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Abstract— Autonomous intersection management has the
ability to reduce congestion at intersections significantly, com-
pared to classical traffic signal control in the era of connected
autonomous vehicles. Autonomous intersection management
requires time and speed adjustment for vehicles arriving at an
intersection for collision-free passing through the intersection.
Due to its computational complexity, this problem has been
studied only when vehicle arrival times towards the vicinity of
the intersection are known beforehand or with other simplifying
scenarios which limits the applicability of these solutions for
real-time settings. To solve the real-time autonomous traffic
intersection management problem, we propose a reinforcement
learning (RL) based multiagent architecture and a novel RL
algorithm coined multi-discount Q-learning. In multi-discount
Q-learning, we introduce a simple yet effective way to solve
a Markov Decision Process by preserving both short-term
and long-term goals, which is crucial for collision-free speed
control. Our experimental results using microscopic simulations
show that our RL-based multiagent solution can achieve near-
optimal performance efficiently when minimizing the travel
time through an intersection.

I. INTRODUCTION

The emergence of Connected Autonomous Vehicles
(CAVs) is expected to revolutionize traditional traffic man-
agement solutions. In future traffic management, both CAVs
and the traffic infrastructure can act as intelligent agents
who work hand in hand to reduce traffic congestion in
real-time [1], [2]. The traffic infrastructure (i.e. a traffic
controlling agent) can optimize the road network parameters
based on the information from CAVs, and CAVs can optimize
their driving behaviors according to the traffic controller’s
instructions. In particular, traditional traffic management
solutions at intersections can be significantly improved, as
congestion at intersections is critical for the overall perfor-
mance of a road network and therefore, solutions on this front
are vital [3]. Autonomous Intersection Management (AIM),
where the intersection is controlled through appropriately
scheduling vehicles for collision free passing though the
intersection has been proposed as a solution. In this work,
we propose a reinforcement learning based multiagent solu-
tion for AIM which allows vehicles to manage their speed
and arrival time at the intersection to reduce congestion at
intersections.

AIM is a paradigm proposed by Dresner et al. [4] to
replace the traditional traffic signal control. In AIM, each
CAV arriving towards an intersection reserves a time to
traverse the intersection crossing point via an intersection
manager. Then, each CAV’s speed is controlled to adhere to
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the schedule while guaranteeing safety. Due to the ability
of AIM to reduce the congestion at intersections [5], AIM
has been widely studied [6], [7]. However, most problem
formulations assume that the arrival times of vehicles to
the vicinity of an intersection are known a priori. This
assumption does not hold when dealing with real-time traffic,
which limits the applicability of these solutions to real
scenarios [8].

For AIM to be applicable to real-life traffic control, the
speed of the vehicles has to be computed in real-time, and
the computational time for this plays a critical role in the
feasibility of AIM. Previous efforts exhibit high computa-
tional time [9] as they rely on mathematical programming
or analytical methods. The impact of high computational
time is two fold. First, suppose the intersection controller
takes a long time to compute scheduled times. In that
case, the positional difference of CAVs before and after the
computations, poses a significant safety risk of the vehicle
crashing due to the given scheduled times not being feasible
anymore. Second, if the time for computing CAV speed for
a trajectory is high, the remaining time after the computation
may not be sufficient to reach the intersection crossing point
precisely at the scheduled time.

A recent work [8] develops a stochastic solution to the
problem, assuming vehicle arrival times are not known
beforehand. However, their solution employs linear program-
ming (LP) for every CAV’s arrival computation, which is
prohibitively expensive, as demonstrated in Section VIII.
Further, their method is only applicable to intersections with
single lane roads without turning directions.

Our work fills the research gap by providing a com-
putationally efficient, intelligent, multiagent solution based
on Reinforcement Learning (RL) for AIM. Our solution
consists of two main sets of agents. The first type of agent
is a polling-based coordinating agent (intersection controller)
positioned at the intersection. The second component is a set
of distributed RL agents, which are assigned on a per vehicle
basis. The coordinating agent communicates with the RL
agents to schedule time intervals to reach the intersection
for each CAV that is within a certain distance from the
intersection. The coordinating agent uses a novel polling
algorithm to handle multi-lane intersections with multiple
turning directions, overcoming thereby a major limitation
of previous work where only intersections with no turning
directions and single-lane roads were possible [8]. Once the
coordinating agent provides a time schedule, an RL agent
controls each vehicle’s speed to adhere to the coordinating
agent’s time schedule. The advantage of such an approach



is that once an RL agent is trained offline, decision-making
can be done much faster online. This avoids the computation
overhead incurred by other techniques.

The learning task for the RL agent is two fold: (1) learn
to control a vehicle’s trajectory to reach the intersection
precisely at the scheduled time, and (2) keep a safe distance
from the vehicle in front. Keeping a safe distance is a
task with a short-term goal, because the front vehicle can
change its driving behaviour (the driving behavior of an
RL agent or a human) in short time-intervals. In contrast,
reaching the intersection at a scheduled time requires long-
term planning because successfully reaching the intersection
is only determined at the end of the trajectory. Combining
such two learning problems into a single task, as shown in
previous work [10] will only learn one of the problems,
because each learning problem contains an objective with
a different time-horizon. Existing RL algorithms such as
Q-learning use a fixed parameter named discount factor
to control the length of the time-horizon. Using a fixed
discount factor focuses on learning either the short-term or
long-term task successfully [11], and fails when both short-
term and long-term tasks need to be learned simultaneously,
hence being unsuitable for our task. We propose a novel
RL algorithm coined multi-discount Q-learning to achieve
short-term goals, while following a long-term goal in a single
Markov Decision Process. We believe our proposed method
is applicable to other problem-domains that exhibit a mix of
long-term and short-term goals, such as robotics [12].

Our contributions are four-fold: (1) We propose a com-
putationally efficient multiagent solution for AIM. (2) We
introduce a novel reinforcement learning algorithm that can
effectively learn multiple learning tasks at the same time. (3)
We propose a novel polling algorithm to handle multi-lane
intersections with multiple turning directions. (4) We demon-
strate the effectiveness and efficiency of our approach against
several baselines using microscopic traffic simulations.

II. RELATED WORK

A. Autonomous Intersection Management

There are two inter-dependent sub-problems that have
been studied in the literature to optimize the AIM; (1)
find a distinct time-schedule for each incoming vehicle to
arrive at the intersection, and (2) find a vehicle trajectory
such that a vehicle arrives at the intersection exactly at
the schedule time1. The existing work can be divided into
two main categories based on the proposed solutions to the
aforementioned two problems.

The first category of work optimizes the time-schedule
(sub-problem (1)) as a scheduling problem and then com-
putes a sub-optimal vehicle trajectories which adhere to
the optimized time-schedule [7], [14]–[17]. The optimal
scheduling optimization is NP-hard [9], [18], which makes
it computationally expensive. Another drawback of this kind
of approach is that all the arrival times of vehicles to the

1If the objective is to optimize the throughput then the vehicle trajectory
should reach the intersection at the maximum speed as well [13].

vicinity of the intersection need to be known beforehand to
optimize the time-schedule.

The second category of work focuses on finding a safe tra-
jectory or fastest trajectory as a solution to sub-problem (2),
whilst employing a heuristic to compute the time-schedule to
sub-problem (1) [6], [19], [20]. Finding the optimal trajectory
is however prohibitively expensive in real-time when using
a method like linear programming, as demonstrated in our
experiments. For example, Au et al. [20] uses an analytical
method to find the trajectory using a set-point schedule
and a bisection method. However, to simplify the search
space when deciding on the trajectory their work does not
consider the maximum velocity, which leads to a sub-optimal
trajectory. Even though these approaches are able to compute
trajectories, they do not optimize sub-problem (1). Thus, they
do not optimize the throughput nor reduce waiting time at
intersections. In contrast, our objective is to maximize the
throughput at the intersection.

Recent work [8] proposed a solution to optimize the
throughput in a stochastic setting using a polling system
and linear programming. The polling system is used to
optimize the time-schedule for each vehicle. Then, a linear
program is solved for each vehicle to find its trajectory.
These linear programs need to be computed sequentially
(centralized). This means that the linear program for the
first vehicle arriving at the intersection should be computed
first, and then the next vehicle, and so on. Although this
approach can successfully solve the stochastic AIM problem,
computational time required for linear programming hinders
the applicability of this solution for real-time usage. On the
contrary, we propose a distributed learning-based solution,
which enables real-time AIM.

B. RL with Variable Discounting

Learning a task is difficult when there are objectives with
different time scales. The time scale of a task is directly
impacted by the discount factor of RL agents (e.g. Q-learning
or SARSA) [11]. Thus, most past efforts focus on changing
the discount to learn tasks with multiple time scales. Edwards
et al. [21] extends the LP formulations of [11] and propose
a multiple discount SARSA algorithm by considering the
reward as a vector and using a separate action-value function
(Q-function) for each sub-task. Human intervention is then
needed to find the best policy among these sub-tasks. Burda
et al. [22] follows a similar approach to combine intrinsic
and extrinsic rewards. An automated approach is proposed
by Li et al. [23] to combine different objectives learned by a
set of factored Q-functions using a lexicographic ordering of
objectives. Finding such lexicographic ordering of objectives
is non-trivial and can be problem-dependent. In the above-
mentioned approaches, each sub-task is learned separately.
Because of that, the inter-relationship between sub-tasks
is ignored, and the number of parameters to be learned
is high. In contrast, we propose a simple and memory-
efficient method to learn each sub-task using a single action-
value function (a single Q-function) whilst preserving the
time scales of sub-tasks. As we show in our experiments,



our proposed method is able to achieve superior results in
achieving both short-term and long-term goals.

III. BACKGROUND

Our proposed architecture uses a polling system to sched-
ule the incoming CAVs, and uses Q-learning to determine the
CAV trajectories. We provide a brief introduction to both.

Polling system: A polling system consists of a single
server and a set of queues. Each queue contains a number
of customers (in First-In First-Out (FIFO) order). Customers
may arrive at the queue in a stochastic order. The server
can start serving a customer from any queue. The term
service time is the time taken to service one customer. Once
the server has serviced the first customer, the server can
select the next customer from any queue. When switching
between queues, the server has to wait for an additional time
called switch over time. The strategy that the server uses to
determine from which queue the next customer is selected is
called the policy. There are several policies in the literature
such as K-limited, gated and exhaustive. The definitions of
customers, switch over time and service time related to AIM
are described in Section V-A.

Q-learning: In RL, a problem first needs to be formulated
as a Markov-decision process (MDP). An MDP consists of
a state space S and an action space A. When an action
at ∈ A is taken in the current state st ∈ S , at time t,
the MDP’s state changes to st+1 according to the transition
probability T (st, at, st+1) = Pr(st+1|st, at). The MDP
provides a reward rt for the transition where rt is assigned
according to R(st, at, st+1). An RL agent acting on the
MDP consists of a policy π(a|s) which describes the agent’s
behaviour. The policy π(a|s) indicates the probability of an
agent taking the action a in the state s. The objective of the
agent is to maximize the expected reward Gt starting from
any given time step t. The expected reward is defined as
Gt =

∑T
τ=t γ

τ−trτ , where t is the current time step, γ is
the discount factor and T is the time that MDP reaches its
terminal state.

The action-value function (Q-function) for policy π stores
the expected reward by taking the action a in the state s
defined as: Qπ(s, a) = E[Gt|st = s, at = a, π]. Q-learning
approximates the optimal Q-function iteratively by observing
the transitions (st, at, st+1, rt) at every time step when T is
unknown. Considering the reward from n number of steps
we get the following n-step Q-learning equation.

Q(st, at)← Q(st, at)+α[

n−1∑
τ=0

γτrt+τ+γn max
a′

Q(st+n, a
′)

−Q(st, at)] (1)

Deep Q-learning: Deep Q-learning (DQN) [24] uses a
neural network to approximate the tabular Q-function when
the number of state-actions is large. The deep neural network
is represented as Q(s, a; θ) where θ is the set of parameters
of the neural network. DQN learns the Q-function minimis-
ing the following loss function w.r.t θ.

Lt(θt) = E(s,a,r,s′)∼D[(y
DQN
t −Q(s, a; θt))

2] (2)

L

vehicles

w

intersection
starting point

intersection
region

(a) A four legged intersection
with vehicles represented with
black rectangles. The control re-
gion for one road segment is
shown with length L. The in-
tersection region is shown in
gray and the intersection start-
ing point for road segments are
shown in blue lines.
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(b) The figure shows two 2-lane
roads segments where each lane
is represented as a queue. The
green points show four possible
conflicting squares where two
vehicles from 2 lanes could col-
lide, if vehicles coming from q1
to q4 are going straight through
the intersection.

Fig. 1: Multi-lane signal-less intersection

yDQN
t = r + γmax

a′
Q(s′, a′; θ−t ) (3)

where yDQN
t is the target function and θ− parameters

represent a separate neural network that keeps its parameters
frozen for a number of time steps while (θ) parameters are
optimized. After a certain number of time steps θ parameters
are copied to θ−.

IV. PROBLEM DEFINITION

Let us assume that an intersection I is connected with K
road segments. A vehicle i travelling towards the intersection
from road segment k ∈ K is defined as vi,k. A vehicle i
consists of dimensions lvi,k , wvi,k

where lvi,k , wvi,k
are the

length and width of the vehicle respectively. An example of
a four legged intersection and vehicles arriving towards the
intersection are depicted in Figure 1a.

Intersection region and starting point: Intersection re-
gion is defined as the common intersecting area of all road
segments at the intersection (I). We define the point where a
road meets the intersection region as the intersection starting
point. The intersection region and intersection starting point
are shown Figure 1a.

Control region: The control region of a road segment k is
a road segment of length L measured from the intersection
starting point along road segment k, where L is defined as the
control region length. The control region of the intersection
consists of control regions of all road segments.

Vehicle position: The position of vehicle vi,k, xvi,k(t)
is the distance from the intersection starting point to the
vehicle’s front bumper at time t.

Safety: Safety at the intersection and control regions at
time t is achieved when any two vehicles’ occupied areas do
not have overlap, where the occupied area of a vehicle is a
2-d space covered by lv,i × wv,i dimensions of the vehicle
w.r.t. its current position.

Travel time: The travel time of a vehicle vi,k, TTvi,k

is defined as the time taken for the vehicle to cross the
intersection, i.e. the time between when the vehicle enters
and exits the control region.



Total travel cost: Given that there are Nt vehicles inside
the control region at time t, the total travel cost TTC(t) is
the sum of the expected travel times of all Nt vehicles.

Problem Statement: Given that the vehicle arrival times
to control region are stochastic (the vehicle arrival times are
not known a priori), our objective is to minimize the TTC(t)
at each time step while guaranteeing safety at every time step.

V. REAL-TIME INTELLIGENT AUTONOMOUS
INTERSECTION MANAGEMENT

A solution to the aforementioned optimization problem
requires every vehicle in the control region to have a distinct
scheduled time to reach the intersection starting point, and
a well-defined trajectory to reach the intersection starting
point at the scheduled time. We can reduce the computational
complexity of the overall optimization problem by decou-
pling these two optimizations as two separate sets of agents,
which can act cooperatively. Two optimization problems
are (a) a scheduling optimization problem and (b) a trajec-
tory optimization problem. Thus, we propose an intelligent
multi-agent solution named Coordinated Multi-discount
Q-learning for Autonomous Intersection Management
(CMQ-AIM) which consists of two main components. The
first component is a Polling-based Coordinating Agent that
schedules a time to arrive at the intersection region for every
vehicle in the control region (scheduling optimization). The
second component is a set of distributed RL-based Trajectory
Control Agents (we will use the name RL-based Agent for
short) each of which controls the trajectory of a vehicle so
that the vehicle reaches the intersection region precisely at
the scheduled time given by the coordinating agent at the
maximum speed (trajectory optimization) [13]. In the next
sections we describe the two types of agents in detail.

A. Polling-based Coordinating Agent

The Polling-based Coordinating Agent uses a polling
algorithm and communicates with the RL-based Agent to
send/receive relevant information. We first show how a ve-
hicle’s arrival can be modelled as a polling system. We then
formulate the polling system for an intersection with single-
lane roads, similar to [8]. Finally, we extend the formulation
to a multi-lane intersection with multiple turnings.

Each incoming road segment can be represented as a
queue, and elements in the queue (customers) are the vehicles
within the control region. The service time should ensure that
two vehicles from the same road will not reach the intersec-
tion simultaneously. Thus, the service time is set to the time
duration between when the vehicle’s front bumper enters the
intersection region, and the vehicle’s rear bumper enters the
intersection region while travelling at the maximum speed.
The switch over time should ensure that a vehicle will enter
the intersection only when a vehicle from a different road
segment has exited the intersection region. Thus, the switch
over time is set to the time duration between when the
vehicle’s front bumper enters the intersection region, and its
rear bumper exits the intersection region while travelling at
the maximum speed.

Once the service and switch over times are defined,
any regular polling policy [25] can be used to compute a
schedule for every vehicle in the control region, and the time-
schedules will be non-conflicting. The polling algorithm is
event-triggered, implying that when a new vehicle enters the
control region, a new schedule will be computed. Thus, the
polling algorithm can handle stochastic vehicle arrivals.

The above formulation that represents an intersection as
a polling system is capable of handling intersections with
single-lane road segments only. When there are multiple
lanes per road segment, there is more than one conflicting
point (see Figure 1b). To address this limitation in a compu-
tationally efficient manner, we propose a Multi-Lane Polling
System discussed next.

Multi-Lane Polling System: The proposed system rep-
resents each lane in the intersection as a separate FIFO
queue, as shown in Figure 1b. Each queue contains vehicles
that have not yet finalized the time schedule. We denote all
queues as a set Q. With multiple conflict points between
queues in Q, the time that a queue has to wait after process-
ing another queue is not constant across queues compared
to the single-lane scenario. Thus, instead of using a fixed
service or switch over times we propose a queue dependent
function named queue transition function fq : q1 × q2 7→ R.
The function represents the time that the polling system
should wait to process a customer (vehicle) in q2 after
servicing a customer from q1, i.e. it represents the switch
over time between q1 and q2 plus the service time of q1.
For two consecutive requests from the same queue, the fq
output equals to the queue’s service time. For two queues
in the same road, fq is equal to zero as queues can be
processed in parallel. For the scenario shown in Figure 1b
the queue transition function is a 4x4 matrix. Once the
fq is defined, the polling order can be computed using
the following algorithm. With a given Q, the algorithm

Algorithm 1: Multi-Lane Polling Algorithm
Input: Q = {q1, ...qN}:N number of queues for

each lane
Input: τ : time to reach the intersection at max

speed from control region length L
1 Ta = {t1, ...tN} :

latest service time of each queue initialized with zeros
2 q ← select the queue with the first arrived vehicle
3 while queues in Q are not empty do
4 v ← q.pop()
5 tv ← τ +maxqi(Ta[qi] + fq(q, qi)) :

ignore queues with fq(q, qi)) equals to zero
6 Ta[q]← tv
7 q ← select the next queue to process

first initializes the set Ta which is used to store the latest
scheduled time (of the vehicle) assigned to each queue 2. In
line 2, the first queue to process is selected. In line 4, the

2The vehicles are allowed to change lanes (i.e. change the queue) inside
the control region, until a vehicles receives a finalized time schedule.



algorithm takes the first vehicle v from the queue q and finds
the latest safest schedule time tv that can be assigned to v.
Taking maxqi(Ta[qi] + fs(q, qi)) ensures that the assigned
time will not conflict with previously assigned times for all
queues. Then, tv is stored in Tn as the latest scheduled time
for q. The next queue to process will be selected using the
aforementioned polling policies (e.g. exhaustive, k-limited,
or gated) in line 7. The only added computation over the
standard polling algorithm is the max operation (linear in
the number of queues).

Extending to all roads segments and multiple turning
directions: For simplicity, we explained our Polling-based
Coordinating Agent only with two road segments with ve-
hicles moving straight through the intersection. Extending
this setup to all road segments is trivial. As in Figure 1a,
when we have eight incoming lanes connecting to the same
intersection, the queue transition function then becomes an
8x8 matrix. Then, to handle right and left turns, let us assume
that each lane can have two allowed directions (either straight
and left turn or straight and right turn). Then, each lane
can be represented by two distinct queues, and the total
number of queues will be 16. Finally, the queue transition
function (fq) becomes a 16× 16 matrix. We can generalize
this matrix to (nl ∗ 2)× (nl ∗ 2), where nl is the number of
incoming lanes. This matrix then can be used in Multi-Lane
Polling Algorithm (Line 5). Note that the matrix size does
not increase exponentially in real-world intersections as most
intersections consists of 4 or 5 incoming roads. The number
of lanes per road segment are normally within the range of
2 to 5 incoming lanes.

B. RL-based Trajectory Control Agent

Once the Polling-based Coordinating Agent schedules a
time for a vehicle to reach the intersection region, the next
objective is to control the vehicle’s speed so that the vehicle
reaches the intersection region precisely at the scheduled
time. A vehicle needs to reach the intersection region at
maximum speed to ensure the service and the switch over
times are not violated. The higher the speed the higher
the throughput will be [26]. A naive way to achieve this
arrival to the intersection at a given time and at maximum
speed is by stopping at a considerable distance away from
the intersection starting point for some time and then only
accelerating at the last minute. This sort of trajectory will
block vehicles that follow, which reduces the control region’s
capacity [8]. Thus, an optimum trajectory should stay as
close as possible to the intersection. In previous work [8],
this is achieved by solving a linear program for every vehicle
starting from the leading vehicle in a road in a sequential
order. However, solving a linear program every time the
Polling-based Coordinating Agent updates the time schedules
requires a significant amount of computation. If the trajectory
is not computed fast enough, there is a risk of crashing with a
former vehicle or not reaching the intersection at a scheduled
time. Furthermore, LP-based methods require the complete
trajectory of the front vehicle to be known when computing
the current vehicle’s trajectory. This information is however

unavailable when the front vehicle is not a CAV. Even if
the front vehicle is a CAV, a re-computation is needed if
the front vehicle’s trajectory is changed. To overcome these
limitations, we propose a Deep RL-based distributed solution
where an agent is trained to control the vehicle’s speed to
reach the intersection precisely at the scheduled time. Once
an RL-based Agent is trained offline, it can be used to
make real-time decisions. This approach mitigates the safety
concerns posed by the computational overhead of LP.

We use the Q-learning algorithm to learn the vehicle’s
trajectory to reach the intersection region at a maximum
speed (a.k.a. trajectory control). While learning to control
the vehicles’ trajectory to reach the intersection region, the
agent should learn to keep a safe distance from the former
vehicle (a.k.a. cruise control). See Section VI-A for the
state, action, reward definitions. Combining these two ob-
jectives can be achieved by combining two reward functions
from each task [10]. However, we observe that there is a
unique property of this problem that makes a standard Q-
learning algorithm unsuitable. In the trajectory control task,
successfully reaching the intersection is determined only
when the vehicle reaches the intersection starting point (i.e.
at the end of an episode), making the objective long term.
Whereas in the cruise control task, the former vehicle can
be humanoid/autonomous, and its behavior can be changed
in short time intervals, i.e. the vehicle behaviour is only
deterministic in a short time interval. The existing Q-learning
algorithm can be set either as a short-term or as a long-
term objective task using the discount factor. Suppose the
discount factor is set as a long-term task, the former vehicle’s
behavior cannot be adequately modeled and will result in
a sub-optimal behavior (i.e. keeping a large distance from
the former vehicle). If the discount factor is set as a short-
term task, the RL-based Agent is unable to see a large
number of time-steps ahead. Then the trajectory control task
cannot be achieved properly because it requires controlling
the vehicle a long distance away from the intersection. We
propose a novel Q-learning algorithm coined Multi-discount
Q-learning to learn the two tasks to preserve the short-term
goal while following the long-term goal.

VI. LEARNING LONG-TERM AND SHORT-TERM GOALS

This section first introduces a Multi-objective MDP (MO-
MDP) and explains why the standard Q-learning cannot learn
multiple tasks with different temporal objectives. MO-MDP
is different from MDP only in the reward function definition.
In MO-MDP the reward function is a vector rt ∈ Rk where
k is the number of objectives/tasks. Learning with MO-MDP
be considered for 2 main use cases, based on the information
available about the MDP. The first scenario is when we know
how much weight should be given to each objective (relative
importance of each reward/task). That means we know a
weight vector w ∈ Rk, so that we can compute w.rt. The
second scenario is when we do not know how much weight
should be given to each objective while learning, i.e., w
is unknown. The former is solved by transferring into a
single-objective MDP, and the latter is solved by learning



objectives separately and combining them at the decision-
making stage [10].

Our problem consisting of the trajectory control and cruise
control tasks belongs to the former case where we know
the weight vector w. However, in our case, each task
contains a different temporal objective. Before introducing
the proposed algorithm, let us discuss why traditional Q-
learning is unsuitable for this problem. First, we can modify
the standard Q-learning equation (Equation 1) to work with
weight vector w in the MO-MDP defined above as follows.

Q(st, a)← Q(st, at) + α[

n−1∑
τ=0

γτ (w.rt+τ )+

γn max
a′

Q(st+n, a
′)−Q(st, at)] (4)

Note that in Equation 4, when combining k number of
tasks, discount factor γ is a scalar value between 0-1 and it
is a common value for all the elements in rt. The discount
factor determines how much importance is given to future
rewards at the current time step t. The lower values of
discount factor (0-0.9) typically have a short-term effect
because the amount of future rewards considered can be
approximated as 1/(1−γ) [27]. For example, in the extreme
case when γ is 0, we only consider the immediate reward,
while with γ of 0.9 only the next 10 rewards have an impact.
In both cases, the value of maxa′ Q(st+n, a

′) and rewards
from t + 1 to t + n have less impact to the current value.
The objective we are trying to achieve becomes a short-term
objective. When γ is 1, all the future values of reward have
the same importance. In that case, the objective becomes a
long-term objective. Since we can only assign a single scalar
value to the discount factor γ, the combined task becomes
either a long-term or a short-term objective task.

Multi-discount Q-learning: We introduce two compo-
nents to overcome the aforementioned limitation. First, we
introduce a discount vector Γ ∈ Rk which can assign
different discount factors to each objective for k objectives of
Multi-objective MDP. The expected return defined in Section
III can be modified as Gt =

∑T
τ=t

∑k
i=0 γ

τ−t
i rt+τ,i, where

γi ∈ Γ represents the discount factor assigned to the ith

objective and rτ,i is the reward received for the ith objective
at time step t + τ . Each reward is associated with its own
discount factor rather than a common one for all rewards.
Since each reward is discounted differently, considering the
reward is long-term or short term, temporal length of each
objective is preserved.

The second aspect considers how to discount Q-value in
Equation 4. The term maxa′ Q(sn, a

′) in Equation 4 is a
scalar value and we cannot use discount vector Γ directly
for the discounting. To preserve the temporally different
objectives, we introduce a function to determine the discount
factor based on the obtained reward vector. The function is
named reward dependent discount function f : Rk 7→ [0, 1].
Using f , we can preserve the temporally different objectives
because the discount value can be changed. Finally, we can
write the multi-discount Q-learning equation as follows.

Q(st, at)← Q(st, at) + α[

n−1∑
τ=0

k∑
i=0

γτ
i rt+τ,i+

f(rt+τ )
n max

a′
Q(st+n, a

′)−Q(st, at)] (5)

Multi-discount Deep Q-learning (MD-DQN): Deriving
the Multi-discount Deep Q-learning from Equation 5 is
straightforward. We can define the target function in Equa-
tion 3 for MD-DQN with n-step return as shown in the below
equation. Then, this can be used to compute the loss function
in Equation 2 by replacing yDQN

t with ymo
t .

ymo
t =

n−1∑
τ=0

k∑
i=0

γτ
i rt+τ,i + f(rt+τ )

n max
a′

Q(st+n, a
′; θ−t )

A. Trajectory Optimization as an MDP

We now formulate the trajectory control and cruise control
problem as an MDP. For each task there is a separate reward.

States: The state space consists of six states. First three
states are related to trajectory control and the rest are related
to cruise control. The first state is the current speed of the
vehicle. The second is the distance to the intersection region.
The third is the remaining time to reach the intersection
region. The fourth is the front vehicles speed. The fifth is
the distance between the vehicle and the front vehicle. The
last one is the acceleration of the front vehicle.

Actions: The action space consists of three actions; 1)
brake action, 2) no-op action, 3) acceleration action. The ac-
tual values assigned to these actions are -1, 0, 1, respectively.
A similar set of actions were used for vehicle speed control
[28].

Reward vector: The reward vector in this problem is a 2-d
vector r = {r1, r2} where r1 and r2 are the rewards received
for the cruise and trajectory control tasks respectively. Note
that all the numerical values used below for rewards were
selected experimentally to balance both tasks.

In the trajectory control task, the below reward is given at
the end of an episode based on whether the vehicle reached
the intersection starting point at the scheduled time.

r1,end =

{
10 + 3 ∗ sv(Ts), reached the intersection at Ts

−10 otherwise

where Ts is the scheduled time and sv(Ts) is the speed of
the vehicle at the end of the episode. This reward encourages
the vehicle to reach the intersection exactly at the scheduled
time at high speed.

Besides r1,end at the end of an episode, at every time step
t, r1,step is given as the negative value of the vehicle position
normalized by the control region length.

r1,step = −xv(t)/L at every time step (6)

This encourages the vehicle to stay closer to the intersec-
tion and allows vehicles that follow enough space to enter
the control region.

In the cruise control task, r2 is assigned based on the gap
between the front vehicle. r2 encourages the vehicle to keep
a safe gap whenever possible. A large negative reward is
given to avoid crashing with the front vehicle.



r2 =


−400 if a vehicle crashed with the front vehicle
0.1 else if 6m < gap < 20m

−0.1 else if gap < 6m

0 otherwise

The constant values used in rewards (r1,step, r1,end, and
r2) are obtained through changing the scale of these rewards
and observing the vehicle behaviour. With the currently cho-
sen reward constants, our method can achieve a good balance
between trajectory control and cruise control. Note that MD-
DQN claims described Section VI are valid independent of
value of these constants.

Multi-discount Q-learning for trajectory control: We
formulate MD-DQN for the AIM problem as follows. We de-
note discount vector Γ as {d1, d2} and the reward dependent
discount function, f(r) defined as d2 when r2 is non-zero
and d1 when r2 is zero 3.

VII. EXPERIMENTAL METHODOLOGY

We conducted three types of experiments following the
experimental setups used in the literature [8], [16]. The first
set of experiments evaluate the MD-DQN against Q-learning.
The next set of experiments evaluate the trajectory computed
by MD-DQN compared to an optimal policy computed
using linear programming. Since MD-DQN computes the
trajectory, these experiments are designed to compare the
trajectory computed by MD-DQN with other baselines and
to show the trajectory is near-optimal. The last set of exper-
iments is designed to evaluate the overall impact of CMQ-
AIM in an intersection compared to other baselines in terms
of travel time and safety. We conduct the above experiments
with a microscopic traffic simulator, SMARTS [29] using
two experimental setups discussed next. The first setup is
used to evaluate the MD-DQN Agent in the first and second
experiments mentioned above, and the second setup is used
for the third experiment mentioned above.

Vehicle Experimental Setup (VE-setup): This setup
includes two vehicles (leading vehicle and following vehicle)
that are arriving to an intersection on the same road. The fol-
lowing vehicle is given a time (chosen uniformly at random)
to reach the intersection, and is controlled by the RL-based
Agent. The leading vehicle can be either an autonomous or
a human-driven vehicle (in which the RL-based Agent does
not control the behavior).

Intersection Experimental Setup (IE-setup): This ex-
perimental setup includes a 4-legged intersection with 2-lane
roads. Vehicle arrivals are modeled as a Poisson distribution.
Whenever a new vehicle arrives, the polling system computes
a time-schedule for every vehicle, and then, RL-based Agents
per-vehicle are used to control the vehicle speed.

Baselines: First, to compare the effectiveness of multi-
objective learning of the RL-based Agent, we use Threshold
Lexicographic DQN (TLDQN) proposed by Li et al. [23].
We represent the trajectory and cruise control tasks as two
separate Q-networks with lexicographic orders. At every time

3Here, d1, d2 are selected as 0.9 and 1 through a parameter sweep

step, possible actions with higher Q-values are selected from
each Q-network, and then the final action is chosen by
considering the lexicographic order.

For the trajectory optimization task, we use two baselines.
First, we use the same linear program formulation adopted
by Miculescu et. al [8] for the trajectory control task to find
the optimal solution. We denote this baseline as LP-AIM.
Second, we use a heuristic solution for the trajectory opti-
mization task, similar to the one proposed by Au et al. [20].
In Au et al. the objective is to optimize the time to reach
the intersection. In contrast, in our trajectory optimization
task, we maximize the end velocity and minimize the value
in Equation 6. We denote this baseline as H-AIM.

For the schedule optimization task (the coordinating
agent), we use traditional First-Come-First-Serve schedul-
ing [4] as a baseline. We denote this baseline as FCFS-AIM.

A. Evaluation Metrics

We evaluate our solution based on the following metrics.
Trajectory Performance: The quality of trajectory trj,

can be measured by computing how close the vehicle was
to the intersection throughout the trajectory, leaving enough
space for the vehicles behind. This can be computed as
X(trj) =

∑Ts

t=0 xv(t)trj/L where xv(t)trj is the position
of the vehicle at time t. The lower X(trj) indicates that
the vehicle has stayed closer to the intersection, which is
better as described in Section V-B. Equation 7 can be used
to compare two trajectories (trj1 and trj2).

diff(trj1, trj2) = |X(trj1)−X(trj2)| (7)

Because the travel time depends only on the Polling-based
Coordinating Agent, the travel time is an unsuitable metric
to compare LP and MD-DQN in VE-setup. Thus, the above
metric is used for the comparison.

Total Average Travel Time: The total travel cost defined
in Section IV is used in IE-setup to calculate the travel time
reduction for the entire simulation period.

B. Parameter Settings

The following parameters have been set: max. speed is
80kmh, max. acceleration/deceleration is 2ms−2 and the
discrete simulation step size ∆t is 0.2s which are the default
values of SMARTS. The control length L is set to 400m,
similar to the previous work [8]. The minimum value of
service and switch over times in the queue transition function
are set to 1 second so that the vehicles have enough time to
cross the conflicting squares (See Figure 1b) at the maximum
speed. For vehicles with higher length (lv,i), service time is
however increased to allow a safe traversal.

While training the RL-based Agent (using [30]), the learn-
ing rate is set to 1e-5, exploration factor ϵ is annealed from
1 to 0 over 120000-time steps. The discount factor γ is in
the range of 0.9-1. The RL parameters are selected through a
parameter sweep. i.e. the hyperparameters in RL are selected
by observing the reward graphs (the convergence rate and
the maximum reward). The primal-dual gap of the Gurobi
solver is set to 1-e5 to avoid high computation times that



occur when finding an optimal solution. The experiments
are conducted in a server with an Intel Xeon(R) processor,
24 GB RAM, and an Nvidia GRID P40 GPU.

VIII. EXPERIMENTAL RESULTS

Multi-discount Q-learning vs Q-learning: This experi-
ment evaluates the advantage of multi-discount Q-learning
over traditional Q-learning. The experiments are conducted
with the VE-setup described in Section VII. The RL-based
Agent is trained to control the following vehicle to reach
the intersection exactly at the scheduled time while avoiding
collision with the leading vehicle. During the training pro-
cess, scheduled times are assigned uniformly at random at the
start of an episode. To simulate short-term driving behavior,
the leading vehicle selects uniformly at random whether to
accelerate, decelerate or maintain the speed every 2 secs.

Figure 2 shows the reward achieved over 360000 time-
steps (until the rewards converged) by each algorithm. Here,
DQN-1 and DQN-0.9 refer to Q-learning with fixed discount
factors of 1 and 0.9 respectively which were selected through
a parameter sweep. Figure 2a shows the total episodic reward
(combining rewards from the trajectory control and cruise
control). There is a clear gain in the total reward of MD-DQN
compared to fixed DQNs, and TLDQN which highlights the
importance of MD-DQN i.e. the higher total reward means
that MD-DQN achieved both trajectory control and cruise
control objectives better than the other baselines.

Next, to analyze the agent behaviour further, we represent
the reward in each sub-task using r1,end and r2 in Figure
2b and Figure 2c respectively. Let us first compare fixed
DQNs with MD-DQN. In Figure 2c, DQN-1 converges to
0 because with the discount factor 1, DQN-1 is unable to
learn to closely follow the leading vehicle, i.e. the short-
term behavior of the leading vehicle, and thus it keeps a
large safe distance from the leading vehicle. Due to keeping
a large distance, DQN-1 did not reach the intersection at the
scheduled time which resulted in a lower gain for r1,end in
trajectory control.

In Figure 2c, DQN-0.9 achieves positive values as it can
predict the leading vehicle’s behavior. However, in Figure
2b, DQN-0.9 does not achieve a higher reward as it only
sees a few time-steps ahead. Thus, DQN-0.9 does not have
enough time to reach the intersection at maximum speed or
exactly at the scheduled time. Therefore, the reward is less
than what is achieved by MD-DQN. MD-DQN overcomes
these limitations and achieves higher rewards in both Figure
2c and Figure 2b.

TLDQN is not able to achieve higher rewards than MD-
DQN as shown in Figure 2. The performance of TLDQN
is similar to DQN-0.9 in all the sub-figures. This is due to
TLDQN learns tasks independently and only combines the
actions from each objective at the inference time, thus failing
to learn the inter-relationship between objectives. In contrast,
MD-DQN is able to learn such relationships resulting in
higher rewards.

Multi-discount Q-learning vs Optimal Control: This
experiment is focused on the optimality of multi-discount

Traffic level (# vehicles) 530 1080 1750
Dynamic Traffic Signal (DTS)(s) 77.59 235.73 543.18
FCFS-AIM(s) 15.21 131.46 388.57
H-AIM(s) 15.25 98.09 313.34
LP-AIM(s) 13.85 94.92 304.44
CMQ-AIM(s) 13.66 92.76 302.63

TABLE I: Total average travel time for dynamic traffic signal,
LP-AIM, H-AIM and CMQ-AIM for different traffic levels.

Traffic level (# vehicles) 530 1080 1750
H-AIM 65 49 69
LP-AIM 1 66 51
CMQ-AIM 0 0 0

TABLE II: The number of vehicles failed to arrive to
the intersection crossing point within 1 second from the
scheduled time.

Q-learning. We use the same VE-setup used in the previous
section and evaluate MD-DQN against linear programming
(LP). As described in Section V-B, with LP the complete
trajectory of the leading vehicle should be available for
the following vehicle to compute its trajectory. Due to
this reason, we can only conduct the experiments with the
autonomous leading vehicle. For the comparison, we use
the same LP formulation as in [8] and implemented using
Gurobi. The pre-trained RL-based Agent from the previous
section is used.

Figure 3a shows the trajectory performance of the trajec-
tory computed by LP and MD-DQN. Both LP and MD-DQN
are given the same scheduled times in the range of 20s to 32s,
where 20s is the shortest possible time that a vehicle can tra-
verse the control region length (400m) and 32s is the highest
time scheduled by the intersection controller. The resulting
trajectory performance value X is shown in the figure. Note
that X(MD-DQN) achieves trajectory performance closer
to the LP X(LP ) as the difference between trajectories,
diff(MD-DQN, LP ) is less than 5 in majority of cases.
This means that throughout the entire trajectory in control
region of length L (which is 400m) the total vehicle position
difference is 5m, which is a small value compared to L. Thus,
MD-DQN is able to achieve near-optimal performance. As
we show later, these minor deviations work in favor of the
safety of the final solution.

Figure 3b shows the computational time required by LP
and MD-DQN to select an action at different scheduled
times. MD-DQN action selection is two orders of magnitude
faster on average compared to that of LP. The maximum
computation time of LP is 3.37 seconds. This is significant,
since a vehicle traveling at 80 kmph may travel around 60m
by the time the computation completes with LP, thus making
the computed trajectory unsafe or unfeasible. In MD-DQN,
a vehicle will only travel 0.08m during the action selection,
making the RL approach safe.

This experiment highlights the benefit of MD-DQN in a
real-time setting. With a small reduction in optimality, we
are able to gain much lower computation time, which enables
real-time AIM.

CMQ-AIM Evaluation: This experiment focuses on the
overall performance gain of CMQ-AIM in reducing travel
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Fig. 3: Performance vs execution times for LP and MD-DQN

time, using the IE-setup. As a baseline, SMARTS’s Dynamic
Traffic Signals (DTS) are used.

Table I presents the total average travel time for CMQ-
AIM based solutions and dynamic traffic signal control with
30 minutes of simulation for different traffic levels (number
of vehicles) using a Poisson distribution as in Hu et al. [31].
Regardless of the traffic level, AIM-based methods result in
substantially lower average travel time compared to the DTS.
This is due to avoiding vehicles’ stop-and-go nature and
yellow signal time. CMQ-AIM is substantially better than the
traditional FCFS-AIM. This is because CMQ-AIM achieves
a platooning-like behavior unlike the traditional FCFS-AIM
where vehicles traverse the intersection in the order they
arrived to the control region avoiding larger delays in switch
over times while shifting from a road segment to a road
segment. H-AIM, LP-AIM (the trajectory computed by LP),
and CMQ-AIM result in similar travel times because these
three methods use the same polling-based schedule controller
proposed in Section V-A, which has a crucial impact on the
total travel time. The slight differences in travel time between
H-AIM, LP-AIM and CMQ-AIM are due to the deviations
in trajectories discussed next.

Even though these minor deviations do not have a sub-

stantial impact on the travel time, they pose a significant
safety risk. Table II shows the number of vehicles that did
not arrive to the intersection crossing point within 1 second
of their scheduled time. Since the switch over time is 1
second, any vehicle that has deviated more than 1 second
poses a safety risk of crashing with a vehicle coming from
another lane. Both heuristic-based and LP methods optimize
the trajectory based on an internal model or a set of linear
equations. However, these models and equations may not
necessarily match the simulation dynamics. In the simulation
environment, vehicles tend to have slight deviations from the
intended path computed by LP due to changes in traffic. Due
to these reasons, heuristic and LP-based methods tend to have
higher deviation percentages, violating the switch over time
and thus posing a safety risk. In contrast, RL-based CMQ-
AIM achieves superior performance with no deviations, i.e.
not a single vehicle violated the scheduled time throughout
the entire simulation. This added safety level for RL-based
Agents is attributed to the fact they are trained in the same
simulation environment, allowing it to learn the vehicle and
simulation dynamics (i.e. more intelligent). Further, since RL
works iteratively, the RL-based Agent can adjust the vehicle
acceleration even when vehicles are slightly deviating from
the intended trajectory, thereby offering higher safety levels.

IX. CONCLUSION

This paper presents a real-time deployable AIM solution
that uses a Polling-based Coordinating Agent and a set
of distributed RL-based Agents. We propose a novel RL
algorithm named multi-discount Q-learning to effectively
achieve the AIM task intelligently in a complex intersection.
We demonstrate that MD-DQN can successfully learn tasks
with different temporal objectives, while the existing state-
of-the-art approaches fail to do so. Our experimental results
show that our proposed solution is safe, computationally
efficient and close to optimal, making real-time autonomous
intersection management deployable in real-world road net-
works.
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