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ABSTRACT

Intelligent traffic management solutions that leverage machine
learning have gained a lot of interest in recent years. These tech-
niques, however, cannot be deployed in real-world settings at a
desirable pace due to technological barriers. Thus, easily customiz-
able, realistic simulation environments are needed to train and
verify the effectiveness of machine learning algorithms for traffic
control. We propose an easily extendable traffic simulation system
named e-SMARTS to allow researchers to experiment with novel
data-driven traffic management algorithms in a setup that mimics
real-world traffic conditions. We demonstrate the flexibility of e-
SMARTS using widely researched traffic management solutions for
Autonomous Intersection Management (AIM). In the demonstra-
tion, we present several pluggable algorithms for AIM and show
that these computationally efficient algorithms can achieve effective
and safe results.
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1 INTRODUCTION

With the emergence of Connected Autonomous Vehicles (CAVs) and
intelligent traffic infrastructures, Al techniques and research have
found a fertile application domain in traffic engineering [7, 9, 13].
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Related traffic management solutions often require making pre-
dictions or mining patterns to learn how to control the traffic ele-
ments. In recent years, Machine Learning (ML), and in particular
Deep Learning and Reinforcement Learning (RL), have become a
popular choice for many data-driven solutions for traffic optimiza-
tion [1, 5, 14]. These new algorithms, however, need to be simulated
in an environment that resembles real-world conditions before be-
ing deployed to actual road networks. To address this issue, we
propose an easily extendable microscopic traffic simulation system
where researchers can implement and verify different algorithms
for traffic management and observe their impact instantaneously.

We build upon Scalable Microscopic Adaptive Road Traffic Sim-
ulator (SMARTS) [11], which can simulate large traffic networks
compared to other existing simulators [3, 8, 16]. We extend SMARTS
with the capability to plug and play various traffic optimization solu-
tions, naming the new system extendable-SMARTS (or e-SMARTS
for short). In e-SMARTS, simulation objects such as vehicles, inter-
sections, and road segments are treated as intelligent agents that
can communicate with each other. All simulation objects contain
a general interface where researchers can plug in new algorithms
to control the behaviour. Since each object is able to communicate
with others, coordination among different algorithms is a possibil-
ity. Furthermore, machine learning algorithms can interact with
these objects to learn dynamics or hidden patterns without relying
on explicit models. We showcase the capabilities of our system
using a novel distributed RL solution for Autonomous Intersection
Management (AIM) [2].

AIM solutions are developed to replace the traditional traffic
signal control systems with intelligent solutions. In AIM, each CAV
arriving towards an intersection coordinates their arrival time to
the intersection via an intersection controller. In AIM, the set of
vehicles and the intersection controller can be thought of as two
types of intelligent agents, and different algorithms can be used for
both of these agents.

Using e-SMARTS for AIM, one can implement different sched-
uling algorithms for the intersection controller to coordinate the
arrival times of vehicles. Then, different trajectory control algo-
rithms for vehicles can be explored in order to adjust speeds and
adhere to the arrival schedule of the intersection controller. De-
coupling these two components allows researchers to try different
combinations of algorithms, as both components communicate with
each other, while algorithms can receive real-time traffic data from
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the simulation if they require it. As AIM needs to coordinate vehi-
cles in real-time, the computation times are of critical importance
for the overall solution’s safety and performance. Unfortunately,
previous efforts exhibit high computational time as they rely on
Linear Programming (LP) [10] and are not designed to learn the
simulation dynamics.

In this work we demonstrate two computationally efficient algo-
rithms for intersection and trajectory control using e-SMARTS that
can learn the simulation dynamics. We refer to this combination
by the name Intelligent Autonomous Intersection Management
(I-AIM) (refer to [4] for the detailed version of I-AIM). The first
solution is a polling-based coordinating agent (a.k.a. intersection
controller) for the intersection. The second component consists
of a set of distributed Reinforcement Learning agents, which are
assigned to each vehicle. Whenever vehicles are within a certain
distance from the intersection (called control region), the coordinat-
ing agent communicates with the RL agents to schedule the arrival
times of those vehicles to the intersection. The coordinating agent
uses a novel polling-based algorithm to handle multi-lane intersec-
tions with multiple turning directions. Once the coordinating agent
determines a time schedule, an RL agent controls each vehicle’s tra-
jectory to adhere to the coordinating agent’s time schedule. As we
show in our demonstrations, the RL agent can control trajectories
much faster than the state-of-the-art methods. Also, RL agents are
able to learn vehicle dynamics through e-SMARTS, enabling safe
trajectories as a result, unlike other methods we compared against.

Our microscopic simulations in a complex intersection serve
four key purposes: (1) We show that e-SMARTS can be successfully
integrated with futuristic traffic management solutions by allowing
users to try their own implementations, even during the demon-
stration. (2) We demonstrate that I-AIM can avoid the stop-and-go
nature of traditional dynamic traffic signals and reduce heavy traf-
fic congestion. (3) Our demonstrations show that CAVs achieve
platooning-like behavior with I-AIM, which further eases the con-
gestion. (4) We demonstrate that conventional approaches may
pose safety risks due to high computational time and the inability
to learn simulation dynamics. We then present how RL-based meth-
ods mitigate these problems. Leveraging the proposed interfaces,
other machine learning algorithms can learn dynamics of the simu-
lation environment to accelerate the development and deployment
of solutions to real-world road networks.

2 EXTENDABLE SCALABLE MICROSCOPIC
ADAPTIVE ROAD TRAFFIC SIMULATOR

SMARTS is a microscopic traffic simulator with a distributed archi-
tecture developed in Java that can simulate very large traffic net-
works. The simulator uses a custom-made distributed architecture
that allows simulation acceleration with multiple processors. The
architecture consists of a server processor and an arbitrary number
of worker processors. When setting up a simulation, the server can
partition the entire simulation area into multiple sub-areas as a
grid-based or sub-graph-based approach. Grid-based deployment is
useful when there are many subdivisions and processors, while the
subgraph-based deployment is preferable with a fewer number of
nodes and subdivisions. Each sub-area is simulated by a different
worker. All the workers run in parallel to shorten the simulation
time. The distributed architecture enables simulations of large cities
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Figure 1: The overall architecture of e-SMARTS. A Coordinat-
ing Agent is virtually located in the center of the intersection
and provides time schedules for vehicles within the control
region (gray circle). The vehicles are considered as a set of
distributed RL Agents.

Socket Interface

with dozens of processors. The distributed system has been tested
on Nectar Research Cloud with up to 100 workers.

We build upon SMARTS and provide interfaces to each simu-
lation component (e.g. intersections, vehicles, or road segments)
to be instructed through external inputs (thus named e-SMARTS),
where each component in the simulator can be thought of as an in-
telligent agent. e-SMARTS enables researchers to experiment with
novel traffic management algorithms through a simple plug and
play mechanism and immediately observe the algorithm’s impact.

Figure 1 shows the overall e-SMARTS architecture. The AIM in
SMARTS box showcases one simulation environment. e-SMARTS
can access the simulation objects from that environment, such as
vehicles, road segments, and intersection simulation objects. We
designed a set of interfaces named External Controllers which con-
tain a general interface for each simulation object. An interface
allows access to the simulation object attributes and permits to
send control instructions back to the simulation object. For exam-
ple, one can experiment with and test an intelligent driver model
by connecting to the vehicle interface. The grey-colored boxes
show such external algorithms that can be connected to these in-
terfaces in the AIM setting. The algorithms can be connected to an
interface as a Java object itself in the simulator or as an external al-
gorithm through socket programming implemented using ZeroMQ
(https://zeromgq.org/socket-api). The use of socket programming
allows researchers to develop algorithms in a language of their
choice. In addition, machine learning predictive algorithms can
first be plugged into the e-SMARTS interface to acquire data for
training. Data can be collected over a longer time interval, such as
a day or a week. Once trained, the algorithm can be connected to
the same interface for testing over different time intervals (short or
long), e.g., traffic prediction algorithms can measure the accuracy
of predictions by connecting to e-SMARTS [6]. Also, RL-based al-
gorithms can be connected to the same interface where researchers
can take actions on e-SMARTS and immediately observe the im-
pact in the next simulation cycle. The ability to connect various
algorithms allows researchers to verify and deploy their solutions
faster.
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Figure 2: Four intersection scenarios in e-SMARTS are shown. The first snapshot shows the intersection controlled by a
traditional dynamic traffic signal system. The second snapshot shows the same intersection controlled by I-AIM. The time to
reach the intersection is shown at the top of each vehicle. The third snapshot shows an intersection controlled by an FCFS-based
controller which is unable to handle high traffic load. The fourth snapshot shows an LP-based trajectory with crashing due to

not reaching the intersection at the scheduled time.

3 INTELLIGENT AUTONOMOUS
INTERSECTION MANAGEMENT

We first provide a brief overview of a computationally efficient solu-
tion for AIM that is used in the demonstration. We demonstrate two
computationally efficient algorithms for vehicles and intersections
that improve traffic flows and adhere to safety requirements. We
can reduce the computational complexity of the overall optimiza-
tion problem for AIM by decoupling it into two separate sets of
agents, which act cooperatively through e-SMARTS. Two optimiza-
tion problems are: (a) scheduling optimization and (b) trajectory
optimization. Our solution, named Intelligent Autonomous In-
tersection Management (I-AIM) [4], consists of a Polling-based
Coordinating agent, and a set of distributed RL-based Trajectory
Control Agents. The Coordinating agent schedules arrival time at
the intersection for every vehicle in the control region, while Tra-
jectory Control Agents control the trajectory of vehicles so that
each vehicle reaches the intersection precisely at the scheduled
time given by the Coordinating Agent at the maximum possible
speed [15].

Polling-based Coordinating Agent: The Polling-based Coordi-
nating Agent models the intersection as a polling system. A polling

system consists of a set of queues with elements stored on a First-
Come-First-Serve (FCFS) basis. The polling system can select an
element from one of the queues to process, and the processing time
is known as service time. Once an element has been processed, then
the polling system can select another element from the same queue
or from a different queue. The switching time between queues is
known as switch-over time. Each incoming lane of an intersection is
modeled as a queue and the service time is the time that a vehicle
takes to cross the intersection square. The switch-over time is the
time that a vehicle needs to wait when a vehicle from a different
queue is crossing the intersection. Using the above formulation,
past work [10] has modeled a simplistic intersection with one lane
without turning. In this demonstration, we model a more complex
intersection with a modified polling system where each lane is mod-
eled as multiple queues, which allows handling multiple turning
directions. A queue-dependent switch-over time is used to allow
multiple lanes in a road segment.

RL-based Trajectory Control Agent: Once the Coordinating
Agent schedules an arrival time for each vehicle, we use Q-learning
to control the vehicle’s speed so that the vehicle reaches the inter-
section region precisely at the scheduled time (trajectory control
objective). While doing so, we need to ensure that the vehicle is
not going to crash with the former vehicle in the same lane (cruise
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control objective). The first objective is a long-term objective as this
is our end goal, and the second is a short term because we need
to consider crashing with the former vehicle in the near future.
Combining these two objectives by combining two reward func-
tions from each task [12] is a non-trivial task. This is because the
existing Q-learning algorithm can be set either as a short-term or
as a long-term objective task using the discount factor. In our work,
we adaptively change the discount factor using the rewards from
the trajectory and cruise control tasks to achieve both objectives
with one single RL agent.

e-SMARTS can be easily executed and evaluated on other traffic
management algorithms similar to the above AIM solution. For
example, a dynamic lane allocation system can be connected to
road segments in the simulation (via external interfaces) and, based
on the observed traffic, the number of lanes for each direction can
be changed through the external interface. The travel time changes
due to lane changes can be obtained from the simulation output.

4 DEMONSTRATION

Our demonstration setup! in e-SMARTS consists of a four-legged
intersection with 2-lane road segments similar to Figure 1. Snap-
shots from e-SMARTS are shown in Figure 2.

1) Plug and play APIs. In the first scenario, apart from the
default algorithms, we will allow users to program and try their
own algorithms for both the vehicles and intersection. The users
can use either the Python or Java interface to write algorithms, and
a basic set of examples will be given as building blocks. This allows
users to understand how to design AIM algorithms and observe
their effectiveness.

2) Stop and go nature. The second demonstration scenario
(in Figure 2) shows the superiority of I-AIM over dynamic traffic
signals (DTS). We use the same traffic conditions in both scenarios
and demonstrate the detrimental effect of the stop-and-go nature
of the vehicles with DTS which results in long queues and overall
longer travel time.

3) Platooning behaviour. The third demonstration scenario
shows that compared to the traditional AIM, I-AIM can improve the
traffic flow by platooning vehicles. In the traditional AIM, vehicles
traverse the intersection on a FCFS basis, which is inefficient. The
simulations demonstrate that the Polling-based intersection con-
trollers allow platooning behavior which substantially reduces the
traffic congestion at intersections (in Figure 2). The Polling-based
controller’s computational complexity is linear to the number of
vehicles, which allows applying the algorithm in real-time.

4) Linear Programming. The last demonstration scenario com-
pares the RL-based trajectory control against the LP-based tra-
jectory control. The LP-based agent is programmed through the
Python interface, the same as the RL-based agent. The LP-based
modelling relies on analytical equations that cannot precisely cap-
ture the intricacies of real-time traffic dynamics. This is because
typically vehicles tend to have slight deviations from the intended
path computed by LP due to changes in traffic conditions. Conse-
quently, LP-based methods tend to violate the switch-over time,
thus posing a safety risk as shown in Figure 2 (far right). In contrast,
the RL-based agent reaches the intersection at the exact scheduled
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time within a one-second interval throughout the entire simulation.
This added safety level for the RL-based Agents is attributed to the
fact they are trained in the same simulation environment, allowing
it to learn the vehicle and simulation dynamics. Furthermore, since
RL works iteratively, the RL-based agent can adjust the vehicle
acceleration even when vehicles are slightly deviating from the
intended trajectory.

5 CONCLUSION

This paper presents a demonstration of a flexible traffic simulator
called e-SMARTS that allows researchers to implement and verify
their novel traffic management algorithms in a setup that mim-
ics real-life traffic conditions. e-SMARTS considers all simulation
components to be intelligent entities, enabling users to implement
and test Al-based traffic management approaches for emerging
autonomous vehicles, thereby paving the way for intelligent data-
driven traffic control.
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