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ABSTRACT

Graph combinatorial optimization (CO) is a widely studied problem

with use-cases stemming from many fields. Typically, in real-world

applications, the features of a graph tend to change over time (e.g.

traffic congestion, or travel time), thus, finding a solution to the

dynamic graph CO problem is critical. In recent years, using deep

learning techniques to find heuristic solutions for NP-hard CO prob-

lems has gained much interest as these learned heuristics can find

near-optimal solutions efficiently. However, most of the existing

methods for learning heuristics focus on static CO problems. The

dynamic nature makes NP-hard CO problems much more chal-

lenging to learn, and the existing methods fail to find reasonable

solutions. We propose a novel architecture named Graph Temporal

Attention with Reinforcement Learning (GTA-RL) to learn heuristic

solutions for dynamic versions of graph CO problems. We then ex-

tend our architecture to learn heuristics for the real-time version of

CO problems where all input features of a problem are not known a

priori, but rather learned in real-time. A detailed experimental eval-

uation against several state-of-the-art learning-based algorithms

and optimal solvers demonstrates the efficiency and effectiveness

of our approach.

CCS CONCEPTS

• Information systems→ Spatial-temporal systems; • Theory

of computation→ Reinforcement learning; •Mathematics

of computing→ Combinatorial optimization.
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1 INTRODUCTION

Graph combinatorial optimization (CO) problems have been studied

by computer scientists for decades as these problems are relevant

to many fields, including transportation, computer networks and

social networks. Most of the existing approaches focus on the static

version of the graph CO. Unfortunately, many real-world applica-

tions require the dynamic version to be addressed where the graph

input attributes change over time [4, 30].

Let us consider a motivating example for a dynamic graph CO

problem using a ride sharing scenario, where multiple customers

need to be picked up from several locations in a road network, and

each customer needs to be dropped off at different locations. The

objective (i.e., the optimization goal) is to find an order to pick up

and drop off customers providing the fastest possible travel time to

all. This is an NP-hard optimization problem, and can be reduced to

a minimum steiner tree [13]. In real-world road networks, the travel

time between pickup and drop-off locations changes over time due

to congestion levels or other external factors such as accidents.

Thus, while optimizing the order of visiting customers, we need

to consider the changes in the travel time between different loca-

tions; the road network graph is dynamic. Typically, traffic-related

research [6] approximates this case and assumes that even though

the travel times between locations are not static, changes in travel

times are known beforehand (typically by relying on historical data

or through traffic predictions [1, 31]). This common optimization

then becomes a dynamic graph CO problem. If we assume that

the future travel time estimates are not available and the future

travel times between locations are only available after we reach

that time, then the problem becomes real-time graph CO. A similar

scenario is observed in telecommunication networks where the

goal is to allocate bandwidths to communication links to maximize

the overall network utilization, and traffic in each link changes

over time. With these real-world examples, it is evident that the

dynamicity of graph CO problems needs to be considered to make

related research applicable to many real-world scenarios.
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Due to the NP-hard nature, even in static COs, finding an exact

solution for a large graph instance is computationally expensive. On

the other hand, heuristic solutions can be fast but require domain

knowledge of the problem and a significant amount of manual-

engineering to design them [7]. Finding a heuristic in a dynamic

setting can be even more challenging due to a large number of pos-

sible combinations1. Furthermore, the heuristic needs to consider

the temporal dimension as well, i.e., in the dynamic TSP, a solution

not only needs to find an order of nodes to visit but also needs to

consider when to visit these nodes. Since the cost between two

nodes can change over time in dynamic TSP, the solution should

choose time steps when the cost between nodes is minimal (see

visualization in Appendix A). In this work we seek a generalized

method to find fast and efficient heuristics for dynamic graph COs

without relying on hand-crafted methods.

Recent advancements in deep Reinforcement Learning (RL) have

led to finding efficient heuristics for CO without hand-crafted en-

gineering [2, 7, 8, 15, 18]. All these approaches model CO prob-

lem as a complete or incomplete graph [21] and formulate the

decision-making process as a successive addition of nodes to the so-

lution. By doing so, the learned heuristics can achieve near-optimal

performance. All of these works however focus only on static

COs [7, 8, 15], failing to find reasonable solutions for dynamic

CO problems, as demonstrated in experiments.

To identify the shortcomings of the mentioned approaches for

dynamic COs, existing methods can be categorized into two main

types: (1) Message passing neural networks with value-based RL [2,

7], and (2) Attention-based/Recurrent Neural Networks (RNN) with

policy-gradient RL [8, 9, 15, 18, 20, 27]. The former methods use a

message-passing Neural Network to iteratively encode the graph

information and use Q-learning [28] for the decision making. The

latter methods use an attention mechanism [25] or an RNN to en-

code the graph instance as a sequence of nodes and use a decoder to

make the decisions iteratively. As recent research suggests [15, 18],

the latter approaches achieve better performance for COs largely

due to the fact that the policy-gradient RL algorithms perform

better when the action space is large/variable [24].

Despite the success of attention-based policy gradient methods

in static COs, the reason for them not performing sowell in dynamic

COs is three-fold. (1) The graph/input features are embedded before

making decisions/actions. Thus, changes in graph features due to

the decision-making process are not captured. (2) The attention

mechanism deployed is only able to encode graph node features

in a single time step. In a dynamic setting, each node contains

different features at different time steps and such temporal changes

are not captured. (3) The decodingmechanism used by the attention-

based methods focuses on the entire embedded space given by the

encoder at every decision-making time step. However, in a dynamic

setting, there are different encoded outputs at every time step. Thus,

paying attention to the entire embedded space tends to distract the

decision-making process.

We propose a novel encoder-decoder architecture named Graph

Temporal Attention (GTA) trained with modified Reinforcement

Learning (RL) to address the aforementioned issues and we denote

1For example, Travelling Salesmen Problem with 𝑛 number of nodes has 𝑛! possible
selections. In dynamic TSP, each node has different values at different time steps. The

possible combinations would thus be (𝑛!)2 = (𝑛.𝑛 × (𝑛 − 1) (𝑛 − 1) ...).

GTA-RL as the combined overall architecture. First, we propose a

multi-dimensional attention mechanism at the encoder to embed

both temporal and graph (spatial) features simultaneously. Then,

a fusion mechanism is introduced to learn the inter-relationship

between temporal and spatial embeddings which allows to encode

spatial information in multiple time steps. Such encoder layers

are cascaded together. Once the set of encoder layers outputs the

spatio-temporal representation of the dynamic CO, a novel decoder

named temporal pointing decoder is used to dynamically pay atten-

tion to the spatio-temporal representation for the decision-making

stage. By paying attention to specific parts of the spatio-temporal

representation, the temporal pointing decoder avoids distracting

the decision-making process as well as captures the changes in

graph features due to the decision-making process. Finally, GTA-RL

is trained through a modified policy-gradient RL algorithm. Note

that, this architecture targets the scenarios where all the dynamic

changes are estimated beforehand as in the standard dynamic CO

[12, 30]. We introduce an iterative method by partially embedding

the encoder inside the decoder to tackle the problem where the

dynamic changes are not known a priori, thus, making GTA-RL

applicable for a variety of real-time applications.

The contributions from this work are four-fold: 1. We propose a

novel deep learning architecture, GTA-RL, to tackle the dynamic

graph CO problems. 2. We introduce an encoder and decoder that

are capable of preserving temporal information in sequential deci-

sion making. 3. We propose an iterative architecture that can handle

real-time information of COs. 4. Our extensive experimental results

with well known spatial problems such as TSP and Vehicle Routing

Problem (VRP), demonstrate that GTA-RL achieves state-of-the-art

over comparable learning-based algorithms.

2 RELATEDWORK

Due to the success of Deep Reinforcement Learning (DRL) algo-

rithms in sequential decision making and control problems, many

domains including atari games, traffic control [10, 11], and robot

navigation [32] have successfully leveraged it. With the develop-

ment of neural networks such as LSTM, RNN, message-passing

networks and attention networks which allowed working with

graph structured data, in recent years, DRL has been applied to

many graph CO problems to learn heuristics that require no hu-

man input [2, 7, 8, 15, 18] (refer to Appendix B.1 for details on

how these neural networks embed graph data). These works have

achieved near-optimal performance outperforming hand-crafted

heuristics in many CO problems. These existing methods formulate

the combinatorial graph problems as a successive addition of graph

nodes (actions) to the solution. The existing methods can be broadly

categorized into two types, based on the reinforcement algorithm

adopted in the solutions. (1) Using Value-based methods such as

Deep Q-learning [17]. (2) Using Policy-gradient algorithms such as

REINFORCE and Actor-Critic algorithms [24].

Value-based method for graph CO was first proposed by Dai et

al.[7]. The proposed architecture uses structured2vec to embed the

graph information and uses fitted Q-learning [22] for sequential

decision making. They applied the proposed solution to solve static

Travelling Salesmen (TSP), Minimum Vertex Cover, and Max-Cut

problems. A similar architecture is followed by Barrett et al.[2] using
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Message Passing Neural Networks. However, in their approach, the

solution is further optimized at inference time, which improves

over a one-shot solution in Dai et al.[7].

The policy-gradient methods have demonstrated improved re-

sults over value-based based counterparts, as evident by the re-

cent research [8, 15]. The main reason is because in graph CO, the

number of nodes (the action space) can be variable from a prob-

lem instance to instance and when the action space is large, the

policy-gradient algorithms tend to perform better [24]. The first

policy-gradient algorithm for graph CO was proposed by Bello et

al.[3]. The paper uses an LSTM encoder-decoder architecture named

pointer network which was first proposed by Vinyals et al.[27] to

solve the TSP in a supervised learning setting. However, Bello et

al. uses policy-gradient instead of supervised learning to train the

pointer network. In addition, Bello et al. improves the decoder by a

masking scheme to mask already selected nodes. Nazari et al. [18]

uses a different pointer network architecture employing an attention

mechanism and RNN to solve the Vehicle Routing Problem (VRP).

Their solution includes a separate dynamic encoder to embed the

dynamic features of a given CO problem. Despite being able to

handle dynamic changes to the problem over time, this architecture

is developed mainly focusing on the internal changes due to the

node selection in the decision-making process but not the changes

due to external factors which are beyond the control of the decision

making process (i.e. static external input). As our experiments show,

GTA-RL achieves superior performance in several combinatorial

problems over the architecture of Nazari et al. [18].

The next generation of policy-gradient methods uses pure at-

tention architectures instead of RNNs inspired by the architecture

proposed in Vaswani et al.[25]. Deudon et al. [8] uses a Multi-

head attention for encoding the CO problem and a decoder with a

pointing mechanism similar to Bello et al. but without recurrent

elements. The REINFORCE algorithm [24] with a critic baseline

has been used for training the network. In parallel to Deudon et al.,

Kool et al. [15] proposed an improved architecture by introducing

a new attention-based decoder instead of the pointing mechanism.

The paper also shows that using a roll-out baseline instead of the

critic baseline improves the results further for CO problems. Kool

et al. outperforms existing methods in TSP, VRP (Vehicle Routing

Problem), and variants of both TSP, VRP. Our proposed architec-

ture GTA-RL uses an architecture akin to Kool et al., and extend

it with a novel encoder and decoder, which are capable of embed-

ding temporal features of dynamic CO problems and dynamically

focusing on temporal features during the decision making process.

Our experimental results show that we outperform the aforemen-

tioned state-of-the-art approaches for dynamic CO problems. We

also extend our architecture to real-time CO.

3 DYNAMIC GRAPH COMBINATORIAL
OPTIMIZATION AS A LEARNING PROBLEM

In this section, we present a generic dynamic graph combinatorial

problem formulation and discuss the approach to parameterize the

problem formulation so that it can be learned.

First, we represent the dynamic graph combinatorial problem

based on a graph instance 𝐺 with 𝑁 number of nodes. The graph

features can be represented as 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁 }, where for each

node 𝑖 , 𝑥𝑖 = {𝑥0,𝑖 , 𝑥1,𝑖 , ..., 𝑥𝑇−1,𝑖 } is a vector with the dimension

R
𝑇×𝐷 . 𝑇 represents the total number of time-steps and 𝐷 is the

number of features in one input element at a given time step. In a

transportation network, features of a node can be xy coordinates,

or the number of customers/goods to pick up in a TSP scenario. We

denote 𝑥𝑡,𝑖 ∈ R
𝐷 as the input features of node 𝑖 at time 𝑡 . The cost of

selecting node 𝑗 at time step 𝑡 , after selecting node 𝑖 at the previous
time step, is represented as a cost function 𝑓𝑐 : 𝑥𝑡−1,𝑖 × 𝑥𝑡, 𝑗 ↦→ R.
In a complete graph, the cost function can have a value from any

node 𝑖 to any node 𝑗 at any given time step 𝑡 . In an incomplete

graph, the cost function for two nodes where there is no edge can

be ignored by setting a large negative value for such connections

(a.k.a. masking).

Given the above details, our objective is to find an order of

nodes 𝑌 with length 𝑇𝑠 ∈ (0,𝑇 ] which satisfies the constraints of a

given dynamic graph combinatorial optimization 𝐶 (𝑌 ), such that

we minimize:

𝑃𝑜𝑏 𝑗 [𝑌 |𝐺] =
𝑇𝑠∑

𝑡=1

𝑓𝑐 (𝑥 (𝑦𝑡 , 𝑡), 𝑥 (𝑦𝑡+1, 𝑡 + 1)) (1)

where 𝑦𝑡 ∈ 𝑌 is a selected node from 𝐺 for time step 𝑡 . 𝐶 (𝑌 ) is
an evaluating function that checks whether the sequence𝑌 satisfies

all the problem constraints. For example, in dynamic TSP, the cost

function, 𝑓𝑐 , represents the distance between two nodes at a given

time step 𝑡 . The evaluating function, 𝐶 , checks whether all nodes
have been reached or not. The objective, 𝑃𝑜𝑏 𝑗 , represents the total
traveled distance after reaching every node.

Learning Formulation: Given a dynamic graph combinatorial

problem, our objective is to find a policy, 𝜋 , which will generate

a sequence 𝑌 such that we minimize 𝑃𝑜𝑏 𝑗 and satisfy 𝐶 (𝑌 ), for a
given graph problem instance 𝐺 . First, we can parameterize the

policy as 𝜋𝜃 (𝑌 |𝐺) := 𝑃𝑟 (𝑌 |𝐺). Next, we can factorize this as a

Markov Decision Process (MDP) where input states 𝑆 will be the

graph instance 𝐺 , plus the solution computed up to the given time

step 𝑡 (𝑆 = {𝐺,𝑌1:𝑡−1}) and the action 𝑦𝑡 is selected from available

nodes in𝐺 . Then, we factorize 𝜋𝜃 (𝑌 |𝐺) using the probability chain

rule as:

𝜋𝜃 (𝑌 |𝐺) = Π𝑇
𝑡=1𝜋𝜃 (𝑦𝑡 |𝐺,𝑌1:𝑡−1) (2)

Our objective transforms to learn and represent the set of param-

eters 𝜃 in Equation 2, so that we minimize 𝑃𝑜𝑏 𝑗 . In a transportation

network optimization scenario, this is to find a traversing order

that minimizes the total tour length/time under a dynamic setting.

Real-time Dynamic Graph Combinatorial Optimization:

Here, we formulate the real-time graph combinatorial optimization

problemwhere the input attributes of a given problem𝐺 at time step

𝑡 are not available until we reach that time step. Unlike the dynamic

graph combinatorial optimization, now we do not have all the

information about the graph for the entire time horizon. In that case,

Equation 2 can be written as; 𝜋𝜃 (𝑌 |𝐺) = Π𝑇
𝑡=1𝜋𝜃 (𝑦𝑡 |𝐺1:𝑡−1, 𝑌1:𝑡−1).

Note that, in above equation, the graph instance is𝐺1:𝑡−1 which

indicates that only the information up to time step 𝑡 is available.
This is harder to optimize than the dynamic CO version since we

are acting with incomplete information. However, we later show

that with a slight modification to our proposed architecture, we

can solve the real-time CO to be on par with dynamic CO.
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An Example of a Real-time Problem: The real-time CO typ-

ically occurs in transportation where the road network is repre-

sented as a graph. In a road network, the edge attributes can be

traffic loads/average speeds of a road segment. Given that we want

to reach several points in the road network, first, we need to decide

on our first point to reach based on the current edge attributes.

Then, we take a finite amount of time to reach that point. During

that time, the edge attributes may have changed due to external

traffic conditions. However, this external traffic information could

not have been accessed beforehand. In this scenario, optimizing the

path to visit all the points is a real-time problem.

4 GRAPH TEMPORAL ATTENTIONWITH
REINFORCEMENT LEARNING (GTA-RL)

To find a solution to the dynamic CO problem defined in Equation

2, we need to find a neural network architecture to represent 𝜃
parameters and a learning algorithm to train the network. We pro-

pose a novel encoder-decoder neural network architecture named

Graph Temporal Attention (GTA) to represent 𝜃 parameters. Then,

we use a loss function computed through a modified policy-based

RL to train the network. The combination of these two parts is our

overall architecture called GTA-RL. This section describes these two

components and the real-time version of GTA-RL.

4.1 Graph Temporal Attention Architecture

A major limitation of the previously proposed attention based mod-

els [8, 15] was the inability to encode the time-varying features

of a problem and make a decision while input features are chang-

ing. To address these limitations, we propose a novel architecture

consisting of two components, namely a temporal encoder and a

temporally pointing decoder for the neural combinatorial domain.

4.1.1 Temporal Encoder. The proposed novel encoder allows to

learn both spatial and temporal features of CO simultaneously,

which alleviates the aforementioned limitations. Figure 1 depicts

the temporal encoder architecture. First, input 𝑋 ∈ R
𝑇×𝑁×𝐷 is

transformed by a linear transformation to 𝐻
(0)
𝑖𝑛 ∈ R

𝑇×𝑁×𝐷ℎ
, at

fully connected layer (FC) 1. 𝐷ℎ refers to the hidden dimension of

FC layer 1. The output from FC layer 1 is given to the temporal en-

coder. The temporal encoder contains a spatial attention, a temporal

attention and a FC layer in parallel. 𝐻 (0) is given as an input to

these three layers and the outputs from these layers are combined

through an integration layer. For simplicity, we only show the first

encoding layer in Figure 1, however, several temporal encoders can

be stacked by taking the output of first temporal layer 𝐻 (1) as the

input to the next, and so on. We denote 𝐻 (𝑙 ) as the input to the 𝑙𝑡ℎ

temporal encoding layer and 𝐻 (𝑙+1) as the output. We denote ℎ
(𝑙 )
𝑖,𝑡

as the hidden representation of node 𝑖 at time 𝑡 in layer 𝑙 .
Even though the embedding information along a temporal axis

has not been investigated in the field of neural CO domain, this

idea has recently emerged in the traffic predictions and other do-

mains [19, 23, 33] mainly for predictive tasks in one single graph. In

dynamic CO, the graph topology changes from one instance to an-

other. Therefore, these neural networks cannot be directly applied

to train a dynamic CO problem. Furthermore, decoders in these
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Figure 1: Temporal Encoder.

networks are not designed to work with reinforcement learning

algorithms.

Our temporal encoder, whilst motivated by the encoder pro-

posed in Zheng et al. [33] (named STAtt Block), differs in several

key aspects. First, our temporal encoder do not use fixed graph

embeddings because learning for traffic prediction only needs to

handle a single road network topology, whereas in COs the input

graph topology changes for every training instance. Thus, it is

infeasible to learn a separate embedding for every new training

instance. Second, in dynamic COs, there can be some nodes in 𝑋
whose attributes do not change over time. On the contrary, in traffic

prediction, attributes such as traffic load/congestion of every node

change over time. In the temporal encoder, we introduce FC layer

2 in parallel to temporal attention layer, to handle nodes whose

attributes do not change over time.

(a) Spatial Attention Layer (SAL): In a given graph instance,

there are spatial dependencies between nodes, and the SAL is used

to encode those dependencies. Representing such dependencies is

critical for decision making especially because the node selection

fitness will depend on the surrounding nodes’ information. SAL

uses the multi-head self-attention mechanism (denoted asMHA)

introduced by [25], since self-attention has been proven better at

finding dependencies in variable length sequences [26]. For self-

attention the same sequence is given as the input. SAL considers

a list of node features at a given time step (spatial dimension):

𝐻
(𝑙 )
𝑆,𝑡 = {ℎ

(𝑙 )
1,𝑡 , ℎ

(𝑙 )
2,𝑡 , ...ℎ

(𝑙 )
𝑁,𝑡 } ∈ R

𝑁×𝐷ℎ
.

𝐻
(𝑙+1)
𝑆,𝑡 = MHA(𝐻

(𝑙 )
𝑆,𝑡 , 𝐻

(𝑙 )
𝑆,𝑡 ) (3)

Here, output 𝐻
(𝑙+1)
𝑆,𝑡 embeds the relevance of node 𝑗 to node 𝑖 at

time 𝑡 . In a non-complete graph, we set −∞ to non-adjacent nodes

before the softmax layer in MHA. By stacking 𝐻
(𝑙+1)
𝑆,𝑡 over the time

axis, we get the 𝐻
(𝑙+1)
𝑆 , which represent node dependencies across

all time steps for all the nodes.

𝐻
(𝑙+1)
𝑆 = ‖𝑇𝑡=1𝐻

(𝑙+1)
𝑆,𝑡 ∈ R𝑇×𝑁×𝐷ℎ

(4)

(b) Temporal Attention Layer (TAL) with Fully Connected

Layer: In dynamic COs, in addition to the dependency between

nodes, there is a dependency between node features across differ-

ent time steps for the same node. We propose a novel attention
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layer fused with feed forward network to handle time dependency

of dynamic COs. TAL transposes the embedding into a temporal

dimension as detailed later to learn these dependencies in parallel

to SAL.

Also, note that in some dynamic COs, apart from nodes that

change over time, there can be some nodes that do not change

over time. E.g. in Vehicle Routing Problem defined in Section 5.1,

the features of the depot node (vehicle starting/loading node) may

be fixed while customer node features change over time. Feeding

such fixed nodes’ information into the same TAL will reduce the

effectiveness of the learning of dependencies of nodes that are

changing over time.

To resolve this issue, we introduce a separate Fully Connected

(FC) layer. First, note that there can be𝑈 number of such fixed nodes

and these nodes are represented by the setU. Then, from input𝐻 (𝑙 ) ,

we take𝐻
(𝑙 )
𝐹 ∈ R𝑇×𝑈 ×𝐷ℎ

which only contains the nodes with fixed

features. In the FC layer, we apply a linear transformation for 𝐻
(𝑙 )
𝐹

to get 𝐻
(𝑙+1)
𝐹 .

Then, in the TAL, we select the nodes that are changing over time

and represent them as 𝐻
(𝑙 )
𝑇 ∈ R𝑇×𝑁−𝑈 ×𝐷ℎ

. Similar to the SAL, we

consider a sequence, but now transposed in temporal dimension

for each node 𝑖 as 𝐻
(𝑙 )
𝑇,𝑖 = {ℎ

(𝑙 )
𝑖,1 , ℎ

(𝑙 )
𝑖,2 , ...ℎ

(𝑙 )
𝑖,𝑇 } ∈ R

𝑇×𝐷ℎ
, where node

𝑖 ∉ U.

𝐻
(𝑙+1)
𝑇,𝑖 = MHA(𝐻

(𝑙 )
𝑇,𝑖 , 𝐻

(𝑙 )
𝑇,𝑖 ) (5)

The output 𝐻
(𝑙+1)
𝑇,𝑖 embeds the relevance of the node features at

time 𝑡𝑏 to the node features at 𝑡𝑎 for node 𝑖 . In contrast to SAL, we

do not use the masking and assume all time steps are connected. By

stacking 𝐻
(𝑙+1)
𝑇,𝑖 for nodes that are changing over time, we compute

𝐻
(𝑙+1)
𝑇 as below.

𝐻
(𝑙+1)
𝑇 = ‖𝑁𝑖=1,𝑖∉U𝐻

(𝑙+1)
𝑇,𝑖 (6)

Finally, the outputs from TAL and the FC layer are concate-

nated to get the final temporal embedding representation; 𝐻
(𝑙+1)
𝑇𝐹 =

𝐻
(𝑙+1)
𝑇 ‖ 𝐻

(𝑙+1)
𝐹 ∈ R𝑁×𝑇×𝐷ℎ

(c) Integration Layer: Once we learned the spatial representa-

tion (𝐻
(𝑙+1)
𝑆 ) and the temporal representation (𝐻

(𝑙+1)
𝑇𝐹 ), we combine

these two representations. First, we concatenate both 𝐻
(𝑙+1)
𝑆 and

transposed 𝐻
(𝑙+1)
𝑇𝐹 which results in a shape of R𝑇×𝑁×2∗𝐷ℎ

. Then,

we use a linear transformationwith aweight vector𝑤𝐼 ∈ R𝐷
ℎ×2∗𝐷ℎ

and use a sigmoid activation layer as the output 𝐻 (𝑙+1) . The output

𝐻 (𝑙+1) is given to the next layer 𝑙 + 1 in the temporal encoder. Our

integration layer is much simpler compared to the layer proposed

in STAtt Block [33], but yields similar performance. The integration

layer output is designed in a way that for a given node 𝑖 at time 𝑡 ,
integration layer accounts for both the impact from surrounding

nodes as well as the previous and future time variants of node 𝑖 . We

provide more insight on how the neural network embeds a problem

instance, using TSP as an example in Appendix B.2.

4.1.2 Temporally Pointing Decoder. This subsection describes the

decision making process of the decoding layer of GTA, which takes

the embedded information from the encoder output as input. In the

literature, a decoder with a combination of multi-head and single-

head attention has traditionally yielded better results and better

convergence rate over the pointer networks for static problems [15].

Thus, we propose an improvedmulti-head and single-head attention

decoder to handle dynamic information.

Figure 2 shows the overall architecture of the temporally pointing

decoder. The temporally pointing decoder works in a sequential

manner with a feedback loop. First, it takes the spatio-temporal

output from the last layer (𝐿) of the encoder (𝐻 (𝐿) ) and the decoded

solution up to the current time step 𝑡 . Second, the temporal pointer

outputs a node embedding representation highlighting the features

of the current time step. The invalid nodes for the selection will be

ignored during the computation of node embeddings. This mask-

ing is problem-dependent. For example, in dynamic TSP, already

visited nodes from previous time steps are invalid nodes. Third, the

temporal pointer also outputs a context embedding by considering

the current decoded solution and the current time step. These two

outputs will be then fused together in a multi-head attention layer.

Then, a single attention layer named Log Probability Layer is used

to find the probability of each node being in the current solution.

The node with the highest probability is selected as the next node

and the output will be given as a feedback to the temporal pointer

for the next iteration. The individual components are detailed next.

(a) Temporal Pointer: First, we describe the motivation behind

the temporally pointing decoder. In the original multi-head and

single-head attention architecture [15], a set of fixed attention val-

ues are computed from the encoder output. These fixed attention

values are used in every decoding time step. Even though the fixed

attention works in a static problem, it is unsuitable for handling

dynamic information. At every decoding time step, the node fea-

tures change in dynamic CO problems. Thus, initially computed

fixed attention values do not reflect the node feature changes. Also,

using such a fixed attention hinders the ability of the overall ar-

chitecture to handle changes to the graph instance due to the new

node selections. Thus, we propose to dynamically compute these

attentions by taking temporal information into account.

To dynamically compute these attentions, first, let us look at the

output𝐻 (𝐿) of the Temporal Encoder. The output contains temporal

dimensions (a shape of R𝑇×𝑁×𝐷ℎ
). A naive strategy to handle the

temporal information is to compute a mean value for each node

over the entire time horizon as; 𝐻𝑛𝑎𝑖𝑣𝑒 =
∑𝑇

𝑡=1𝐻
(𝐿) [𝑡,:,:]
𝑇 ∈ R𝑁×𝐷ℎ

,

where 𝐻 (𝐿) [𝑡, :, :] represents the embedding for all the nodes at

time 𝑡 . Another strategy is to use only a single time-step data i.e.

𝐻 (𝐿) [0, :, :]. The results from both strategies can then be given as an

input to the multi-head and single-head attention to decode node

selection. As we demonstrate in Section 6.2, use of these strategies

yields similar results mainly because the resulting representation

suppresses the rich information about the difference in each time

step.

To alleviate this problem, we propose a way to dynamically focus

on the most relevant parts of the embedded output from the encoder

at every time step. We slice up the encoder embedding at every

decoding time step to find 𝐻𝐷,𝑡 (where 𝐻𝐷,𝑡 = 𝐻 (𝐿) [𝑡, :, :]) and
dynamically compute attention weights using multi-head attention

and update the context of CO problem (described next). In this

way, node representations are updated at every time step, and we
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Figure 2: Decision-making process of Temporal Decoder.

compute MHA based on new values computed at the current time

which allows to retain the current time step information without

suppression. We achieve superior results using this technique as

we can retain information about every time step.

(b) Context Embedding:The context embedding is used to iden-

tify the current state of a given problem (including the solution up to

now) at a decoding time step. This is obviously problem-dependent.

All the context embeddings are updated based on the current node

representation from the encoder output. To generalize the con-

text embedding to all the COs, a function 𝑓𝑐𝑛𝑥𝑡 : R
𝑁×𝑇×𝑁×𝐷ℎ

↦→

R
𝐾×𝐷ℎ+𝑒 is defined. 𝐾 and 𝑒 are problem-dependent.

𝐻𝐶,𝑡 = 𝑓𝑐𝑛𝑥𝑡 (𝐻 (𝐿)𝑡 , 𝑌𝑡 )
where 𝐻𝐶,𝑡 is the context embedding. Section 5.1 describes the

derivation of 𝐻𝐶,𝑡 for different dynamic COs.

(c) Multi-head and Log Probability Layer: Once we have

𝐻𝐶,𝑡 and 𝐻𝐷,𝑡 , we use the multi-head attention to combine the

context embedding with the current graph representation.

𝐻
(𝐹 )
𝐷,𝑡 = MHA(𝐻𝐶,𝑡 , 𝐻𝐷,𝑡 ) (7)

The log probabilities for each node are computed using another

weight vector, 𝑤𝑃 and we use tanh activation function. We clip

values beyond |𝐶 | similar to [3].

𝛾𝑡 = 𝑡𝑎𝑛ℎ(𝐻
(𝐹 )
𝐷,𝑡 .(𝑤𝑃.𝐻𝐷,𝑡 )

𝑇 ) (8)

Finally, a softmax layer is used to compute final probabilities for

each node, and the node with the highest probability is chosen as

the next node and added to solution sequence 𝑌 .

4.2 Training GTA-RL

As discussed in the introduction, the policy-gradient-basedmethods

achieve better results in COs. Thus, we use, REINFORCE, a policy-

gradient-based algorithm by [24] to train GTA network. First, we

define the performance measure (𝐽 (𝜃 |𝐺)) of dynamic CO (𝐺) using

objective function 𝑃𝑜𝑏 𝑗 (defined in Section 3) and using Equation

2, as 𝐽 (𝜃 |𝐺) = E𝑌∼𝜋𝜃 [𝑃𝑜𝑏 𝑗 (𝑌 |𝐺)]. Then, we can use the policy

gradient theorem to find the derivative of 𝐽 (𝜃 |𝐺).

∇𝜃 𝐽 (𝜃 |𝐺) = E
𝑌∼𝜋𝜃

[𝑃𝑜𝑏 𝑗 (𝑌 |𝐺)∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝑌 |𝐺))] (9)

This derivative can be used to update parameters of GTA-RL. How-

ever, due to the high variance results in Equation 9, a baseline is

used to accelerate the learning as below.

∇𝜃 𝐽 (𝜃 |𝐺) = E
𝑌∼𝜋𝜃

[(𝑃𝑜𝑏 𝑗 (𝑌 |𝐺) − 𝑏 (𝐺))∇𝜃 𝑙𝑜𝑔(𝜋𝜃 (𝑌 |𝐺))]

where 𝑏 (𝐺) is the baseline function independent of 𝑌 .
Two baselines can be used: critic baseline [15] and roll-out base-

line [8]. We experimented with both and found that using roll-out

baseline works better than critic baseline for the dynamic CO.

4.3 GTA-RL for Real-time COs

The architecture we described so far assumes all input features

of the problem instance are available beforehand. In real-time ap-

plications, all changes to the input features may not be available

before we make the decisions. To handle this type of problems,

we design the encoder to be iterative. At start, we only have the

first time step input features, that is 𝑥1 (defined in Section 3). As

there is no temporal information we encode 𝑥1 through the spatial

encoder and send it to the decoder. The encoder also buffers the

input 𝑥1. Then, we modify the temporal pointer of the decoder to

always points to the last time step of the embedded input features.

This operation results in pointing to the most recent embeddings

at every time step. Next, the decoder will select the first node for

the solution sequence as the action. Then, we get the input at the

next time step 𝑥2. We concatenate the previous input, 𝑥1, with the

current input, 𝑥2, and repeat the same process mentioned above.

The iterative architecture follows the same approach until we find

the complete solution.

In the iterative method, we cannot take the input features for the

entire time horizon. However, by buffering the previous inputs, the

model is able to gain knowledge about the transitions of input fea-

tures over time. Since it takes some time to obtain such knowledge,

the model may take more time before converging to a satisfactory

solution. Compared to our original implementation, the encoder

now encodes the input multiple times, thus increasing the memory

costs. This is an acceptable trade-off as real-time COs are more

difficult to optimize than dynamic COs.

The prediction/inference time of the real-time version is the same

as the inference time of the dynamic version. This is because, during
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the inference time, the neural network does not have to record

gradient operation values. Therefore, despite iterations through the

encoder, the inference time does not increase significantly, making

it suitable for real-time applications.

5 EXPERIMENTAL SETUP

5.1 Problems

Dynamic Travelling Salesman Problem (TSP): Given 𝑛 nodes/

points in the Euclidean space, and the objective is to find the order of

visiting all the nodes such that the total traveled distance is minimal.

In dynamic TSP, the initial node locations are assigned uniformly

at random between (0,0)-(1,1) in 2d-space. Then, at every time step,

the node locations are updated uniformly with maximum change

of 0.1 in coordinates. In this way, the cost of traveling between two

nodes is changing over time. Changing a node’s coordinates leads

to the changes of node features. Therefore, this scenario can be

easily generalized to any problem where node features change over

time such as in transport or telecommunication networks. For TSP,

the context embedding 𝐻𝐶 contains: the first selected node, the last

selected node and the graph embedding computed by summing up

all nodes at time 𝑡 as;

𝐻𝐶,𝑡 = {ℎ
(𝐹 )
𝑦0 | |ℎ

(𝐿)
𝑦𝑡 | |𝐻𝐺,𝑡 }

where 𝐻𝐺,𝑡 =
∑𝑁
𝑖=0 ℎ

(𝐿)
𝑡,𝑖

Dynamic Vehicle Routing Problem (VRP): VRP is one of the

most challenging CO problems. The conventional VRP contains

a set of 𝑛 nodes in Euclidean space and a vehicle with capacity 𝑐 .
Each node 𝑖 has demand 𝑑𝑖 of goods to satisfy and 𝑑𝑖 < 𝑐 for all

the nodes. Out of these 𝑛 nodes, one node is called a depot, and

the vehicle can visit the depot and fill goods until the load reaches

the capacity. Similar to the TSP, the node coordinates are updated

uniformly at random at every time step. However, in VRP, we do

not change the location of the depot to demonstrate a node that

is not changing over time. The objective is to find the minimum

distance that the vehicle needs to travel to satisfy the demands of

all the nodes. For VRP, the context embedding is the last selected

node embedding, the remaining capacity 𝑟 of the vehicle, and the

graph embedding is;

𝐻𝐶,𝑡 = {ℎ
(𝐿)
𝑦𝑡 | |𝑟 | |𝐻𝐺,𝑡 }

Real-time Versions: The real-time TSP/ VRP is similar to dy-

namic TSP/ VRP; however, only the node locations at a time step

are provided and the visited nodes order cannot be updated even if

a better order is found later on.

5.2 Parameter Settings

We now detail the hyper-parameters used. Following previous

works [8, 15], we test dynamic TSP and VRP with 10, 20, and 50

nodes. In GTA-RL, three layers of the temporal encoder are used,

and the hidden dimension 𝐷ℎ is 128. We use 12800 problem in-

stances during one epoch, and the batch is 32 instances. A total

of 50 epochs is used for the training. We use a learning rate of

1e-4. The Adam optimizer [14] is used to train the network. The

experiments were conducted in a machine consisting of an Intel

Xeon(R) processor with 24 GB RAM and an Nvidia GRID P40 GPU.

The hyper-parameters are the same for both VRP and TSP training.

The code base is built on top of the following code base 2 and is

available here 3.

5.3 Baselines and GTA-RL Variations

Our baselines include learning and hand-crafted heuristics, and

optimal solutions computed with Integer Programming.

• S2V-DQN: S2V-DQN uses structure2vec for graph encoding

and fitted Q-learning [7], and does not support VRP. There

are two variants. The last selected can be added to the end of

the tour (S2V-DQN-last) or to the middle of the tour where

the resulting distance is minimum (S2V-DQN-sorted).

• RNN-RL: RNN-RL uses policy-gradient with two recurrent

encoders named static and dynamic [18].

• AM: The model is limited to handle the a set of nodes [15],

and we use the initial locations of nodes as an input to the

model for dynamic cases. AM-D [20] extends this archi-

tecture to the VRP problem where changes from an agent

behaviour are taken into account.

• Gurobi: This is the optimal solution for both dynamic TSP

and VRP using the Gurobi solver. Computational times for

dynamic TSP and VRP are however significantly higher than

their static counterparts. Thus, we were only able to compute

Gurobi for TSP10, TSP20 and VRP10. Specialized solvers such

as Concorde do not support dynamic COs.

• Nearest Neighbor (NN): A modified version of NN is used

for dynamic TSP where the next node is selected based on

the distance to surrounding nodes, favouring closest nodes.

• Farthest Insertion (F-Insert): Similar to NN, we implement

a modified version of the Farthest Insertionmethod to handle

dynamic TSP as described in Kool et al.[15].

• Min-Max Ant Colony Optimization (MM-ACO): Ant

Colony Optimization is often used as a heuristic to solve TSP

problems [16]. A set of ants (agents) are deployed to find

tours by selecting nodes sequentially and based on the qual-

ity of the tour, the probability of node selections is updated

iteratively. Mavrovouniotis et al. [5] recently proposed a

modified version named Min-Max Ant Colony Optimization

to handle dynamic TSP. We use this version in our experi-

ments.

• GTA-RL-greedy is the standard GTA-RL, where the node

with the highest probability is greedily selected as the next

node.GTA-RL-bs uses beam search for node selection.GTA-

RL-sum uses a naive implementation of temporal decoder

described in Section 4.1.2 (which sums up the encoding over

the time axis). GTA-RL-(0) uses the first time step of the

encoder output. GTA-RL-rt is the real-time GTA-RL.

6 EXPERIMENTAL RESULTS

First, we compared GTA-RL with the baselines for dynamic TSP

and VRP w.r.t quality and generalization. Then, we analyse GTA-

RL-variations to justify the architecture choices.

2https://github.com/wouterkool/attention-learn-to-routecode base
3https://github.com/udeshmg/GTA-RL
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6.1 Dynamic TSP and VRP

Dynamic TSP (10, 20, 50): Figure 3a, 3b and 3c show the average

tour length for the validation data set achieved by each algorithm

with 10, 20, and 50 nodes. The learning-based methods, S2V-DQN-

last, RNN-RL, AM, are not able to find satisfactory solutions, which

shows that these are unsuitable for dynamic CO despite them be-

ing applicable to the static settings. S2V-DQN-sorted achieves a

significantly lower tour length compared to S2V-DQN-last. This is

because S2V-DQN-sorted is able to change the order of the selection

process once it sees the dynamic changes. This shuffle however is

impossible in a real-time setting where the selected node cannot be

updated. As evident from Figure 3c, due to the increase in dynam-

icity of node locations in larger graphs, S2V-DQN-last, RNN-RL,

AM achieve a lower performance and they are not able to find good

solutions for larger graphs.

GTA-RL-greedy beats the other baseline algorithms. Employing

a beam search strategy, GTA-RL-bs achieves a lower average tour

length as the beam search can shuffle the final possible outcomes for

further optimization. Note that the GTA-RL-greedy solution is not

far from GTA-RL-bs(10) (which is the beamwidth of 10), indicating

the high-quality solution even with the greedy strategy.

One could argue that GTA-RL can have an unfair advantage over

S2V-DQN-last because the S2V-DQN works in a real-time fashion

where future inputs are not taken into account. The rationale is

justified with the results of GTA-RL-rt which considers the problem

as a real-time problem. As depicted in Figure 3b, GTA-RL-rt is able

to achieve a much shorter tour length compared to S2V-DQN-last.

This highlights the effectiveness and flexibility of our approach.

The non-learning-based solutions, NN and MM-ACO, are able to

find reasonable solutions as these baselines are designed to solve

dynamic problems. However, GTA-RL-bs clearly outperforms these

baselines. This is because GTA-RL is able to find a better order

by avoiding sub-optimal spatial locations (i.e., avoiding time steps

when visiting some nodes may incur high cost) and visiting those

nodes at time steps when the cost is low (refer to Appendix A for

visualization). This demonstrates that GTA-RL has been able to

learn spatial-temporal features jointly.

By comparing the optimal controller Gurobi with GTA-RL-bs(10)

from Figure 3a and 3b, the tour length is quite close to the optimal

solution, with only 8% and 10% gap. As explained before, the com-

plexity of dynamic COs makes it much harder to find a heuristic

solution compared to the static scenario, making 10% gap acceptable.
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Problem
GTA-RL trained

with 50 nodes

GTA-RL trained

with 20 nodes
Gap

TSP50 8.17 8.48 3.6%

VRP50 13.12 13.71 4.3%

Table 1: Tour length of Dynamic TSP50 and Dynamic VRP50

from GTA-RL trained with networks with 20 and 50 nodes.

Our objective is not to beat an optimal optimizer, but to propose a

heuristic for efficiently solving the dynamic CO problems. This is

important because Gurobi takes around 900s to solve one instance,

while GTA-RL ran with the same computational resources only

takes around 0.45s (the inference time) with beam search to solve a

batch of 100 problem instances.

Dynamic VRP (10, 20, 50): For dynamic VRP, we observe a

trend similar to the trend shown in TSP results, as depicted in Figure

3d, 3e and 3f. GTA-RL-bs(10) manages to achieve the shortest tour

length. All the GTA-RL variations outperform the other learning-

based baselines, and the performance of GTA-RL-rt is on par with

GTA-RL-greedy. The results from GTA-RL variations demonstrate

that our proposed architecture can handle both dynamic TSP and

dynamic VRP. We should also note that the optimal gap (of around

12%) is similar to that achieved in TSP, being slightly higher due to

the increased VRP complexity.

6.2 GTA-RL Variations

We now demonstrate the impact of temporal encoder and temporal

pointer. In Figure 4, all the variations of GTA-RL achieve a lower

tour length compared to AM, due to temporal encoder’s ability to

encode the temporal information. Even though GTA-RL-greedy,

GTA-RL-sum, GTA-RL-(0) all use the same encoder, they use differ-

ent decoders. As we explained, GTA-RL-sum and GTA-RL-(0) do not

use the temporal decoder and naively compute a fixed embedding

from the encoding output. These two are outperformed by GTA-RL-

greedy, which shows the benefit of the temporal decoder. GTA-RL-rt

achieve a slightly higher tour length than GTA-RL-greedy because

GTA-RL-rt, at its first-time step, takes the decision only based on

the current time step node features. Since node features are chang-

ing uniformly at random, GTA-RL-rt cannot guarantee that the

selected node will be the best given that they can change externally

in the future.

6.3 Generalization

We now demonstrate that GTA-RL can generalize to larger graphs

beyond those used for training. We first compute the tour length

for a set of graphs with 50 nodes by GTA-RL trained originally with

a set of graphs with 20 nodes. Then, for comparison, we compute

the tour length for the same set of graphs originally trained for

graphs with 50 nodes. These results are shown in Table 1. In both

cases (dynamic TSP50 and VRP50), the tour length achieved by

GTA-RL trained with 20 nodes is close to GTA-RL trained with 50

nodes with only around 3% of discrepancy. This shows that GTA-RL

can generalize for much larger graphs than originally trained for.

Despite scalability being an open problem in the neural CO domain,

this is a highly promising result.

Algorithm 10 20 50

Brute-force 12.75 22.62 75.07∗

GTA-RL-bs(10) 13.72 27.64 71.706

MM-ACO 17.42 30.82 79.40

NN 17.20 31.05 76.06

Table 2: Travel time (in minutes) in Melbourne CBD for a

different number of locations to visit (10, 20 and 50). *Due to

the large number of combinations, the brute-force algorithm

has not been able to find the optimal solution.

6.4 Real-world Map

We use an area of Melbourne CBD to evaluate the TSP algorithms

similar to the setup used in Xu et al. [29]. We picked a central area

of CBD which consists of 98 nodes and 174 edges. We assume that

there is a delivery person who needs to deliver packages to 10, 20

or 50 locations. We change the travel time between the locations

over time as a percentage of the free-flow-travel time to account

for the dynamic changes in the travel time. Then, we input these

travel times into algorithms to find a delivery order to visit all

the locations. The actual total travel time is then computed by

summing up the shortest travel times between adjacent nodes in

the order. We select best-performing algorithms from Section 6.1

(GTA-RL-bs(10), MM-ACO and NN). The above discussed approach

provides approximate solutions over the original road graph for

dynamic TSP assuming that there is a direct link between the nodes

a delivery person is going to visit. To find the optimal solution in

the original graph, we use a brute-force approach. Using Gurobi

to find the solution is not feasible in the actual graph due to the a

large number of nodes. The brute-force approach tries a different

order of locations and finds the lowest total travel time. Due to

the high computational time of the brute-force algorithm, we use a

time limit of 1 hour to solve one instance.

Table 2 shows the travel time for algorithms tested on the Mel-

bourne CBD graph. GTA-RL is able to find a lower travel time

compared to MM-ACO or NN. This shows that GTA-RL performs

better even on real-world graphs. The brute-force algorithm cannot

find the optimal solution in an acceptable time, when there is a

large number of locations. In contrast, GTA-RL finds the solution

in less than one second. This result shows that GTA-RL can be used

for real-world road graphs to find close to optimal solutions in an

acceptable time window.

7 CONCLUSION

In this work, we propose an effective and efficient learning-based

method to solve dynamic CO problems, which is crucial when

applying CO to real-world applications. We evaluate our method by

comparing it with several state-of-the-art approaches and show that

our approach substantially outperforms both learning-based and

hand-crafted heuristics and is on par with the optimal controller in

the dynamic CO domain.

There are several interesting directions of future work. First,

scalability is an open problem in the neural CO domain and Sec-

tion 6.3 provides promising results towards this direction and can

be investigated further. Second, our real-time encoder encodes at
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every time step, thus can be memory expensive and this can be

investigated further to store and process data more efficiently. Fi-

nally, dynamic CO is much harder than static CO; thus, proposing

learning heuristics that are close to the optimal is much more chal-

lenging. As this is a first step in learning heuristics for dynamic CO,

we hope to reduce the optimal gap using local search in our future

research.
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A VISUALIZING THE DYNAMIC TSP

The visualization in Figure 5 shows two scenarios of dynamic TSP

with 10 nodes. The two scenarios are randomly generated as de-

scribed below. In each sub-figure in Figure 5, there are 10 nodes

that are assigned uniformly at random in the euclidean space. Then,

at every time step, the node locations (XY coordinates) are updated

uniformly at random for each node with a maximum change of 0.1.

In this way, the travelling cost between nodes changes over time.

There are 10 different colours to represent each of the 10 nodes.

The dots in the same colour refer to different positions in the same

node at different time steps. A solution for dynamic TSP needs to

visit each node only once in a time step i.e. only one dot from the

same colour needs to be selected in a solution. The objective is

to visit all the nodes (exactly once) with a minimum tour length.

We visualize the tours computed by Gurobi (optimal solver), GTA-

RL (our proposed solution), NN and MM-ACO (refer to Section

5.3 for the definitions of these baselines) for dynamic TSP 10 in.

are The first scenario is a relatively easier scenario compared to

the second scenario. In the first scenario, GTA-RL has achieved

the optimal results like the Gurobi solver. NN and MM-ACO have

yielded a longer route compared to Gurobi and GTA-RL. In the sec-

ond scenario, GTA-RL finds the closest tour length to the optimal

solution compared to MM-ACO and NN. The interesting thing we

can observe is that when GTA-RL was selecting nodes, GTA-RL

has selected time steps when the node locations are close to each

other which reduces the tour length by avoiding far away node

locations. The same behaviour (where far away nodes have been

avoided) is observed with the optimal solver, as seen in both Figure
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(a) Gurobi (Optimal Solution) (b) GTA-RL-bs (c) Nearest Neighbor (d) MM-ACO

(i) Scenario One

(e) Gurobi (Optimal Solution) (f) GTA-RL-bs (g) Nearest Neighbor (h) MM-ACO

(ii) Scenario Two

Figure 5: Figure shows the order of selected nodes by Gurobi, GTA-RL, NN and MM-ACO for dynamic TSP with 10 nodes. The

dots with the same color indicates the same city locations at different time steps. The algorithms select to visit a node in

one time step which has been highlighted by a dot larger than other nodes in the same color. X, Y axes represent Cartesian

coordinates.

5e and Figure 5f. This shows that GTA-RL has learned a heuristic

similar to the behaviour of the optimal solver. However, NN in

particular in the second scenario does not perform well because

simply selecting the nearest neighbour is not sufficient when there

are multiple locations in the same region as observed in the bottom

of Figure 5g. MM-ACO achieves a lower tour length compared to

NN by avoiding such drawbacks, however, it also fails to avoid dis-

tant nodes. This shows that GTA-RL has learned a better heuristic

than NN and MM-ACO. GTA-RL has been able to understand both

spatial and temporal features of the problem.

Advantages of GTA-RL over Other Heuristics: The objec-

tive of neural combinatorial optimization is to find a heuristic for

CO, without manual feature engineering. GTA-RL provides such a

heuristic. As we have shown in our experiments, GTA-RL performs

better than other heuristics. Other heuristics are usually designed

by manual feature engineering and domain experts specific to a

problem. These may not explore all the important features while

designing the heuristic and especially designing such a heuristic in

a dynamic setting is even more challenging. GTA-RL can learn these

type of features automatically using a large number of examples

during the training. Thus, GTA-RL can even iterate through differ-

ent features automatically and pick the best features to solve the

given problem. This is different from using a solution such as NN

that only explores the nearest nodes as a manual feature as evident

from our visualizations above. Furthermore, GTA-RL does not use

a problem-specific architecture but a general architecture which

allows GTA-RL to learn more than one combinatorial problem. In

other words, GTA-RL can perform sequential decision making for

multiple problems.

B DEEP LEARNING AND REINFORCEMENT
LEARNING IN COMBINATORIAL
OPTIMIZATION

We first provide a general overview of Neural Combinatorial Op-

timization domain, then provide more insights into how GTA-RL

solves dynamic TSP.

B.1 Deep Learning over Graphs

A core factor in the success of deep learning compared to other

machine learning techniques is the ability of deep neural networks

to represent a problem/set of features using a low dimensional

vector (called embedding). This type of embedding is able to cap-

ture all the necessary information about a problem. Such learned

embedding then can be used to make predictions or other decision-

making. This is also known as representation learning. However,

these types of deep neural networks were used often with struc-

tured data with fixed sizes. Embedding graphs is more challenging

because of the graphs’ unstructured nature, the variable number of



SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Gunarathna, et al.

nodes in graphs and the difficulty of embedding the spatial features.

With new neural network architectures, researchers were able to

learn representations for unstructured data overcoming above men-

tioned challenges. Example neural networks include LSTM-based

neural networks, RNN-based neural networks, attention networks

and message passing neural networks. These architectures can em-

bed the variable-length nodes in graphs while taking the adjacency

matrix into account. Thus, these neural networks were able to com-

pute a vector representation of graphs, which has shown impressive

results in several graph-based problems.

B.2 GTA-RL for Combinatorial Optimization

We provide insights into why GTA-RL is successful in the dynamic

CO domain, such as in solving TSP problems.

Embedding the Temporal Graph: The first step in GTA-RL is

encoding the graph along with the dynamic information using the

temporal encoder. The temporal encoder is able to learn a good rep-

resentation of vectors to preserve the dynamic and spatial features

of the given problem instance. This is because the temporal encoder

contains two attention mechanisms, one for spatial data and one

for temporal data. The spatial attention layer considers each node

(for a given time step) in the graph as a sequence and computes

the inter-dependency between these nodes using self-attention.

During the self-attention, computations dependency between each

node with each other node is considered. This can be thought of

as a message-passing between nodes. Thus the output from the

spatial attention layer contains a representation (a vector) for each

node which includes the information about neighbouring nodes

as well. Thus, this process avoids manual feature engineering and

allows the neural network to learn a representation for the graph.

Similarly, in the temporal dimension, using the same mechanism,

the neural network finds a representation for each node consider-

ing its previous and future changes. Once we have learned both

representations, we combine these two representations using the

integration layer. The output is a representation for each node at

every time step. This representation for each node at a given time

step will contain information about the neighbouring nodes as well

as information about the previous and future changes of that node.

At the end of this process, we encode the entire unstructured graph

instance into a vector representation and this vector representation

contains all information about the problem and we use it for the

decision making process. For better understanding of our method,

we focus on using GTA-RL in solving TSP problems, where all the

node locations and their changes are represented so that we can use

the representation to find a tour to minimize the travel distance.

Decoding the Solution: Once the temporal encoder encodes

the problem, the next step is to sequentially decode the solution

using the encoder’s output. In GTA-RL, the decoder computes the

context embedding which is used to aid the decoding process. When

GTA-RL is used for solving in TSP, the context embedding uses

the graph embedding, the embedding of the first node selected on

the tour and the embedding of the last node selected up to now.

This information is critical for selecting the next node compared to

information about nodes in the middle of the sequence decoded up

to now. Thus, using context embedding rather helps the decoder to

focus on important information from the output of the temporal
encoder. Further, GTA-RL can use a temporal pointer to focus on

specific parts of the temporal encoder output to handle dynamic

information.

We use a modified version of REINFORCE algorithm to train the

GTA-RL in solving TSP. The REINFORCE algorithm learns the best

tour in an iterative manner. For each training iteration, the total

tour length is computed for completed tours. The total length of

tours is used as the training cost in the GTA-RL network for training.

At every iteration, the GTA-RL network’s parameters are adjusted

to result in lower tour lengths. Thus, we adjust the parameters of

both the temporal encoder and decoder to reduce the tour length.

Thus the vector embedding learned by both the temporal encoder

and temporal decoder are optimized to reduce the tour length.


