𝑛 .𝑤𝑐 .

Proof. The waiting circle bounds the area a vehicle can reach

before picking up 𝑟𝑛 to ensure the latest pickup time of 𝑟𝑛 . Points

outside of 𝑟𝑛 .𝑤𝑐 have Euclidean distances (and hence network dis-

tances) to 𝑟𝑛 .𝑠 greater than 𝑟𝑛 .𝑤 ·𝑣 . If a vehicle needs to visit a point
outside of 𝑟𝑛 .𝑤𝑐 before reaching 𝑟𝑛 .𝑠 , it cannot pickup 𝑟𝑛 before

the latest pickup time 𝑟𝑛 .𝑙𝑝 . □

Example 3.2. Figure 4 shows the waiting circle of a new request 𝑟𝑛 .
The source 𝑟𝑛 .𝑠 can only be added after the stops in the waiting circle
𝑟𝑛 .𝑤𝑐 , i.e., 𝑝0 or 𝑝1. If the vehicle visits 𝑝2 (outside of the waiting
circle) before 𝑟𝑛 .𝑠 , it will not pick up 𝑟𝑛 before the latest pickup time
of 𝑟𝑛 . Thus, it is invalid to add 𝑟𝑛 .𝑠 after 𝑝2 or any stops afterwards.

Latest drop-off time constraint. Similar to the detour ellipses

of segments, we define a detour ellipse for a new request 𝑟𝑛 to

ensure the latest drop-off time of 𝑟𝑛 .

Definition 3. The detour ellipse 𝑟𝑛 .𝑟𝑑 of a new trip request 𝑟𝑛
is an ellipse with 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 as the two focal points. The major axis
length is the maximum allowed travel time of 𝑟𝑛 multiplied by the
speed 𝑣 , i.e., 𝑟𝑛 .𝑟𝑑.𝑚𝑎𝑗𝑜𝑟 = (𝑟𝑛 .𝑙𝑑 − 𝑟𝑛 .𝑡) · 𝑣 .
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Figure 4: Waiting circle and detour ellipse of 𝑟𝑛 , 𝑟 = 𝑟𝑛 .𝑤 · 𝑣 ,
𝑙1 + 𝑙2 = (𝑟𝑛 .𝑙𝑑 − 𝑟𝑛 .𝑡) · 𝑣 .
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Figure 5: Cases to add a new trip request to a trip schedule

The detour ellipse of 𝑟𝑛 restricts the area that a vehicle can visit

while serving 𝑟𝑛 . After picking up 𝑟𝑛 (reaching 𝑟𝑛 .𝑠), if the vehicle

visits any stop outside of the detour ellipse of 𝑟𝑛 , it will not be able

to reach the destination 𝑟𝑛 .𝑒 before the latest drop-off time 𝑟𝑛 .𝑙𝑑 .

Lemma 4. Let 𝑟𝑛 .𝑠 be added after stop 𝑝𝑠 in the trip schedule 𝑐𝑖 .𝑆
of a vehicle 𝑐𝑖 . If it is valid to add 𝑟𝑛 .𝑒 after 𝑝𝑘 in 𝑐𝑖 .𝑆 , then 𝑝𝑘 and
all stops scheduled between 𝑝𝑠 and 𝑝𝑘 must be covered by 𝑟𝑛 .𝑟𝑑 .

Example 3.3. The detour ellipse of 𝑟𝑛 is shown in Figure 4. If 𝑟𝑛 .𝑠
is added after 𝑝0, then 𝑟𝑛 .𝑒 can only be added after either 𝑝0 or stops
inside of the detour ellipse, i.e., 𝑝1 and 𝑝2. Adding 𝑟𝑛 .𝑒 after later
stops (e.g., 𝑝3) will violate the latest drop-off time of 𝑟𝑛 .

3.3 Pruning Rules
There are three cases as shown in Figure 5 when adding a new trip

request 𝑟𝑛 to the trip schedule 𝑐𝑖 .𝑆 of a vehicle 𝑐𝑖 :

(1) insert-insert: insert 𝑟𝑛 .𝑠 into a segment of 𝑐𝑖 .𝑆 and insert

𝑟𝑛 .𝑒 into the same or another segment of 𝑐𝑖 .𝑆 .

(2) insert-append: insert 𝑟𝑛 .𝑠 into a segment of 𝑐𝑖 .𝑆 and append

𝑟𝑛 .𝑒 to the end of 𝑐𝑖 .𝑆

(3) append-append: append 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 to the end of 𝑐𝑖 .𝑆 .

We next analyze the conditions that 𝑐𝑖 needs to satisfy so that

adding 𝑟𝑛 to 𝑐𝑖 .𝑆 is valid for each case.

Insert-insert. Figure 5a shows the insert-insert case, where both
𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 are inserted into some segments of the trip schedule

𝑐𝑖 .𝑆 . According to Lemma 3, a segment is valid for inserting a stop
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Figure 6: The special case of insert-insert.

only if the stop is inside its detour ellipse. Thus, both 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒

must be inside the detour ellipse of at least one segment of 𝑐𝑖 .𝑆 .

A special case is to insert both 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 to the same segment

of 𝑐𝑖 .𝑆 , as shown in Figure 6. In this case, both 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 must

be inside the detour ellipse of the segment.

Lemma 5. A segment (𝑝𝑘−1, 𝑝𝑘 ) is valid to insert both 𝑟𝑛 .𝑠 and
𝑟𝑛 .𝑒 only if 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 are both included in the detour ellipse of the
segment 𝑣𝑑 [𝑘].

Proof. We use Figure 6 to illustrate our proof. The Euclidean

distances among the stops are represented by 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 . Suppose

that (𝑝𝑘−1, 𝑝𝑘 ) is valid to insert both 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 , and the schedule
becomes (𝑝𝑘−1, 𝑟𝑛 .𝑠, 𝑟𝑛 .𝑒, 𝑝𝑘 ) after the insertion. Traveling between
(𝑝𝑘−1, 𝑝𝑘 )must satisfy themaximum allowed travel time constraint.

Thus, 𝑑 (𝑝𝑘−1, 𝑟𝑛 .𝑠) + 𝑑 (𝑟𝑛 .𝑠, 𝑟𝑛 .𝑒) + 𝑑 (𝑟𝑛 .𝑒, 𝑝𝑘 ) = (𝑡 (𝑝𝑘−1, 𝑟𝑛 .𝑠) +
𝑡 (𝑟𝑛 .𝑠, 𝑟𝑛 .𝑒)+𝑡 (𝑟𝑛 .𝑒, 𝑝𝑘 )) ·𝑣 ≤ (𝑎𝑟𝑟 [𝑘]−𝑎𝑟𝑟 [𝑘−1]+𝑠𝑙𝑘 [𝑘]) ·𝑣𝑚𝑎𝑥 =

𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . Since the Euclidean distance between two stops is no

larger than their road network distance, 𝑎 + 𝑏 + 𝑐 ≤ 𝑑 (𝑝𝑘−1, 𝑟𝑛 .𝑠) +
𝑑 (𝑟𝑛 .𝑠, 𝑟𝑛 .𝑒) +𝑑 (𝑟𝑛 .𝑒, 𝑝𝑘 ) ≤ 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . According to the triangle

inequality, 𝑒 < 𝑏 + 𝑐 . Thus, 𝑎 + 𝑒 < 𝑎 + 𝑏 + 𝑐 ≤ 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . The

Euclidean distance sum from 𝑟𝑛 .𝑠 to 𝑝𝑘−1 and 𝑝𝑘 is smaller than

𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 and 𝑟𝑛 .𝑠 must be inside 𝑣𝑑 [𝑘]. Similarly, 𝑑 < 𝑎 + 𝑏,
and 𝑑 + 𝑐 < 𝑎 +𝑏 + 𝑐 ≤ 𝑣𝑑 [𝑘] .𝑚𝑎 𝑗𝑜𝑟 . 𝑟𝑛 .𝑒 must be inside 𝑣𝑑 [𝑘]. □

The pruning rule for the insert-insert case is as follows:

Lemma 6. A vehicle 𝑐𝑖 may be matched with 𝑟𝑛 in the insert-insert
case only if it satisfies:

(1) there exists a segment of 𝑐𝑖 .𝑆 with the detour ellipse that covers
𝑟𝑛 .𝑠 , i.e., 𝑟𝑛 .𝑠 ∈ 𝑣𝑑 [𝑘], 𝑘 = 1, ...,𝑚; and

(2) there exists a segment of 𝑐𝑖 .𝑆 with the detour ellipse that covers
𝑟𝑛 .𝑒 , i.e., 𝑟𝑛 .𝑒 ∈ 𝑣𝑑 [𝑘], 𝑘 = 1, ...,𝑚.

Insert-append. Figure 5b illustrates the insert-append case. Ac-
cording to Lemma 1, to insert 𝑟𝑛 .𝑠 , there must be a segment in the

trip schedule of 𝑐𝑖 whose detour ellipse cover 𝑟𝑛 .𝑠 . Meanwhile, any

stop between 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 needs to be covered by the detour ellipse

of 𝑟𝑛 (see Lemma 4).

Checking all the stops between 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 against the detour

ellipse of 𝑟𝑛 is non-trivial. For fast pruning, we only check the

ending stop of the current trip schedule: if the ending stop is outside

of the detour ellipse of 𝑟𝑛 , it is invalid for appending 𝑟𝑛 .𝑒 . Take

Figure 5b as an example. We only check if 𝑝4 is inside the detour

ellipse of 𝑟𝑛 . This simplified rule may bring in a small number of

infeasible vehicles, which will be filtered later as explained in the

next paragraphs. The pruning rule for the insert-append case is:

Lemma 7. A vehicle 𝑐𝑖 may be matched with 𝑟𝑛 in the insert-
append case only if it satisfies:

(1) there exists a segment of 𝑐𝑖 .𝑆 with the detour ellipse that covers
𝑟𝑛 .𝑠 , i.e., 𝑟𝑛 .𝑠 ∈ 𝑣𝑑 [𝑘], 𝑘 = 1, ...,𝑚; and

(2) the ending stop of the vehicle schedule, 𝑝𝑚 , is covered by the
detour ellipse of 𝑟𝑛 , i.e., 𝑝𝑚 ∈ 𝑟𝑛 .𝑟𝑑 .

Append-append. Figure 5c illustrates the append-append case,

where we append both 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 to the end of the trip schedule.

In this case, 𝑟𝑛 will not affect any exiting stops. Only the service

constraints of 𝑟𝑛 need to be considered. No stop is scheduled be-

tween 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 , and hence the detour constraint of 𝑟𝑛 is satisfied

already. We only need to check is the waiting time constraint of

𝑟𝑛 . According to Lemma 3, all stops scheduled before 𝑟𝑛 .𝑠 must be

covered by the waiting circle of 𝑟𝑛 , e.g., the vehicle needs to visit

𝑝0, 𝑝1, 𝑝2, 𝑝3, 𝑝4 before picking up 𝑟𝑛 .𝑠 in Figure 5c. Hence, all these

stops should be covered by the waiting circle of 𝑟𝑛 . Similar to the

insert-append case, we only check the ending stop.

Lemma 8. A vehicle 𝑐𝑖 may be matched with 𝑟𝑛 in the append-
append case only if the ending stop of its trip schedule, 𝑝𝑚 , is covered
by the waiting circle of 𝑟𝑛 , i.e., 𝑝𝑚 ∈ 𝑟𝑛 .𝑤𝑐 .

We omit the proof of Lemma 4, Lemma 6, Lemma 7, and Lemma 8

due to the space limitation. In our implementation, we useminimum

bounding rectangles (MBRs) to represent ellipses and circles as they

are easier to operate on and tightly bound the ellipses and circles.

3.4 Applying the Pruning Rules
When a new request 𝑟𝑛 arrives, we first compute the waiting circle

and the detour ellipse of 𝑟𝑛 . Then, we compute a set of vehicle

candidates that may match 𝑟𝑛 based on Lemmas 6, 7, 8.

To facilitate the pruning, we compute sets of vehicles that:

(1) have trip schedule segments with detour ellipses that cover

𝑟𝑛 .𝑠 (for the insert-insert and insert-append cases);

(2) have trip schedule segments with detour ellipses that cover

𝑟𝑛 .𝑒 (for the insert-insert case);

(3) have the ending stop of the trip schedule covered by 𝑟𝑛 .𝑤𝑐

(for the append-append case);

(4) have the ending stop of the trip schedule covered by 𝑟𝑛 .𝑟𝑑

(for the insert-append case).

To find vehicles that satisfy a pruning rule, we just need to join

the relevant sets of vehicles computed above. For example, vehicles

that may satisfy the insert-insert case are those in both the first

and the second sets above.

R-tree based pruning. We build two R-trees [16] to accelerate

the computation process, although other spatial indices may also

be applied. One R-tree store the detour ellipses of all segments for

all vehicle trip schedules, denoted by 𝑇𝑠𝑒𝑔 ; the other R-tree stores

the location of the ending stops of all non-empty vehicles, denoted

as 𝑇𝑒𝑛𝑑 . We run four queries:

(1) 𝑄1 = 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑠) is a point query that returns all

segments whose detour ellipses cover 𝑟𝑛 .𝑠 ; each segment returned

may be used to insert 𝑟𝑛 .𝑠 .

(2) 𝑄2 = 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑒) is a point query that returns all

segments whose detour ellipses cover 𝑟𝑛 .𝑒 ; each segment returned

may be used to insert 𝑟𝑛 .𝑒 .

(3) 𝑄3 = 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑤𝑐) is a range query that returns

all ending stops covered by 𝑟𝑛 .𝑤𝑐; each ending stop returned may

be used to append 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 .

(4) 𝑄4 = 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑟𝑑) is a range query that returns

all ending stops covered by 𝑟𝑛 .𝑟𝑑 ; each ending stop returned may

be used to append 𝑟𝑛 .𝑒 .

The returned segments and ending stops are further pruned

based on their time and capacity constraints. For each segment
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(𝑝𝑘−1, 𝑝𝑘 ) returned for inserting 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒), we check whether the

insertion violates the latest arrival time of 𝑝𝑘 and 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒). The

schedule between (𝑝𝑘−1, 𝑝𝑘 ) becomes (𝑝𝑘−1, 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒), 𝑝𝑘 ) after
the insertion. For the new schedule, the arrival time of 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒)

and 𝑝𝑘 is estimated based on the arrival time of 𝑝𝑘−1 plus the

travel time between them. If the earliest estimated arrival time of

𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒) or 𝑝𝑘 exceeds their latest arrival time, the segment is

discarded. For each ending stop (𝑝𝑚) returned for appending 𝑟𝑛 .𝑠

(𝑟𝑛 .𝑒), we estimate the arrival time of 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒) with the appended

schedule by summing up the end stop arrival time and the travel

time from the end stop to 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒). If the estimated time exceeds

the latest arrival time of 𝑟𝑛 .𝑠 (𝑟𝑛 .𝑒), we also discard the ending stop.

We also check the capacity constraint for segments to insert 𝑟𝑛 .𝑠 .

If a segment (𝑝𝑘−1, 𝑝𝑘 ) is returned for inserting 𝑟𝑛 .𝑠 , we sum up

the number of passengers carried in (𝑝𝑘−1, 𝑝𝑘 ) and that of 𝑟𝑛 and

discard the segment if the sum exceeds the capacity.

Let the sets of vehicles corresponding to the segments and ending

stops returned by the four queries above (after filtering) be 𝑂1, 𝑂2,

𝑂3 and 𝑂4, respectively. The sets of vehicles satisfying the three

pruning cases are: 𝐹1 = 𝑂1∩𝑂2 (insert-insert); 𝐹2 = 𝑂1∩𝑂4 (insert-

append); 𝐹3 = 𝑂3 (append-append). The union of these three sets,

𝐹 = 𝐹1 ∪ 𝐹2 ∪ 𝐹3, is returned as the candidate vehicles.

Processing empty vehicles. Empty vehicles do not have des-

ignated trip schedules yet. We only need to check whether they are

in the waiting circle of the new request by a range query over all

empty vehicles using the waiting circle as the query range.

Since our goal is to minimize the system-wide travel time, the

optimal empty vehicle is the nearest one.We thus take a step further

and directly compute the optimal empty vehicle with a network

nearest neighbor algorithm named IER [23] that has been shown to

be highly efficient [6] (other algorithms may also apply [24]).

4 THE GEOPRUNE ALGORITHM
Next, we describe our pruning, match update, and move update
algorithms based on the pruning rules above.

Pruning. Algorithm 1 summarizes the pruning process. For a

new request 𝑟𝑛 , we compute its waiting circle and detour ellipse

(line 1). We run four queries to compute 𝑄1, 𝑄2, 𝑄3, and 𝑄4 as

described in Section 3.4 (lines 2 to 5). Each returned segment and

ending stop is checked against the capacity and time constraints as

described in Section 3.4 (lines 6 to 8). The vehicles of the remaining

segments and ending stops are our candidates (lines 10 to 15).

Match update. If a new trip request 𝑟𝑛 is matched with a vehicle

𝑐𝑖 , we update the data structures as summarized in Algorithm 2.

If 𝑐𝑖 is an empty vehicle, the vehicle now becomes occupied. We

remove the vehicle from an R-tree denoted by 𝑇𝑒𝑣 that stores the

empty vehicles for fast nearest empty vehicle computation (lines

1 and 2). Otherwise, we first remove the segments and the ending

stop of 𝑐𝑖 from the two R-trees𝑇𝑠𝑒𝑔 and𝑇𝑒𝑛𝑑 (lines 4 to 6). Then, we

add the new trip request to the trip schedule of the matched vehicle

𝑐𝑖 (line 7). Based on the updated vehicle schedule, we recompute

the detour ellipses and insert them into𝑇𝑠𝑒𝑔 (lines 8 to 10). The new

ending stop is also inserted into 𝑇𝑒𝑛𝑑 (line 11).

Move update. We also update the data structures when the

vehicles move, as summarized in Algorithm 3. At every time point,

we check if a vehicle has reached a stop in its trip schedule. If

Algorithm 1: Prune non-empty vehicles

Input: A new trip request 𝑟𝑛
Output: a set of possible vehicles to serve 𝑟𝑛
// Pruning stage

1 𝑟𝑛 .𝑤𝑐 ← waiting circle of 𝑟𝑛 ; 𝑟𝑛 .𝑟𝑑 ← detour ellipse of 𝑟𝑛

2 𝑄1 ← 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑠)
3 𝑄2 ← 𝑇𝑠𝑒𝑔 .𝑝𝑜𝑖𝑛𝑡𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑒)
4 𝑄3 ← 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑤𝑐)
5 𝑄4 ← 𝑇𝑒𝑛𝑑 .𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑟𝑛 .𝑟𝑑)
6 for an element in 𝑄1, 𝑄2, 𝑄3, and 𝑄4 do
7 if the time or capacity constraint is violated then
8 remove the element

9 Record the corresponding vehicles of the elements in𝑄1,𝑄2,

𝑄3, 𝑄4 in 𝑂1, 𝑂2, 𝑂3, 𝑂4.

10 𝐹, 𝐹1, 𝐹2, 𝐹3 ← ∅
11 𝐹1 ← 𝑂1 ∩𝑂2 // insert-insert case

12 𝐹2 ← 𝑂1 ∩𝑂4 // insert-append case

13 𝐹3 ← 𝑂3 // append-append case

14 𝐹 ← 𝐹1 ∪ 𝐹2 ∪ 𝐹3
15 return F

Algorithm 2: Update index - match

Input: A new trip request 𝑟𝑛 and the matched vehicle 𝑐𝑖
1 if 𝑐𝑖 empty then
2 𝑇𝑒𝑣 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑐𝑖 )
3 else
4 for a 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in the trip schedule of 𝑐𝑖 do
5 remove the ellipse of the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 from 𝑇𝑠𝑒𝑔

6 𝑇𝑒𝑛𝑑 .remove(ending stop of 𝑐𝑖 )

7 add 𝑟𝑛 .𝑠 and 𝑟𝑛 .𝑒 to the trip schedule of 𝑐𝑖

8 for a 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in the trip schedule of 𝑐𝑖 do
9 compute the detour ellipse of the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

10 insert the ellipse of the 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 into 𝑇𝑠𝑒𝑔

11 𝑇𝑒𝑛𝑑 .insert(the end stop of 𝑐𝑖 )

Algorithm 3: Update index - move

Input: A moving vehicle 𝑐𝑖
1 𝑃 ← obsolete segments of 𝑐𝑖

2 for 𝑝 ∈ 𝑃 do
3 𝑇𝑠𝑒𝑔 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑝)
4 if 𝑐𝑖 reaches the ending stop then
5 𝑇𝑒𝑛𝑑 .𝑟𝑒𝑚𝑜𝑣𝑒(ending stop of 𝑐𝑖 )

6 𝑇𝑒𝑣 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑐𝑖 )

yes, the segments before the reached stop become obsolete and

their detour ellipses are removed from 𝑇𝑠𝑒𝑞 (lines 1 to 3). When

the vehicle reaches its ending stop, the vehicle becomes empty. We

remove it from 𝑇𝑒𝑛𝑑 and insert it into 𝑇𝑒𝑣 (lines 4 to 6).

4.1 Algorithm Complexity
We measure the complexity of our algorithm by two parameters |𝑆 |
and𝐶 that are key to our algorithm: |𝑆 | is the maximum number of
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stops of the vehicle schedules (a small constant constrained by the

vehicle capacity) and |𝐶 | is the number of vehicles. We note that

instead of using |𝑆 |, we may also use the number of requests |𝑅 |
because there is a linear relationship: |𝑆 | |𝐶 | ∝ |𝑅 |. The state-of-the-
art pruning algorithms [19, 25] lack complexity analysis.

Pruning. It takes 𝑂 (1) time to compute the waiting circle and

the detour ellipse of a new request. There are at most |𝑆 | |𝐶 |MBRs in

𝑇𝑠𝑒𝑔 and |𝐶 | entries in𝑇𝑒𝑛𝑑 . The point query on𝑇𝑠𝑒𝑔 returns at most

|𝑆 | |𝐶 | results and hence the complexity is 𝑂 (
√
|𝑆 | |𝐶 | + |𝑆 | |𝐶 |) [20].

At most |𝐶 | results will be returned from the range query on 𝑇𝑒𝑛𝑑

and the complexity is 𝑂 (
√
|𝐶 | + |𝐶 |). The time complexity of the

queries on R-trees is thus 𝑂 (
√
|𝑆 | |𝐶 | + |𝑆 | |𝐶 |). Checking the time

and capacity constraints takes 𝑂 ( |𝑆 | |𝐶 | + |𝐶 |) time.

It takes 𝑂 ( |𝑆 | |𝐶 | + |𝐶 |) time to retrieve the corresponding ve-

hicles and at most |𝐶 | vehicles will be returned in each set after

sorting (𝑂 ( |𝑆 | |𝐶 | log( |𝑆 | |𝐶 |)) time). The set intersection hence takes

O(|𝐶 |) time [12]. The overall time complexity of GeoPrune is thus

𝑂 (
√
|𝑆 | |𝐶 | + |𝑆 | |𝐶 | log( |𝑆 | |𝐶 |)).

Update.When a new trip request is assigned to a vehicle 𝑐𝑖 , it

takes𝑂 (log |𝐶 |) time to delete 𝑐𝑖 from𝑇𝑒𝑣 if 𝑐𝑖 was empty,𝑂 ( |𝑆 | log
( |𝑆 | |𝐶 |)) time to remove invalid segments from𝑇𝑠𝑒𝑔 , and𝑂 (log |𝐶 |)
time to remove the obsolete record in𝑇𝑒𝑛𝑑 [20]. For the new sched-

ule of 𝑐𝑖 , there are at most |𝑆 | new segments. It thus takes 𝑂 ( |𝑆 |)
time to compute the new detour ellipses for the new segments

and 𝑂 ( |𝑆 | log2 ( |𝑆 | |𝐶 |)) time to insert the ellipses to 𝑇𝑠𝑒𝑔 [20]. The

overall update time for a new request is 𝑂 ( |𝑆 | log2 ( |𝑆 | |𝐶 |)).
When a vehicle moves, the number of obsolete scheduled stops is

at most |𝑆 |. Therefore, the time to remove obsolete vehicle ellipses

from 𝑇𝑠𝑒𝑔 is 𝑂 ( |𝑆 | log( |𝑆 | |𝐶 |)). At most |𝐶 | vehicles change their
status while moving, hence the time to update 𝑇𝑒𝑛𝑑 and 𝑇𝑒𝑣 is at

most𝑂 ( |𝐶 | log2 |𝐶 |). Therefore, the overall update time for moving

all vehicles in a time slot is 𝑂 ( |𝑆 | log( |𝑆 | |𝐶 |) + |𝐶 | log2 |𝐶 |).
5 EXPERIMENTS
In this section, we study the empirical performance of GeoPrune

and compare it against the state-of-the-art. All algorithms are im-

plemented in C++ r on a 64-bit virtual node with a 1.8 GHz CPU and

128 GB memory from an academic computing cloud (Nectar [3])

running on OpenStack. The travel distance between points is com-

puted by a shortest path algorithm on road networks [7].

5.1 Experimental Setup
Dataset. We perform the experiments on real-world road network

datasets extracted from OpenStreetMap [4], New York City (NYC)

and Chengdu (CD). We transform the coordinates to Universal

Transverse Mercator (UTM) coordinates to support pruning based

on Euclidean distance. We use real-world taxi requests on the two

road networks [1, 2] and remove unrealistic ones, i.e., duration

time less than 10 seconds or longer than 6 hours. There are 448,128

taxi requests (April 09, 2016) for NYC and 259,423 (November 18,

2016) taxi requests for Chengdu. Every request consists of a source,

a destination, and an issue time. We map the locations to their

nearest road network vertices. Similar to previous studies [10, 17],

we assume the number of passengers to be one per request.

Implementation.We run simulations following the settings of

previous studies [17, 27]. The vehicle initial positions are randomly

selected from the road network vertices. Non-empty vehicles move

Table 3: Datasets

Name # vertices # edges # requests
NYC 166,296 405,460 448,128

CD 254,423 467,773 259,343

Table 4: Experiment parameters

Parameters Values Default
Number of vehicles 2

10
to 2

17
2
13

Waiting time (min) 2, 4, 6, 8, 10 4

Detour ratio 0.2, 0.4, 0.6, 0.8 0.2

Number of requests 20k to 100k 60k

Frequency of requests

(# requests/second)

1 to 10 refer to

table 3

Transforming speed (km/h) 20 to 140 48

on the road network following their trip schedules (shortest paths)

while empty vehicles stay at their last drop-off location until they

are committed to new requests. Similar to previous studies [10,

17], we use a constant travel speed for all edges (48km/h). For the

selection step, we apply the state-of-the-art insertion algorithm [27]

to minimize the total travel distance for all methods. If no satisfying

vehicle is found for a new trip request, the trip request is ignored.

We use in-memory R-trees for indexing.

By default (Table 4), we simulate ride-sharing on 2
13

vehicles

with a capacity of 4 and 60,000 trip requests, and the maximum

waiting time and the detour ratio are 4min and 0.2.

Baselines.We compare with the following state-of-the-art prun-

ing algorithms using their originally reported parameter values.

(1) GreedyGrids [27]. This algorithm retrieves all vehicles that

are currently in the nearby grid cells.

(2) Tshare [19]. This is the single-side search algorithm of

Tshare. (their dual-side search algorithm terminates when a feasible

vehicle is found while we aim to find all feasible vehicles). The grid

cell lengths of both GreedyGrids and Tshare are set to 1 km [27].

(3) Xhare [25]. This algorithm only checks non-empty vehicles.

For a fair comparison, we prune empty vehicles in Xhare using the

same algorithm applied in ourmethod (see Section 3.4).We optimize

the update process by precomputing the pair-wise distance between

clusters. The landmark size is set to 16,000 for NYC and 23,000 for

Chengdu, and the grid length is set to 10m. The maximum distance

between landmarks in a cluster is set to 1 km.

Metrics. We measure and report the following metrics:

(1) Number of remaining vehicles – the number of remaining

candidate vehicles after the pruning. Note that GeoPrune prunes

empty vehicles and non-empty vehicles separately with different

criteria, and such a scheme is applied on Xhare to make it applicable.

GreedyGrids and Tshare, however, process the two types of vehicles

together and return both types after pruning. For consistency, we

only compare the number of remaining non-empty vehicles.

(2) Match time – the total running time of the matching process,

including both pruning and selection time.

(3) Overall update time – the overall match update and move

update time.

(4)Memory consumption – the memory cost of the data structures

of an algorithm.
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(a) # remaining vehicles (NYC).
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(b) # remaining vehicles (CD).
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(c) Overall match time (NYC).
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(d) Overall match time (CD).
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(e) Overall update time (NYC).
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(f) Overall update time (CD).

Figure 7: Effect of the number of vehicles.

As we use the state-of-the-art selection algorithm [27], we obtain

the same matching quality as GreedyGrids [27], including total

increased travel distance (our optimization goal) and matching

ratio. Tshare and Xshare are approximate algorithms and the false

negatives may randomly impact the matching quality. We omit

detailed matching quality results as we focus on pruning. We also

omit the results on varying the capacity due to the space limit

and the stable behavior of all algorithms (as observed in [27, 28]).

GeoPrune consistently outperforms others in all capacity settings.

5.2 Experimental Results
5.2.1 Effect of the Number of Vehicles. Figure 7 shows the results
on varying the number of vehicles. GeoPrune substantially reduces

the number of remaining candidate vehicles. When there are 2
13

vehicles, the average number of candidates of GeoPrune is only 5

on the NYC dataset, while the other algorithms return 57 ∼ 172

candidates per request. GreedyGrids returns the largest set of can-

didates as it retrieves all vehicles in nearby grid cells, among which

only a few are feasible. Tshare and Xhare find fewer candidates than

GreedyGrids but may result in false negatives due to approximation.

Tshare and Xhare perform better on Chengdu than on NYC. The

reason might be that requests of NYC have a higher frequency than

those of Chengdu, while Tshare and Xhare are more sensitive to the

frequency of trip requests (consistent with our results in Figure 11).

The number of remaining vehicles largely affects the running

time of the selection stage and the overall match time. As shown in

Figure 7c and Figure 7d, GeoPrune reduces the overall match time
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Figure 8: Effect of the waiting time.

by 71% to 90% on the NYC dataset and up to 80% on the Chengdu

dataset. Consistent with experiments shown in the previous stud-

ies [22, 27, 28], all algorithms exhibit longer pruning time with

more vehicles as the number of vehicle candidates increases. The

match time of Tshare and Xhare is comparable with GeoPrune on

the Chengdu dataset when the number of vehicles is small but

continuously increases with more vehicles, showing that GeoPrune

scales better with the increase in the number of vehicles.

As for the update cost, GeoPrune is two to three orders of mag-

nitude faster since it only relies on circles and ellipses for pruning

while others need real-time maintenance of indices on the networks.

5.2.2 Effect of the Maximum Waiting Time. Figure 8 shows the

experimental results when varying the maximum waiting time.

All algorithms exhibit longer times with the increasing waiting

time because of larger shareability between requests and more re-

turned vehicle candidates. GeoPrune again shows the best pruning

performance in almost all cases. Tshare requires less match time

than GeoPrune when the waiting time is 2min on the Chengdu

dataset. However, longer waiting time requires Tshare to check

more grid cells and continuously increase their match time, which

becomes five times slower than GeoPrune when the waiting time

is 10min. Xhare finds fewer vehicles and requires less match time

than GeoPrune when the waiting time is longer than 6min on the

Chengdu dataset. This is because Xhare assumes vehicles travel on

predefined routes, and new requests can only be served on the way

of these routes. A long waiting time brings more feasible vehicles

with append-append case and Xhare may miss these vehicles.
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Figure 9: Effect of the detour ratio.

Figure 8e and Figure 8f show the update cost, which increases for

all algorithms with the larger waiting time as the vehicle schedules

become longer and more requests can be shared. Still, GeoPrune is

two to three orders of magnitude faster on update than others.

5.2.3 Effect of the Detour Ratio. Figure 9 shows the sensitivity over
the detour ratio. Again, GeoPrune prunes more infeasible vehicles

and itsmatch time is three to ten times faster than others on theNYC

dataset and comparable with Tshare and Xhare on the Chengdu

dataset. The number of remaining vehicles of all algorithms keeps

almost stable due to the limited shareability. The update cost of all

algorithms remains stable (and three orders of magnitude smaller

for GeoPrune) as the length of vehicle schedules is barely affected.

5.2.4 Effect of the Number of Trip Requests. Figure 10 shows the
experiments when the number of requests varies. Interestingly,

algorithms show different behavior on the two datasets. When

the number of requests changes from 20 k to 100 k, the candidates

returned by GeoPrune for each request decreases from 11 to 4 on

the NYC dataset but increases from 6 to 13 on the Chengdu dataset,

meaning that the shareability between requests decreases on the

NYC dataset while increases on the Chengdu dataset (may be caused

by the different geographical distribution of requests and vehicles).

The trend of the match time is consistent with that of the number

of remaining vehicles, which again confirms that the match time is

largely affected by the pruning effectiveness.

More trip requests correspond to longer simulation time and

increase the total update cost (with GeoPrune still being two to

three orders of magnitude cheaper in terms of update cost).
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Figure 10: Effect of the number of requests.

5.2.5 Effect of the Trip Request Frequency. Figure 11 shows the

scalability of algorithms with the frequency of trip requests vary-

ing from 1 to 10 requests per second over 3 hours. Note that the

frequencies of the original NYC and Chengdu datasets are 5.19 and

3 requests per second respectively. To generate trip requests less fre-

quent than the original datasets, we uniformly sample trip requests

from the original datasets. As for more frequent trip requests, we

extract a certain number of trip requests according to the frequency,

e.g., 10,800×7=75,600 trip requests when the frequency is 7. We

then uniformly distribute the request issue time over 3 hours.

All algorithms return more vehicle candidates with higher fre-

quency while GeoPrune keeps almost stable, showing that Geo-

Prune provides tighter pruning and is more scalable to dynamic

scenarios. The match time of GeoPrune consistently outperforms

others on NYC dataset and is comparable with Tshare and Xhare

on Chengdu dataset. The update cost of all algorithms grows with

higher frequency due to more frequent updates while GeoPrune

again outperforms others by two to three orders of magnitude.

5.2.6 Effect of the Transforming Speed: All algorithms need a speed

value to transform the time constraint to distance constraint so that

pruning based on geographical locations can be applied. Figure 12

shows the effect of the transforming speed. A higher speed enlarges

the search space and thus all algorithms show longer match time.

However, GeoPrune consistently performs efficient pruning with

all speed values. Figure 12b shows the total number of false neg-

atives wrongly pruned for 60,000 requests. Same as GreedyGrids,
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Figure 11: Effect of the frequency of requests.
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Figure 12: Effect of the transforming speed (NYC).
Table 5: Memory consumption (MB) (# vehicles = 2

13).

GreedyGrids Tshare Xhare GeoPrune
NYC 0.38 100.34 1546.40 6.56

Chengdu 1.67 9965.37 21282.46 6.43

GeoPrune ensures no false negatives when the speed is greater

than vehicle speed (48km/h), whereas Xhare and Tshare still have

false negatives even with high transforming speed. This verifies the

robustness of GeoPrune on real-time traffic conditions, where the

transforming speed is set as the maximum speed so that the pruning

is still correct and the processing time only increases slightly.

5.2.7 Memory Consumption. Table 5 illustrates themaximummem-

ory usage of the algorithms under the default setting. All state-of-

the-arts consume more memory on the Chengdu dataset as it has

a large road network, while GeoPrune keeps stable. For example,
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Figure 13: The cost breakdown of algorithm steps.

the grid size of Tshare in NYC is 46×46 but increases to 174×174 in
Chengdu. GeoPrune, however, only maintains several R-trees and

thus is less affected by the road network size. GreedyGrids has the

smallest memory footprint as it only records a list of in-cell vehicles

for each grid cell, which is consistent with the observation in [27].

Tshare and Xhare consume much more memory than GeoPrune

due to the large road network index.

5.2.8 Cost Breakdown of Algorithm Steps. Figure 13 compares the

cost of different phases in the match process and update process

when varying the number of requests on the NYC dataset. Fig-

ure 13a shows the cost of the pruning algorithms while Figure 13b

shows the selection cost based on their pruning results. GeoPrune

requires a slightly longer time for pruning than Tshare and Xhare

but can reduce the selection time by more than 88% due to the fewer

remaining vehicles. The selection time of algorithms (Figure 13b)

is consistent with the number of remaining vehicles (Figure 10a),

which again demonstrates that the selection step is largely affected

by the number of remaining vehicles.

Figure 13c shows the update cost when a request is newly as-

signed. GeoPrune is slightly slower than GreedyGrids to update

the R-trees. Xhare and Tshare, however, need much more time than

GeoPrune to update the reachable areas of the matched vehicle

while GeoPrune quickly bounds the areas by ellipses.

Figure 13d compares the update cost when vehicles are moving.

GreedyGrids is two orders of magnitude slower than the other

three algorithms because it needs to track the located grid cells of

continuously moving vehicles.

6 RELATEDWORK
Dynamic ride-sharing matching has been studied with different

optimization goals. A common optimization goal is to minimize the

total travel cost of vehicles [8, 17, 19, 25, 27]. A few other studies

aim to provide a better service experience to passengers [11, 14, 28,

29]. Some studies maximize the overall profit of the ride-sharing

platform [9, 30, 31] and the number of served requests [18]. A

common need in these problems is to efficiently filter out infeasible
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vehicles that violate the constraints, such that the optimal vehicles

from the remaining ones can be computed with lower costs.

We focus on the studies that aim to minimize the total travel cost

as we use it to examine our algorithm. Huang et al. [17] maintain

a kinetic tree for each vehicle to record all possible routes instead

of a single optimal route. GeoPrune can be easily integrated into

their setting by computing the detour ellipses of all possible routes.

Alonso et al. [8] assign requests to vehicles in batches. They first

compute the shareability between requests and vehicles and then

construct a graph to connect shareable requests and vehicles. Their

shareability computation requires an exhaustive check, which can

be streamlined by GeoPrune . The state-of-the-art selection algo-

rithm [27] for minimizing the total vehicle travel time first filters

infeasible vehicles by checking whether inserting the new request

to the vehicle schedules is valid based on the Euclidean distance.

It then ranks all remaining vehicles using the increased distance

computed based on the Euclidean distance and sequentially checks

these remaining vehicles using road network distances. Although

this algorithm has a pruning step, GeoPrune can further improve it

by reducing the number of vehicles for individual checking.

Next, we discuss existing algorithms for pruning infeasible vehi-

cles – Tshare [19] and Xhare [25]. Tshare builds an index over the

road network by partitioning the space into equal-sized grid cells.

The distance between two objects (e.g., a request and a vehicle)

is estimated using the centers of their corresponding cells. Such

an estimation may miss feasible vehicles. The geometric objects

applied in GeoPrune, in comparison, bound the reachable areas and

ensure all feasible vehicles to be returned. Moreover, Tshare stores

pairwise distances between all grid cells and does not scale to large

networks due to the high memory cost. Besides, Tshare maintains

the pass-through grid cells of vehicles in real-time, which is costly

for highly dynamic scenarios and inflexible to the change of traf-

fic conditions. In comparison, GeoPrune can quickly bound the

reachable areas using ellipses and index these areas using R-trees,

which saves computation and update costs. Xhare partitions the

road network into three levels: grid cells, landmarks, and clusters.

The reachable areas of vehicles are estimated using the distance be-

tween clusters. Similar to Tshare, Xhare is an approximate method.

The index of Xhare may have a large memory footprint for large

networks and high update cost for dynamic scenarios.

7 CONCLUSIONS
We studied the dynamic ride-sharing matching problem and pro-

posed an efficient algorithm named GeoPrune to prune infeasible

vehicles to serve trip requests. Our algorithm applies circles and el-

lipses to bound the areas that vehicles can visit without violating the

service constraints of passengers. The circles and ellipses are sim-

ple to compute and further indexed using efficient data structures,

which make GeoPrune highly efficient and scalable. Our experi-

ments on real-world datasets confirm the advantages of GeoPrune

in pruning effectiveness and matching efficiency. In the future, it is

worth exploring the advantages of GeoPrune in other ride-sharing

settings or to other spatial crowd-sourcing problems.
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