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ABSTRACT
Assessing OpenStreetMap (OSM) data quality against authoritative data sources
may not always be viable. This is primarily because of the multi-dimensional nature
and heterogeneity of the maps, yet the activity is pivotal for targeted data cleansing
and quality enhancement undertakings in these data sets. A salient facet of OSM,
allowing contributors to flag potential problems encountered during the mapping
process, is the FIXME tag. In this article, we examine and discuss OSM data quality
through the vast expanse of issues (knowledge) documented via FIXME. We present
a classification and analysis of these quality issues, exposed as topic models and
grounded in the ISO-19157 standard, across USA and Australia. Regional distribu-
tions of these topics are further qualitatively analyzed to ascertain the variation of
key issues in OSM. We also present a comparison of the intrinsic issue classifica-
tion against those identified in an issue corpus of an authoritative map data source.
Due to the considerable heterogeneity in user mapping and reporting, OSM issue
detection and classification remains problematic. This research presents a flexible
and intrinsic data-mining approach, linking established ISO data quality standards
to OSM issue categorization. Our work, thus informs the development of automated
error correction methods for VGI datasets.
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1. Introduction

Volunteered Geographic Information (VGI) (Goodchild 2007) refers to geographic in-
formation created by citizens who often are not data collection experts, and are un-
trained in the formal process of mapping. OpenStreetMap (OSM) is the most popular
VGI initiative to collect and distribute open spatial data of the world, that has grown
to about 6.5 million contributors at present1. OSM data curation is often undertaken
by users with heterogeneous expertise, interpreting vague and informal guidelines.
The importance of VGI initiatives in general and OSM in particular cannot be over
emphasized, considering the freedom and flexibility offered in the mapping. Volun-
teer mappers responsively collect information about features of interest to the users
themselves, leading to multi-faceted data sets reflecting the needs of diverse user com-
munities. Thus, OSM not only caters to the needs of the general user community
(by supporting common infrastructure networks such as road and street networks),
but also supports special interest groups’ mapping needs (maps such as wheelchair
routing, drinking water sources and humanitarian relief2). While the support for such
diverse content is a strength of OSM (discussed across diverse areas such as national
security (Papapesios et al. 2018), improving accessibility (Zipf et al. 2016) and disaster
monitoring (Auer et al. 2018)), the usability and reliability of its data quality have also
been questioned (Salk et al. 2016, Hashemi and Ali Abbaspour 2015). OSM mandates
manual content creation and curation by users (using armchair and outdoor map-
ping)3. The contributors, however, have vastly varying skills, and are not supported
by strict data collection protocols. This, in turn, often leads to non-homogenous and
dirty data, not immediately fit for many mapping purposes.

Dirty data is a term used to collectively indicate issues with data such as non-
standardized representations of data (Williams 1997), data outliers (Hawkins et al.
2002), missing data or incorrect records and values (Simoudis et al. 1995), and du-
plicates (Hernández and Stolfo 1998). Dirty data are not analysis-ready. Dirty spatial
data may lead to significant and potentially harmful consequences, including liability
issues (Blatt 2015). While nuanced strategies to address specific kinds of errors in
spatial data exist, the first step towards an effective error mitigation strategy requires
the ability to gain an overview of the kinds of errors affecting the data set. OSM is one
of the main data sources for critical map services4 (Arsanjani et al. 2015, Corcoran
et al. 2013) and thereby, it is important to understand its data quality. Given the
expansive diversity prevalent in OSM, it is not always viable to assess its data quality
against authoritative and reference data sources, a grounded and popular approach in
the research community. This is primarily because - (i) comparative approaches with
authoritative data are bound by the granularity at which the reference data set is avail-
able (e.g., general purpose maps such as street networks) and (ii) authoritative data
for a specific mapping or activity domain to make the comparison is rarely available.
(e.g., special purpose maps such as marine and shipping networks). In addition, data
heterogeneity in OSM is a particular, desirable feature of OSM to which data qual-
ity assessment should adapt. Approaching OSM with a fixed ontology of data quality
measures may only partially cover issues experienced, as we show here. An ontology
of alternative data grounding (including intrinsic indicators) have also been recently

1https://www.openstreetmap.org/stats/data stats.html
2https://wiki.openstreetmap.org/wiki/Mapping projects
3https://wiki.openstreetmap.org/wiki/Pick your mapping technique
4http://wiki.openstreetmap.org/wiki/List of OSM-based services
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discussed by (Mocnik et al. 2018).

In this paper, we have focused on understanding the data quality issues in OSM,
by harnessing a valuable intrinsic source of knowledge about OSM data quality that
remains largely untapped - The tag FIXME/fixme5 (further only capitalized) is used by
OSM contributors to highlight potential issues with a given mapped feature encoun-
tered during the mapping or curating process. FIXME can either serve as a mapper’s
note to self, or a request for input from peer mappers. Currently, there are over 1.5
million6 FIXME issues documented. While the potential of this latent knowledge about
OSM issues held within the FIXME tag corpus is extensive, the free-form nature of
text presents challenges to the efficient extraction of knowledge, that can serve as a
pre-cursor to addressing the challenges of dirty data in OSM. How can knowledge
captured in FIXME tags be transformed into useful and actionable insights about OSM
data quality? We hypothesize that, latent knowledge present within the unstructured
text corpus of FIXME tags can be effectively mined using Topic Modelling (Hofmann
1999, Blei and Lafferty 2007), to reveal valuable knowledge about OSM data quality,
in alignment with standard spatial data quality indicators. Topic Modeling (TM) is
a statistical modeling technique, built on the insight that document semantics are
primarily governed by latent variables. The hidden semantic structures within a doc-
ument corpus can be discovered through these abstract topics (Lau et al. 2010).

The ISO-19157 (ISO 2013) spatial data quality standard was devised to serve profes-
sional mapping by trained professionals in mind, following established data collection
and curation protocols. While previously applied for the assessment of VGI data qual-
ity (Fonte et al. 2017), it is unclear how well user-reported OSM data issues align
with the typology of errors captured in the standard. We explore the classification
and alignment of FIXME derived topic models with the ISO-19157 indicators of spa-
tial data quality. We thus contribute to the understanding of the spectrum of user
identified data problems, by linking them with standardized spatial quality indicators.
Furthermore, this understanding enables to gauge the applicability and effectiveness
of standardized data quality indicators to capture the full spectrum of data issues in
OSM as a whole - a contested question.

Specifically, in this research article, we make the following contributions:

(1) Proposing a generic yet flexible framework to study and understand OSM data
quality issues reported in FIXME tags by using the ISO-19157 quality indicators.
These indicators serve as the background knowledge to drive a semi-supervised
learning process using topic models;

(2) Providing a thorough qualitative analysis of our proposed framework across two
different study areas, by exploring the distinct distribution of topics popular
within the OSM contributor community;

(3) Conducting a comparative analysis to discover the commonalities and distinc-
tions across the topic distributions using the OSM FIXME tags and an authori-
tative spatial data set.

Our model closely aligns with the data mining approaches to VGI quality assess-
ment discussed in (Senaratne et al. 2017). The usefulness of this approach cannot be
over emphasized, especially in scenarios where authoritative data is not available or
useful for making objective comparisons, and being independent of geographic, crowd-
sourcing or social approaches to quality evaluation (Goodchild and Li 2012). On similar

5https://wiki.openstreetmap.org/wiki/Key:fixme
6https://taginfo.openstreetmap.org/search?q=fixme
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lines, (Keßler and de Groot 2013) propose a trust-based approach modelled on data
provenance, also enabling to assess OSM data quality without reference to a ground
truth dataset. Finally, we show that our model is not constrained in applicability to
VGI alone. This is illustrated by applying it in parallel to OSM and to an authoritative
map data set for the same geography (VicMap, for Victoria, Australia). We are thus
able to reveal and discuss the possible sources for the distinct patterns of issues found
in VGI vs. authoritative datasets.

2. Related work

To make informed decisions about the fitness-for-purpose of a spatial data set, the
ability to measure and report spatial data quality is necessary (Boin and Hunter 2008).
In this paper, we propose to use the rich, yet noisy textual data available via the FIXME
tag in the OSM data sets, to assess OSM data quality. To this aim, we consider the
ISO-19157 Data Quality Standards (ISO 2013), as our quality indicators. We use a
semi-supervised topic modelling approach called Labeled Latent Dirichlet Allocation
(L-LDA) (Ramage et al. 2009), that uses these quality indicators as labels and make
inferences about the quality of the data set, given the FIXME tags in that data set. In
this section, we discuss the ISO-19157 data quality standards and OSM data quality
issues that have been presented in the literature with respect to these standards, and
then present an overview of the state-of-the-art in topic modeling, focusing in the
context of short textual data, e.g., tweets, and quality monitoring.

2.1. ISO-19157 data quality standard and OSM data quality

The ISO 19157 standard establishes the principles for describing the quality of geo-
graphic data. Its authors defined data quality elements to describe distinct aspects
of geographic data, primarily from the perspective of traditional, centralized map-
ping efforts typical for mapping agencies. Initial research assessing OSM data quality
was primarily comparative, contrasting OSM quality along one of the ISO-19157 data
quality elements with external authoritative data sources. Here, we provide the defini-
tions of ISO-19157 data quality elements across the main classification (Level 1) and
sub-classification levels (Level 2) in Table 1, and how these have been investigated
in OSM-related research. While our study focuses on the indicators shown in bold in
Table 1, however, we present all the Level 1 and 2 classifications for completeness.

Completeness measures the rate of omissions (data absent from the data set)
/commissions (excess data present in the data set) for spatial features. Completeness is
a key parameter of fitness for use, and an early focus area of OSM data quality research.
Ciep luch et al. (2010) discussed the completeness of OSM in reference to Google / Bing
Maps as an authoritative source. Similarly, Zielstra and Zipf (2010) and Ludwig et al.
(2011) assessed the completeness of the OSM Germany road network against TeleAtlas
and NAVTEQ reference data sets, and Zielstra and Hochmair (2011) assessed the
completeness of the USA road network against the TIGER data set. Fan et al. (2014)
evaluated the completeness of OSM building footprints against the German Authority
Topographic Cartographic Information System, while Jackson et al. (2013) assessed
the coverage of school buildings against the US Department of Education’s data. These
studies generally conclude that the completeness of OSM data is good, but variable.

Thematic Accuracy pertains to the accuracy of quantitative attributes, correct-
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ness of non-quantitative attributes, and of the classification of map features. Girres
and Touya (2010) and Mooney and Corcoran (2012) note that OSM map features
are generally weakly annotated, highlighting this to be a pressing issue in the data
set. While Girres and Touya (2010) use a reference data set, the analysis of Mooney
and Corcoran (2012) is confined to contents of the OSM data sets of Ireland, United
Kingdom, Germany and Austria. Ludwig et al. (2011) and Neis et al. (2012) highlight
the issue of OSM attributes incompleteness, as a hurdle to solving advanced GIS prob-
lems. Ballatore and Bertolotto (2011) and Ballatore et al. (2013) similarly comment
on the poor state of OSM semantics. A subsequent analysis by Vandecasteele and
Devillers (2015) notes that the high semantic heterogeneity in VGI data sets presents
challenges to broader adoption, which is supported by the findings of Davidovic et al.
(2016), discussing semantic issues in OSM data for over 40 cities of the world.

Positional Accuracy is defined as the accuracy of the position of features within
a spatial reference system. It includes the sub-categories of Absolute, Relative, and
Gridded data accuracy). Of note here is the Absolute, or External Accuracy (defined
as the closeness of reported coordinate values to values accepted as or being true),
which has been the focus of extensive research in OSM quality analysis. While Haklay
(2010) analyzed the positional accuracy of UK OSM linear features (e.g., roads and
walkways) by comparing them with Ordnance Survey data sets, others undertook
similar assessments for Germany (Zielstra and Zipf 2010, Helbich and Amelunxen
2012) and against the French National Mapping Agency’s authoritative data (Girres
and Touya 2010).

Logical Consistency measures the degree of adherence to the logical rules of the
data structure, attribution and their relationships. While data in-homogeneity ensuing
from the lack of a strict logical schema leads to OSM data quality problems (Majic
et al. 2017), it is impossible to quantify the level of disagreement with a defined schema
in OSM. This similarly applies to the sub-category Topological Consistency (defined as
the correctness of the explicitly encoded topological relationships between map features)
capturing qualitative relationship issues, such as between road features (Will 2014,
Barron et al. 2013, Corcoran et al. 2010, Girres and Touya 2010, Neis et al. 2012,
Majic et al. 2019).

Temporal Quality is defined as the quality of temporal attributes and temporal
relationships of spatial features in the data set. The Temporal Quality of OSM data
set is not reflecting a single, time-stamped mapping of the state of the world, as the
data set is updated continuously. The ISO definition of temporal quality thus, does
not apply to OSM. To address this, recent studies started proposing novel, intrinsic
measures capturing distinct OSM data quality issues, such as local data set maturity
(Maguire and Tomko 2017).

Usability Element is primarily driven by the user requirements to ascertain the
fitness of use of a spatial data, set to serve a given purpose. The ISO standard recom-
mends the incorporation of specific user requirements together with the above dimen-
sions to evaluate the usability of a data set.

The vast and latent source of knowledge within FIXME has thus far been little stud-
ied. Our analysis handles the dossier of pre-eminent mapping challenges documented
in FIXME by OSM contributors, as a fundamental indicator of OSM pain points, and
hence its data quality. In addition, our study represents a first in terms of (i) harness-
ing this latent knowledge to broadly understand OSM’s ’State of the Map’ and (ii)
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present a unified, fine-grained analysis of OSM data quality issues, by considering all
applicable measures of spatial data quality indicators from the ISO framework.

2.2. Latent topic mining

Unstructured text is a valuable source of information for knowledge discovery, and
facilitate new data-driven hypotheses through the application of Natural Language
Processing (NLP) techniques (Basole et al. 2013). In particular, probabilistic knowl-
edge discovery models such as Topic Models (Lafferty and Blei 2009, Griffiths and
Steyvers 2004) are effective in understanding the semantic structure of an unstruc-
tured document corpus based on a Bayesian analysis of the underlying text (Stevens
et al. (2012)). Latent Dirichlet Allocation (LDA) (Blei et al. 2003) is an unsuper-
vised probabilistic topic modelling algorithm that has been widely used to identify
topics from a text corpus. The intuition behind LDA is that each document in a cor-
pus can be modelled as an underlying distribution of latent topics, and each topic
can be modelled as an underlying distribution of words. In the context of geo-textual
data, geo-tagged tweets from Twitter have been used in Lansley and Longley (2016)
to expose behavioral classifications of user trends in a localized geography, while a
similar classification experiment based on an aggregated corpus of twitter messages
is presented by (Hong and Davison 2010). In contrast, the usefulness of LDA and
topic models to mine knowledge from VGI data sets with a spatial footprint, have
been discussed using locations (or places). In addition to LDA being a central tenet
towards addressing place name disambiguation (Ju et al. 2016), the algorithm has
also been effective in discovering unique characteristics of places and mapping places
with a unique thematic distinction, using natural language data from VGI travel blogs
(Adams and McKenzie 2013).

While topic models generated from LDA are useful for exploratory analysis reveal-
ing broad textual patterns in document collections, they may expose topics that are
not meaningful for a specific analysis (Chang et al. 2009), making the interpretation
difficult (Ramage et al. 2011). This is a problem common to all unsupervised methods.
Furthermore, topics in documents may not be clearly differentiated or cover multiple
topics. This highly affects short documents, including OSM FIXME issues. Indeed, the
applicability of LDA for the analysis of shorter text has been questioned (Andrienko
et al. 2013), with an alternative approach proposed, such as linking authors to topics
Steyvers et al. (2004). This is, however, not applicable here, as issues highlighted by
individual OSM contributors are heterogeneous, as opposed to a homogeneous group
of inter-related topics as occurring in traditional documents Ertl et al. (2012).

Considering the limitations and shortcomings of LDA when handling short and
noisy textual data (Jin et al. 2011, Chen et al. 2014), that can otherwise serve a key
role in revealing cardinal quality facets (Rahimi et al. 2020), we propose to harness
the effectiveness of L-LDA in mining latent knowledge from a corpus of short texts
(Kataria and Agarwal 2015, Lingad et al. 2013, Ritter et al. 2011, Ramage et al. 2010),
in order to assess OSM data quality, using short texts in the FIXME corpus.
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Table 1.: ISO 19157 - Geographic information data quality measures. ‡ - FIXME
discussion not applicable, † - FIXME discussion (Level 1), § - FIXME discussion
across one or more indicators (Level 2)

ID
Classification

(Level 1)
Sub Classification

(Level 2)
Description

1
Completeness

(CO) (†)
Indicates presence or absence of features,

their attributes and relationships.

Omission Indicates data absent from the data set.

Commission Indicates excess data present in the data set.

2
Thematic
Accuracy (§)

Accuracy of Quantitative Attributes, correctness of

non-quantitative attributes, and the

classification of features and their relationships

Non-Quantitative
Attribute

Correctness

(NQAC)

Measure of whether a non-quantitative attribute is correct.

Quantitative

Attribute
Accuracy

(QAA)

Closeness of the value of a quantitative
attribute to a value accepted as or known to be true.

Classification

Correctness

Comparison of the classes assigned to features or their

attributes to a university of discourse (ground truth).

3
Positional

Accuracy

(PA) (†)

Absolute External

Positional

Accuracy

Closeness of reported coordinate values,
to values accepted as, or being true.

Relative Internal

Positional
Accuracy

Closeness of relative position of features in the

data set to their respective relative positions
accepted as, or being true.

Gridded Data

Positional

Accuracy

Closeness of gridded data spatial positional values
to values accepted as, or being true.

4
Logical

Consistency (‡)
Degree of adherence to logical rules of data structure,

attribution, and relationships

Conceptual

Consistency
Adherence to rules of conceptual schema

Domain

Consistency
Adherence of values to value domains

Format

Consistency

Degree to which data is stored in

accordance with the physical structure of the data set

Topological
Consistency

Correctness of the explicitly encoded
topological characteristics of the data set

5
Temporal
Quality (‡)

Quality of temporal attributes, and
temporal relationships of features

Accuracy
of a Time

Measurement

Closeness of time measurements to values
accepted as, or known to be true

Temporal

Consistency
Correctness of the order of events

Temporal

Validity
Validity of data with respect to time

6
Usability
Element (‡)

Based on user requirements.

Aggregation of quality measures for

usability evaluation.
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3. Preliminary concepts

3.1. OSM tagging practice

OSM map features have free-form text tags associated with them. Each of these key-
value pair describe a specific attribute of the map feature7. Each feature must have
at least a single tag, but there is no upper limit. The OSM tagging practice in loosely
governed by an informal set of guidelines8. The application of OSM tagging practice(s)
has been extensively discussed by Mooney and Corcoran (2012).

The tag FIXME allows OSM contributors to mark objects that require further atten-
tion. A related OSM tag called NOTES9 allows comments from both OSM contributors
as well as anonymous visitors to be added to indicate general map issues. NOTES are not
directly tagged to any OSM object. Since anonymous comments can also be posted, a
review of a sample subset of NOTES data exposed information not relating to map issues
(such as general discussions and marketing information). NOTES data is not considered
for our analysis. A typical key-value pair for a FIXME tag is shown below.

{fixme=Please specify unambiguous opening hours in the proper syntax

in 24 hour format. "5-11" -- could be 05:00-11:00, 05:00-23:00, or

17:00-23:00, delivery=no, addr:state=ME, smoking=no, cuisine=pizza,

addr:street=Iron Point Rd, takeaway=yes, addr:postcode=04853,

capacity=50, addr:city=North Haven, addr:country=US}

In this example, the OSM user indicates that the opening hours of a spatial feature
(restaurant) are to be corrected. FIXME tags serve as a call for guidance or to request
additional mapping input from other mappers. Some common issues seen in FIXME tags
are requests for resurveys when dealing with objects with unconfirmed coordinates,
untagged nodes (objects with missing street names) and missing attributes (e.g., build-
ing address). The free text nature of FIXME tags makes it difficult to automatically
categorize and analyze the knowledge about OSM data quality issues.

3.2. Labelled latent dirichlet allocation (L-LDA)

An alternative to unsupervised topic modelling is offered through fine tuning of topics
in a semi-supervised approach, enabling to focus on the discovery of only a pre-selected
set of topics (e.g., ISO-19157 data quality elements as in Table 1). A semi-supervised
refinement of LDA is known as the Labelled Latent Dirichlet Allocation (L-LDA)
algorithm (Ramage et al. 2009). This is achieved by providing the algorithm with a
set of seed words (labels) that are believed to be optimally representative of the topics
in the document corpus. A semi-supervised approach thus constrains the algorithm’s
multinomial topic distribution by the seed words, and thus leads to the identification of
topics aligned with the scope of the analysis. Figure 1 shows a graphical representation
of the L-LDA algorithm.

Formally, the objective of L-LDA is similar to LDA, with the main difference being
that, while LDA generates the multinomial mixture distribution θd, for each document
d, considering all K topics, the L-LDA algorithm constrains θ to only those topics
that correspond to the document’s observed labels (Λd = (l1, l2, l3, . . . , lK), and each

7https://wiki.openstreetmap.org/wiki/Tags
8http://wiki.openstreetmap.org/wiki/Map Features
9https://wiki.openstreetmap.org/wiki/Notes
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Figure 1.: Graphical Model of Labelled Latent Dirichlet Allocation.

lk ∈ {0, 1}). The dependency of θ on a combination of α and Λ is indicated in Figure 1.
Both LDA and L-LDA require the setting of two hyper-parameters, also known as

Dirichlet priors, as mentioned below.
α - Controls the mixture of topics for any given document. Low α values indicate

the topic distribution samples to be near the topics, i.e., a document could possibly be
associated with only one topic. A value of 1 for α indicates that a distribution sample of
documents associated with one topic has the same likelihood as a sample of documents
associated with an even mixture of all the documents, or a distributions sample that is
something in-between. Higher values of α(> 1) tend to make the distribution samples
more uniform with an even mixture of all the samples.
β - Controls the distribution of words per topic. A lower value of β result in topics

with less words, while a higher value will result in topics represented by more words.

4. Methodology

Here, we categorise map issues tagged by OSM contributors to the broad ISO-19157
categories. The collection of issues captured by OSM FIXME tags can be considered
a document corpus. We model the content of topics in FIXME tag descriptions by
training a semi-supervised L-LDA model based on a labelled document corpus, where
each document relates to one or more standardized indicators of spatial data quality.

Figure 2.: Methodology

4.1. Data sets

In this work we use two data sets, namely OSM VGI data set and VicMap data set
for the state of Victoria (Australia), details of which are presented in the following.
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4.1.1. OSM data

For the analysis, we use OSM data for North America and Australia, downloaded from
Geofabrik10. The data sets are current as on March 2019. The OSM data is imported
into a PostGIS database for analysis, accounting for the consideration of only those
spatial entities that have the FIXME/fixme tag populated (both capitalized and non-
capitalized). In addition, since our objective is to derive insights from OSM contributor
community (and avoid bias in the analysis), FIXME tags from bulk import of data (such
as the National Hydrography data in USA, contributing to about 77% of the data)
are not considered. In addition, FIXME feature tags are filtered to remove non-English
tags, using a language detection framework11. The final OSM FIXME North America
corpus has about 64068 records, and the Australia (Victoria) corpus has about 8700
records. The average length of a FIXME record is about five words.

4.1.2. OSM FIXME Corpus selection for L-LDA

The L-LDA model has been trained and evaluated across each of the four census areas
of USA separately. The FIXME corpus has about 6644 records in the NE region. Out
of this, we selected uniformly at random two sets of records, each set with 1000 FIXME

records. The first set of 1000 records is used to train the L-LDA algorithm for the
NE region, while the second set is then used to apply the trained L-LDA model for
the NE region. We train and evaluate the L-LDA algorithm for the remaining three
census areas of USA by following a similar approach and thus create training and test
data sets (see Section 5.2). The OSM FIXME corpus has about 6075 records in the MW
region, 9898 in the SO region, and 11,650 records in the WE region. Similarly, we have
created training and validation data sets for OSM Australia (Victoria).

4.1.3. Vicmap Data

The Department of Environment, Land, Water and Planning is the custodian of au-
thoritative map data for the state of Victoria (Australia)12. We compare Vicmap issue
reports to the issues reported in FIXME tags from OSM. The Vicmap issue reports
data set is current as of March 2019, detailing data quality issues reported by autho-
rized users from local governments, utilities and other specialist users of authoritative
map data. Similar to the process done with Victoria data set from OSM, we select
uniformly at random 1000 records each for the training and testing phases to compare
the distribution of topics between OSM and authoritative data sets.

4.2. ISO quality measures as labels

As discussed in Section 2.1, the ISO 19157 has identified six measures to determine
the quality of a data set. Here we discuss how we adapt these measures to derive labels
that will be eventually used in training our L-LDA model.

Completeness: Existing studies consider this indicator holistically, and do not
differentiate between missing or excess data. We adopt a similar approach, and treat
data completeness issues in its entirety. As we observe later, FIXME issues are still
dominated by missing data reports, i.e., omissions in the data set.

10https://download.geofabrik.de/
11https://pypi.org/project/langdetect/
12https://www2.delwp.vic.gov.au/
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Thematic Accuracy: Current studies discuss this quality indicator across sub-
categories Non-Quantitative Attribute Correctness, and Quantitative Attribute Accu-
racy. Considering the free form nature of OSM tagging, attribute issues with OSM
geometries (including issues reported in FIXME) would closely fit with these two clas-
sifications (e.g., Street Name of a building representing a non-quantitative attribute
v/s Speed Limit of a road segment representing a quantitative attribute). The OSM
tagging framework and data model constrain quality assessments for sub-category
Classification Correctness, and hence not considered in our model.

Positional Accuracy: Considering the data sources for OSM curation13 (including
authorized aerial and satellite imagery), positional accuracy issues documented in
FIXME are consistent with the ISO sub-classification of Absolute Accuracy. Therefore,
our discussion on positional accuracy (PA) only refers to Absolute Accuracy.

Logical Consistency: Since OSM lacks an enforced logical schema, logical consis-
tency is not strictly definable, and hence not considered as a label in this paper.

Temporal Quality: The dynamic nature of the OSM data does not allow to adapt
this data quality measure for assessment and hence, it is not discussed in this paper.

Usability Element: This quality indicator represents an aggregated dimension of
the previous indicators and hence not presented separately in our discussion.

In summary, we further investigate how to conduct an intrinsic analysis of the
data quality issues documented using FIXME tags, across four major classifications:
Completeness (CO), Non-Quantitative Attribute Correctness (NQAC), Quantitative
Attribute Accuracy (QAA) and Positional Accuracy (PA). These serve as the labels
for our topic model. When labelling the training data for L-LDA (a manual and ex-
pert judgement driven process), we have confirmed our arguments constraining the
applicability of the analysis, to these four indicators, to be valid for the data set.

4.3. Application of L-LDA

Consider a set of all FIXME issues as the main document corpus. These issues can
either be considered for an entire country, or a specific region (e.g., a census area
in the United States of America). Considering the Australian data corpus, DAUS =
{waus 1,waus 2,waus 3, . . .waus m} would represent the document corpus in the En-
glish Language, after pre-processing (mentioned in Section 6). For each document w
belonging to DAUS , let w = (w1, w2, w3, . . . wN ), be the word indices representing the
document, and (wN ) representing the length of the document. Let V represent the
total size of the vocabulary from the FIXME corpus. Let K represent the total number
of unique labels, each representing a specific ISO-19157 spatial data quality indica-
tor. For our experiments and discussion, K = {ΩPA,ΩCO,ΩNQAC ,ΩQAA}, would also
represent the number of topics (ISO Quality elements) for the L-LDA algorithm. Fi-
nally, let ∧d = (l1, l2, l3, . . . lK) represent a list of binary presence/absence indicators
for each spatial data quality indicator K, such that each wi ∈ {1, . . . , V } and each
lk ∈ {0, 1}. Given these inputs, our objective is to draw the multinomial topic distri-
butions over vocabulary βk for each topic k, from a Dirichlet prior η. Additionally, the
multinomial mixture distribution θ(d), generated over all K topics for each document d
from a Dirichlet prior α, is to be restricted to only those topics, corresponding to the
labels in ∧(d). The majority of OSM FIXME tags are brief texts indicative of a primary

13https://wiki.openstreetmap.org/wiki/Potential Datasources
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ISO quality dimension (such as the completeness of a line geometry or the positional
accuracy of a point geometry), with recurring common terms used. Hence, the hyper
parameters in our experiments were set heuristically with values less than 1.

The process outlined in this section is generic, and the current analysis/discussion
can be extended to represent any data quality standard or any corpus of quality
reports or issues. This is done by modifying K to represent the unique labels for the
new quality framework, and the subsequent re-training of the L-LDA algorithm. The
symbols and terminologies mentioned in the problem statement is grounded in the
L-LDA model, and documented in the Appendix.

4.3.1. Learning and inference

The underpinnings of LDA and L-LDA relies on the principle of posterior inference,
a process where learning posterior distributions of latent variables is ascertained from
the observed data. Since posterior inference distributions are intractable to compute,
approximate inference techniques such as Gibbs sampling (Griffiths and Steyvers 2004)
are used. Since in LDA and L-LDA the latent ’document-topic’ and ’topic-word ’ dis-
tributions can be inferred using only the ’topic-index ’ assignments, a simpler process,
referred to as a collapsed Gibbs sampler, that samples only from the ’topic-index ’ as-
signments is sufficient. Once the topic multinomials are learned from the training set,
we perform an inference on test documents using the same sampling process. From
the output of the L-LDA algorithm, we rank the user specific labels in their order of
relevance to each document to determine an optimal ISO data quality indicator for
each FIXME issue, and thus achieve a final categorization for the test data set.

5. Experimental analysis

In this section we detail the experimental results of the conducted study, focusing on
two distinct geographical regions, USA and the state of Victoria, Australia. The results
for USA have been stratified across the 4 census regions. The availability of an author-
itative data set for Victoria facilitated in comparing the nature of the distributions
across different quality indicators, between VGI and reference data sets.

5.1. Experimental setup

For the analysis, OSM Data was imported into a PostgreSQL database having PostGIS
enabled. In addition, data pre-processing tasks and the L-LDA main algorithm was
implemented using Python 3.7. An implementation of the L-LDA algorithm from
(Hong 2019) has been customized to suit our needs. All experiments were conducted
on a cloud-based server with 8 virtual CPU’s, 32 GB RAM, and a 5TB disk, running
Ubuntu Linux 16.04 LTS operating system.

5.2. L-LDA Model Evaluation

An ISO-19157 quality indicator label have been manually assigned to FIXME docu-
ments in all training data sets. A primary labelling has been performed by the first
author using expert judgement when applying ISO category definitions, and cross ver-
ified by one of the co-authors. Labelling disagreements were resolved by consensus.

12



For each training data set (one for each census area in USA, and one for Victoria,
Australia), the L-LDA model accuracy was evaluated using a 5-fold cross validation
(Arlot and Celisse 2010), in each partition of the training data. The mean accuracy of
the learned models for each region (and all indicators) are highly consistent: for NE
region 81.7%, WE region 84.2%, SO region 87.6%, and MW region 88.7%. For OSM
Australia (Victoria), the overall accuracy of the model is 92.2%.

The core objective of the training is to closely align the model learning with the ISO
quality indicators, thereby making recall, a priority to our objective. The recall for indi-
vidual ISO quality indicators in NE are (PA: 84.7%, NQAC: 74.4%, CO: 82.2%, QAA:
98.6%, common topic: 72.4%). Similarly, in WE region, we see (PA: 82.6%, NQAC:
52.5%, CO: 86.7%, QAA: 61.5%, common topic: 95.9%). Furthermore, the recall for
SO region are (PA: 85.6%, NQAC: 51.9%, CO: 94.1%, QAA: 89.3%, common topic:
78.8%), and for the MW region are (PA: 92.6%, NQAC: 59.5%, CO: 93.1%, QAA:
81.7%, common topic: 87.1%). For OSM Australia (Victoria), the recall was observed
as (PA: 87.3%, NQAC: 94.6%, CO: 84.9%, QAA: 83.3%, common topic: 95.6%).

5.3. Experimental results

The distribution of issues based on ISO-19157 quality indicators is shown in Figure 3
(USA census areas) and Figure 8 (OSM vs. VicMap, Australia). Table 3 shows mes-
sages documented in both VGI data (OSM) and authoritative data (VicMap) sets, as
an indicator of different styles adopted by contributors of data issues. Table 2 shows
the most frequent words associated with the ISO-19157 quality indicator topics learned
by L-LDA across the two geographies, for the OSM data set. The labels for the model
training, comprising a sub set of applicable ISO quality indicators, comprises the main
topics against which the FIXME issues would be categorized by L-LDA.

Figure 3.: FIXME Issues across USA Census Areas and Complete USA (ISO Level 1)

Generally, we observe that the distribution of issues is very different in the NE region
of the United States compared to the WE and SO regions. A major percentage of issues
is related to Completeness in all census areas except the NE, where the distribution of
issues across the categories is more evenly spread with the least issues being reported
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for Completeness. Positional Accuracy issues reported in FIXME are prominent across
the NE and MW regions accounting for about 27% of the total issues. While these
issues are not as frequent in the WE and SO regions, they still account for about 15% of
the total. Thematic Accuracy issues (represented collectively using the categories Non
Quantitative Attribute Completeness (NQAC) and Quantitative Attribute Accuracy
(QAA) in Figures 3 and 8) account for a major share of issues in the NE, representing
about 40% of total issues. This category accounts for about 7% of total issues for WE
and MW and marginally higher (about 11%) in SO states.

Data issues related to Completeness (CO) account for a majority of issues across
all census regions except the NE (SO: 50%, MW: 37%). This could possibly indicate
that OSM data are more mature in the NE census region of USA, and relate to
the number of active OSM mappers concentrating in this densely populated, more
urbanized region. For example, the OSM edit density map utility discussed in Anderson
(2016) visualizes the focus areas of OSM mappers and shows that OSM contributors
are more focused around the NE census area.

Finally, we report L-LDA results where FIXME documents could not be tagged
against any of the ISO-19157 quality indicators as common topic. This occurs when
L-LDA is not able to associate the FIXME document specifically with any of the indica-
tors that it was trained with. This is mainly due to these issues being represented by
a group of one or more words that are not significantly associated with any single ISO
quality indicator. This may be related to varying styles of documenting an issue (due
to the free form nature of OSM tagging) using FIXME, but also to the ambiguity in
the vocabulary used. L-LDA then fails to associate the topic with sufficient certainty
to a single label. Uncategorized issues represent over 20% of the issues across all the
regions except SO. Based on the heterogeneity in user language and styles adopted
for discussing map issues, our model has been able to categorize over 80% of the total
issues analyzed as belonging to one or more of the standardized ISO data quality indi-
cators. The content of the common topic set needs to be investigated further, as these
issues could potentially represent important quality concerns of interest to the OSM
mapping community, but possibly not well captured by ISO indicators. Examples of
these un-categorized messages from the US data set are below:

[PA]: This should be moved to the actual building where it is located.

[QAA]: somewhere around here I saw a 35 mph sign (around 1062 outbound)

need to find where it changes and map it

[NQAC]: All I know is the name from the sign. What is kind of business?

[CO]: construction in Bing, empty in USGS

5.3.1. FIXME distribution across the USA

Figures 4, 5, 6, and 7 capture the distribution of FIXME issues per attributed ISO
quality indicator across each census area of the USA. As expected, we observe that
OSM contributor mapping activities (and hence the number of issues documented) are
dominant in the more populous states within each of the census areas. For example,
over 90% of PA issues in the NE region are reported for New York and Pennsylvania,
both states with high population densities14. Similar patterns are manifest in other
census areas, such as Illinois/Indiana in MW and California/Washington in WE re-
gions. As shown in Figure 3, more populous states in NE suffer less of issues relating

14https://www.census.gov/library/publications/2011/compendia/statab/131ed/population.html
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Table 2.: LLDA Topics and Terms revealed from ISO-19157 Spatial Quality Indicators

ID LLDA Algorithm Topic

Top Terms

United States Census Areas

North, South, Mid West and West

Top Terms
Australia

1 Completeness
continue, footprint, outline,
trace, track, line

continue, trail, path, connects

2
Non Quantitative
Attribute Correctness

address, street, name,
slipway, type, capacity

name, restrictions, type,

classification, building=yes,

landuse=forest

3
Quantitative

Attribute Accuracy

range, speed, time, closing,
housenumber, addr:housenumber,

limit, opening hours,

closing, elevation

maxspeed

4 Positional Accuracy
location, approximate, verify,
position, survey, placement,

resurvey

location, approximate, verify,
position, survey, estimated,

imagery

to Completeness (CO). To balance these significant distribution effects and maintain
some comparability, in our maps the proportions are reported per each census area.

5.3.2. FIXME distribution in Victoria, Australia (OSM and VicMap)

A similar analysis was undertaken using the OSM dataset of Victoria, Australia. While
Thematic Accuracy issues account for a majority of total issues, at about 53%, issues
across Positional Accuracy and Completeness seems to be evenly distributed at about
12% and 14% respectively. The challenges of L-LDA-based FIXME classification by
ISO quality indicators found in the US OSM dataset exhibit a similar pattern in the
Australian data set. About 19% of the FIXME issues cannot be assigned to one of the
ISO quality indicators.

Yet, this is not a problem of the L-LDA model, but of the applicability of the ISO
quality indicators to a VGI dataset. Furthermore, the generality of the L-LDA model’s
applicability noted in Section 1 is demonstrated by analyzing the distribution of quality
issues in VicMap, the official general-purpose map data set for Victoria, Australia
(Figure 8). Completeness data issues are dominant in VicMap, contributing to about
66% of the total reported issues, while Positional Accuracy issues are consistent those
observed in OSM at about 7%. While Thematic Accuracy issues are less than half of
those reported in OSM (at about 25%), issues across different sub-classifications are
commonly observed in both the data sets.

This large fraction of common topic issues does not manifest in the VicMap author-
itative data set. The standardized tools, restricted set of authorized reporters, and
established protocols for reporting issues that enable the quality assurance process
in VicMap leads to only about 2% of the issues not attributable to an ISO standard
quality indicator (Figure 8). VicMap, as any authoritative dataset, is a product of a
regulated, rigid top-down mapping process, for which these quality indicators have not
only been designed, but along which errors are reported, too.
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Figure 4.: Distribution of FIXME Issues, USA census regions - ISO Quality Indicator:
Positional Accuracy (PA)

Figure 5.: Distribution of FIXME Issues, USA census regions - ISO Quality Indicator:
Completeness (CO)
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Figure 6.: Distribution of FIXME Issues, USA census regions - ISO Quality Indicator:
Quantitative Attribute Accuracy (QAA)

Figure 7.: Distribution of FIXME Issues, USA census regions - ISO Quality Indicator:
Non-Quantitative Attribute Correctness (NQAC)

17



Figure 8.: Australia Data Quality Issues - OSM v/s Reference Data Set - A comparison

6. Findings and discussion

The distribution of data quality issues across two geographical regions (Figure 3 and
8) exposes a new perspective in understanding the data quality of OSM. From our
observations, the distribution of OSM data issues, as seen through ISO data quality
indicators, exhibits both similarities and differences with the reviewed studies (see
Section 2). Thematic Accuracy issues (represented collectively by Non-Quantitative
Attribute Completeness (NQAC) and Quantitative Attribute Accuracy (QAA)) is gen-
erally poor in OSM and an impediment to the usability of OSM data. Our findings
confirm these observations: about 40% of the total data quality issues reported in the
North-East Census Area of USA belong collectively to Thematic Accuracy issues (at
about 21.5% and 19% respectively). Even though the overall percentage of such issues
are lesser for the Mid-Western and the Western regions, they still account for about
7% of the overall issues reported. Combined, issues in these categories represent about
11% of all issues in the Southern states – still a substantial fraction.

Contrary to previous research about Completeness and Positional Accuracy of OSM
(assessed as comparable to, or exceeding the quality of reference data sets), we find that
more than half of the total issues reported by OSM contributors across the Western and
Southern regions of USA belong to this category, at about 50.5% and 58% respectively.
These issues are also prevalent in the Mid-Western region, accounting for about 38%
of the issues reported. Positional Accuracy issues are dominant in the North-East and
Mid-Western regions (27% and 28%, respectively), but present a lower fraction of all
issues (15%) in the Western and Southern census regions (Figure 3).

Comparative approaches to data quality assessment of OSM are bound by the gran-
ularity at which the reference data set captures data about the world. In contrast, our
observations here are based on reports by contributors with diverse mapping interests.
This is important, since OSM can often be more detailed than a reference data set,
with the volunteer mappers having the freedom and flexibility to cater to diverse map-
ping needs of local communities. Thus, our observations do not categorically dispute
the validity of past research discussions, but rather provide another facet about the
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Table 3.: Sample Illustrations: Messages from OSM and VicMap

ID
ISO

Quality Indicator
OSM FIXME VicMap

1 Completeness

complete road

continues further

road continues further
track continues further

missing land parcel
missing section of a road

missing a property

2

Non

Quantitative

Attribute
Completeness

unknown type of barrier

add name

add type
check name

add address

error in VicMap road name

incorrect address
parcel description incorrect

3

Quantitative

Attribute

Accuracy

resurvey housenumber
speed limit

no sufficient data

4
Positional

Accuracy

road inaccurate

improve accuracy

location approximate
alignment is an estimate

parcel shape is incorrect

problem with road alignment

move address point in map
boundary incorrect in VicMap

data quality issues in OSM. While the support for multi-faceted data collection is a
strength of OSM, it can also contribute to data usability issues across multiple ISO
quality indicators, as we discuss now.

6.1. Completeness

A map can never be complete, as details can be continuously altered as the world
changes. Thus, completeness fully depends on purpose and level of detail at which a
feature type (e.g., road network) is collected. These are typically fixed in traditional
data collection, but unrestricted in OSM. The ability to collect nuanced data sets in
OSM is thus responsible for a high percentage of issues reported under the Complete-
ness data quality indicator.

Figure 9.: FIXME - Completeness Issue. United States data set

A commonly used terms that indicates completeness issues in FIXME tags is Con-
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tinue. This indicates that the mapping of a spatial feature (often line geometries) is
incomplete. It acts as a note to the current OSM contributor or other future contrib-
utors to resume the mapping of this feature later. Examples of such issues from the
United States data set are shown in Figure 9. Left of Figure 9 shows that after mapping
a segment of pedestrian footpath (partial solid segment shown in orange), the OSM
contributor has highlighted this segment as incomplete, to indicate to peer mappers
the need to complete the mapping of the footpath. Similarly, in right of Figure 9, the
mapper indicates that Prairie Corridor Trail needs to be completed.

Figure 10.: Topic : Completeness (Building Footprint) USA data set

The term ’footprint’ has also been commonly used by OSM contributors to represent
features, whose future changes can be assessed with a reasonable degree of confidence.
In Figure 10, a group of buildings in a given neighbourhood has been represented as
approximate point geometries. This can happen when the spatial feature is missing
in a reference source (such as a satellite imagery) when creating the map features,
but the current mapper is confident of its presence in the future (e.g., houses coming
up in a new housing estate on a currently vacant plot, see Figure 10 right, indicated
with red arrow). An approximate representation is given initially (group of red points,
Figure 10 left), with a note to revisit once the data is in the reference source. An
approximate representation (group of points as shown in Figure 10) can also occur
when the reference ground truth (e.g., satellite imagery) is not legible, for instance
due to cloud cover (shown with blue arrows in Figure 10 right).

6.2. Positional accuracy

From our results, prominent terms used by OSM contributors to indicate Positional
Accuracy issues are location, approximate, verify, position, placement. These terms are
used across the study areas to primarily target issues with point features. These issues
could be related to the reference source (such as bad satellite imagery) or the mapping
style of the contributor, irrespective of the community recommendations. For example,
in Figure 11, the mapper indicates approximate point positions for homes recently
constructed in a new residential estate, with a note mentioning that the positions are
approximate and need to be possibly represented as polygon geometries (see (Maguire
and Tomko 2017) and OSM Wiki guidelines15). A lack of well-defined quality assurance

15https://wiki.openstreetmap.org/wiki/Main Page
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process in OSM is responsible for a high occurrence of positional accuracy issues in
our results, and somehow contradicts the optimistic findings of recent research studies.

Figure 11.: FIXME - Positional Accuracy Issue - USA data set

6.3. Non quantitative attribute completeness

Prominent terms that indicate issues with the completeness of attributes are name,
classification, and restrictions. Notably in this category, in the USA data set the term
name is predominantly associated with point features (e.g, requests for completing
building attributes), while it is more frequently used to indicate issues with linear
features in the Australian data set. Figure 12, left, shows an example where an OSM
contributor indicates that the street networks (in red) need the name and the classi-
fication to be re-evaluated (near Griffith, NSW, Australia).

Figure 12.: FIXME - Non Quantitative Attribute Completeness - Australia data set

6.4. Quantitative attribute accuracy

Quantitative Attribute Accuracy (QAA) is frequently associated with building features
in the USA data set. The term ’housenumber’ of building features occurs prominently
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in descriptions of issues, primarily indicating buildings that have missing house num-
bers in address keys (key:addr). For road network elements, the most frequent term
is ’speed limit’, indicating missing maximum speed (key:maxspeed) for road segments
and also to indicate issues with speed limit signage at street intersections (Figure 13).

Figure 13.: Topic : Quantitative Attribute Accuracy - USA data set

7. Limitations of the study

While providing novel insights about the distribution of OSM data quality issues, the
results of our study have certain limitations. First, while there are over 1.5 million
FIXME issues documented, the study exclusively analyzes issues captured in English.
Hence, the current error classification should not be taken as being representative
of the entire OSM data set as a whole. In addition, the study does not explore if
there is a relation between the quality of reference data sources16 from which OSM
is continually mapped and the errors reported in FIXME tag. Moreover, the vastly
different styles of documenting map issues by contributors (20% of the reported issues
are not attributable to an ISO quality indicators), could also influence the distribution.

While many FIXME issues can be discussed with a specific ISO spatial quality indi-
cator, Figure 14 illustrates a significant challenge stemming from the practices of OSM
mappers. Consider the point entities (Figure 14, left) that have a FIXME tag mention-
ing their housenumber attribute missing. These point features also represent approxi-
mate positions of existing homes (to be later mapped as polygons, as per community
guidelines). Hence, while the OSM contributor has explicitly mentioned the issue with
respect to an address attribute, the issue is equally a Positional Accuracy issue. Thus,
a subset of the issues may relate to multiple quality concerns, although the OSM
contributors highlighted only one area. In our experiments, the L-LDA algorithm has
been trained only based on the category documented by the OSM contributor (here,
a Quantitative Attribute Accuracy issue). While the capability of L-LDA to model
multi-topic scenarios can address some of these scenarios, the impediment of curating
the training data set (there is no simple way to ascertain if the documented issues
represent one or more categories, purely based on their description) would make this a

16http://wiki.openstreetmap.org/wiki/Potential Datasources
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significant challenge. The quality of the L-LDA results are fundamentally conditioned
on the quality of the manually labelled training dataset. A production model appli-
cable globally would require a comprehensive multi-annotator effort, with stringently
monitored inter-annotator agreement and controlled for training dataset bias (here,
demonstrated by controlling across regional subsets).

Figure 14.: FIXME - Multiple Quality Indicators - USA data set

8. Conclusion and Future Work

Over the last two decades, the growth and adoption of open source geospatial data
such as OSM, has been preeminent not only in its adoption across diverse domains, but
also driving numerous open source geospatial software applications (Mobasheri et al.
2020). Given these actualities, analyzing OSM data quality not only continues to be
a focus area for research (Jacobs and Mitchell 2020), but also serves as an antecedent
to research focusing on improving OSM data quality (Chittor Sundaram et al. 2020).
Our study presented a new intrinsic approach for classifying errors documented by
OSM contributors aligned with the ISO 19157 framework. The study present insights
into commonly observed data quality documenting practices of OSM contributors.
Our method is not dependent on data external to OSM – typically difficult to access
and expensive to procure. Instead, it relies on the hidden knowledge in one specific
OSM feature tag FIXME, as a key indicator for the classification. While individuals,
governments and commercial companies have already begun putting OSM data to
use, this study should help in understanding key areas that warrant further attention
towards improving OSM data quality.

An analysis of the underlying reasons for the issues documented and their correction
is beyond the scope of this paper. Erroneous map data lead to adverse consequences17

18. Understanding the different types of map errors is an important first step towards
formulating nuanced strategies for their rectification through automated means. By
analyzing large unstructured text corpora with latent knowledge about OSM data
quality issues using topic models for two prominent geographical regions of the world,

17https://www.propublica.org/article/using-outdated-data-fema-is-wrongly-placing-homeowners-in-flood-
zones
18http://www.news.com.au/technology/online/relying-on-google-maps-got-this-woman-stranded-in-the-
grand-canyon-for-five-days/news-story/5c0e6b404f6d24ecab7bd857ca12c722
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we exposed salient areas of OSM data quality requiring attention. We show that these
differ to the issues documented in authoritative data, where trained users report issues
in a less ambiguous manner. Our research thereby contributes to the understanding
of major map data issues, and informs approaches to their rectification, thus enabling
enhanced VGI data quality.

Our research and the current approach highlights the potential to facilitate future
work on more comprehensive knowledge discovery initiatives, using the rich content
and vernacular miscellany of OSM FIXME issues, including those not captured in
English. The distributions of issues may differ based on the underlying idiosyncrasies of
the dataset, the priorities of local mappers, and the cultural and linguistic environment.
The distribution of FIXME issues may well vary by geographical areas, size of the
mapping community, and their core mapping interests. An analysis of user tagging from
under-represented regions in OSM (e.g., Africa19) may provide new insights into OSM
data quality issues. Furthermore, issues reported in different languages may manifest
highly distinct patterns. The model would need to be retrained on new corpora. Also,
further analysis of issues not currently associated to an ISO quality indicator enables
the discovery of contributor paradigms or new categories of quality issues closely tied to
VGI data. These un-categorized issues (common topic) often represent reports that are
better interpreted in their semantic context (Section 5.3). Analyzing and addressing
these un-categorized issues may also inform the development of new OSM quality
assurance tools and improve the data quality.
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11. Appendix

11.1. LDA and L-LDA notation / terminology

Figure 15.: Graphical Model of Latent Dirichlet Allocation

Formally, the objective of LDA (Blei et al. 2003) can be summarized as:

P (θ1:M , z1:M , β1:k|D,α1:M , η1:k)

Given D, (the document corpus from a collection of M documents, with each doc-
ument having N words and each word having been generated by one topic of out the
given k topics), we determine the intractable joint posterior probabilities (that reveals
the hidden topic structure) of the following:

• θ - The document topic distribution
• z - N topics for each document
• β - The word topic distribution, using the parameters
• α - The parameter vector for each document
• η - The parameter vector for each topic

To better understand the algorithms (discussed in Section 3.2) around which the
findings are presented in this research article, a formal introduction of the notations
and terminologies used in the algorithms, is presented herewith:

(1) Vocabulary - Set of words from a given language. V is the size of the vocabulary
(as number of words);

(2) Word - A single distinct text element associated with a meaning, and member
of the vocabulary {1, . . . , V }. Words are represented as one hot encoded unit
vectors, such that the vth word in the vocabulary is represented by a unit vector
w (such that wv = 1 and wu = 0, u 6= v)

(3) Document (d) - Represents a sequence of words. wd = {w1, w2, w3, . . . , wNd}.
N is the total number of words in d.
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(4) Document Corpus (D) - Represents a collection of documents (D =
{w1,w2,w3, . . . ,wM}, where M is the total number of documents in D.

(5) Topic - A subject matter discussed within a document. In LDA and L-LDA, a
topic is modelled as a distribution of words.

(6) k - Total finite count of topics that a document can belong to.
(7) z - Represents a topic from the given set of k topics.
(8) label - An indicator of one or more themes discussed within a document (e.g.,

QAA for a FIXME document, having a Quantitative Attribute Accuracy issue,
such as an incorrect value for the speed limit of a road segment).

(9) K - Total number of unique labels in the corpus. If the L-LDA algorithm will be
trained with 4 topics, K can be represented as K = {Ω1,Ω2,Ω3,Ω4}.
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