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1. Introduction

Multi-armed bandits have undergone a renaissance in machine learning research
(Slivkins, 2019; Lattimore and Szepesvári, 2020) with a range of deep theo-
retical results discovered, while applications to real-world sequential decision
making under uncertainty abound, ranging from news (Li, Chu, Langford and
Schapire, 2010) and movie recommendation (Qin, Chen and Zhu, 2014), to
crowd sourcing (Tran-Thanh, Stein, Rogers and Jennings, 2014) and self-driving
databases (Perera, Oetomo, Rubinstein and Borovica-Gajic, 2021; Marcus, Negi,
Mao, Tatbul, Alizadeh and Kraska, 2020). The relative simplicity of the stochas-
tic bandit setting, as compared to more general partially-observable Markov de-
cision processes (POMDPs), typically admits regret analysis where bandit learn-
ers enjoy bounded cumulative regret—the gap between a learner’s cumulative
reward to time T and the cumulative reward possible with a fixed but optimal-
with-hindsight policy. While many bandit learners are celebrated for attaining
sublinear regret or average regret converging to zero, such long-term performance
goals say little about the short-term performance of today’s popular bandit al-
gorithms.

Indeed the bandit setting is well known to be the simplest Markov deci-
sion process setting to require balancing of exploration—attempting infrequent
actions in case of higher-than-expected rewards—with exploitation—greedy se-
lection of actions that so far appear fruitful. Even in the stochastic setting, where
rewards are drawn from stationary (context conditional) distributions, the un-
derlying distributions are unknown and considered adversarially chosen. In other
words, there’s no free lunch (in the worst case) without significant exploration
in early rounds.

The relatively poor early round performance of bandit learners is known as
the cold start problem, and can be costly in high-stakes domains. Li et al. (2010)
suggested that bandit learners be warm started or pre-trained somehow prior to
such deployment, in the context of online media recommendation and advertising
where poor performance leads to user dissatisfaction and financial loss. However
little systematic research has explored the cold start problem. Intuitively, warm
start is related to transfer learning (Cao, Pan, Zhang, Yeung and Yang, 2010) and
domain adaptation (Csurka, 2017) while Shivaswamy and Joachims (2012) pro-
posed warm-starting methods for non-contextual bandits and Zhang, Agarwal,
Daumé III, Langford and Negahban (2019) modify any bandit policy to make use
of pre-training from (batch) supervised learning via manipulation of the policy’s
importance sampling and weighting, which determines the relative importance
of one data (x, y) over the other data—ultimately resulting in a weighted linear
regression. Another work by Li, Xie, Lin and Lui (2021) employs virtual plays
before committing to an action in every round, which implicitly assumes that
the existing logged data is perfectly aligned with the unknown bandit data. A
similar assumption is made implicitly by Bouneffouf, Parthasarathy, Samulowitz
and Wistub (2019), who combine prior historical observations and clustering in-
formation. Other works have proposed approaches to the item-user cold-start
problem, such as that proposed by Wang, Wang, Wang and He (2017), who
passively assign a user to each item on top of the usual bandit which selects
an item for a user. The warm-start problem is also related to the conservative
bandit problem, where the usual bandit setting applies under the existence of
a baseline policy and a performance constraint (Kazerouni, Ghavamzadeh, Ab-
basi Yadkori and Van Roy, 2017). This paper advocates for Thompson Sampling
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(TS) (Thompson, 1933) as a natural framework for warm start bandits. Al-
though the prior used in Thompson Sampling can be misspecified, as discussed
by Liu and Li (2015), our extension to the LinTS contextual bandit not only
affords more flexible forms of warm start, but quantifies prior uncertainty, and
admits regret analysis. Furthermore, this idea can be extended into other bandit
algorithms, such as ϵ-greedy and LinUCB.

Flexibility in warm start is paramount, as not all settings requiring warm start
will necessarily admit prior supervised learning as assumed previously (Zhang
et al., 2019). Indeed, bandits are typically motivated when there is an absence
of direct supervision, and only indirect rewards are available. Our framework
offers unprecedented flexibility. We advocate that prior knowledge could come
from: bandit learning on a previous, related task; domain expert knowledge or
knowledge extracted from a rule-based, non-adaptive baseline system; or indeed
prior supervised learning.

We introduce a new motivation for warm start bandits from the database
systems domain. Database indices, a data structure used by database manage-
ment systems to execute queries more rapidly, may be formed on any combi-
nation of table columns. Unfortunately the best choice of index depends on
unknown query workloads and potentially unstable system performance. Offline
solutions to index selection have been the foundations of the automated tools
provided by database vendors (Agrawal, Chaudhuri, Kollár, Marathe, Narasayya
and Syamala, 2004; Zilio, Rao, Lightstone, Lohman, Storm, Garcia-Arellano and
Fadden, 2004; Dageville, Das, Dias, Yagoub, Zäıt and Ziauddin, 2004). Recog-
nising that database administrators cannot practically foresee future database
loads, online solutions, where the choice of the representative workload and the
cost-benefit analysis of materialising a configuration are automated, have been
proposed (Schnaitter, Abiteboul, Milo and Polyzotis, 2007; Sattler, Schallehn
and Geist, 2004; Bruno and Chaudhuri, 2007; Bruno and Chaudhuri, 2006; Das,
Grbic, Ilic, Jovandic, Jovanovic, Narasayya, Radulovic, Stikic, Xu and Chaud-
huri, 2019; Ma, Van Aken, Hefny, Mezerhane, Pavlo and Gordon, 2018). Unfor-
tunately most such approaches lack any form of performance guarantee. Recent
work has demonstrated compelling potential for linear bandits for index selec-
tion (Perera et al., 2021) complete with regret bound guarantees, however the
cold start problem is likely to limit deployment as vendors and users alike may
be concerned about out-of-box performance. We demonstrate that a warm start
bandit can deliver strong short-term improvement for database index selection
without costing long-term results.

In summary, this paper makes the following contributions:

– We propose a framework for warm starting contextual bandits based on LinTS
and extend our technique to ϵ-greedy and LinUCB;

– Unlike past efforts to warm-start bandit learners, which strictly apply to su-
pervised learning only, our Warm Start Linear Bandit seen in Algorithms 2, 3
and 4 can incorporate prior knowledge from any form of prior learning, such
as: supervised learning (Zhang et al., 2019), prior bandit learning, or manual
construction of a prior by a domain expert. Notably our warm start approach
incorporates uncertainty quantification;

– We introduce a method to automatically tune the hyperparameters used in
Algorithms 2, 3 and 4;

– We present regret bounds for Warm Start LinTS and LinUCB that demon-
strate sublinear regret for long-term performance;
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– Experiments on database index selection (using data derived from standard
system benchmarks), classification task data and synthetic data demonstrates
performance improvement in the short term with performance competitive
with baselines (where such baselines are able to be run); and

– We have expanded experiments to demonstrate the effect of increased pre-
training on the performance in both accurate and misspecified settings.

2. Background: Contextual Bandits and Linear Thompson
Sampling

The stochastic contextual multi-armed bandit (MAB) problem is a game pro-
ceeding in rounds t ∈ [T ] = {1, 2, . . . , T}. In round t the MAB learner,

1. observes k possible actions or arms i ∈ [k] each with adversarially chosen
context vector xt(i) ∈ Rd ;

2. selects or pulls an arm it ∈ [k];

3. observes random reward Rit(t) for the pulled arm it, where each Ri(t) | xt(i) ∼
Pi|xt(i) independently over i ∈ [k], t ∈ [T ].

The MAB learner’s goal is to maximise its cumulative expected reward—the
total expected reward over all rounds—which is equivalent to minimising the
cumulative regret up to round T :

Reg(T ) =

T∑
t=1

E
[
Ri⋆t

(t) | xt(i
⋆
t )
]
− E [Rit(t) | xt(it)] ,

where i⋆t ∈ argmaxi∈[k]E [Ri(t) | xt(i)], that is, an optimal arm to pull at round

t. When a MAB algorithm’s cumulative regret Reg(T ) is sub-linear in T , the
average regret Reg(T )/T goes to zero. Such an algorithm is said to be a “no
regret” learner or Hannan consistent.

Thompson Sampling (TS), a Bayesian approach within the family of ran-
domised probability matching algorithms, is one of the earliest design patterns
for MAB learning (Thompson, 1933). Each modeled arm’s reward likelihood is
endowed with a prior. Arms are then pulled based on their posteriors: e.g., pa-
rameters for each arm can be drawn from the corresponding posteriors, and then
arm selection may proceed (greedily) by maximising reward likelihood.

Linear Thompson Sampling (LinTS) (Agrawal and Goyal, 2013; Abeille,
Lazaric et al., 2017) is an algorithm with sub-linear cumulative regret, when
the context-conditional reward satisfies a linear relationship

rt(it) = Rit(t) | xt(it) = θT
⋆ xt(it) + ϵt(it) ,

where additive noise ϵt(it) is conditionally R-subgaussian and θ⋆ ∈ Rd is an
unknown vector-valued parameter shared among all of the k arms.

Like most approaches to linear contextual bandit learning, LinTS adopts
(online) ridge regression fitting for estimating the unknown parameter. For any
regularisation parameter λ ∈ R+, define the matrix Vt as

Vt = λI +

t−1∑
s=1

xs(is)x
T
s (is) . (1)
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Algorithm 1 Linear Thompson Sampler

1: Input: θ̂1, λ, δ, T
2: Initialize V1 ← λId, δ

′ = δ
4T , b1 ← 0

3: for t = 1, . . . , T do
4: Sample ηt ∼ DTS

5: θ̃t ← θ̂t + βt(δ
′)V

−1/2
t ηt {perturbed parameter}

6: it ← s ∈ argmaxi∈[k] θ̃
T
t xt(i) {optimal arm}

7: Pull arm it and observe reward rt(it)
8: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (1)}

9: bt+1 ← bt + rt(it)xt(it)

10: θ̂t+1 ← V −1
t+1bt+1 {update Eq. (2)}

11: end for

Then Abeille et al. (2017) demonstrated that we can estimate the unknown
parameter θ⋆ as

θ̂t = V −1
t

t−1∑
s=1

xs(is)rt(is) . (2)

Earlier versions of LinTS (Agrawal and Goyal, 2013) do not include a tunable
regularisation parameter.

A result due to Abbasi-Yadkori, Pál and Szepesvári (2011) is used within
LinTS. Assuming ∥θ⋆∥ ≤ S, then with probability at least 1− δ ∈ (0, 1):

∥θ̂t − θ⋆∥Vt
≤ βt(δ) ,

βt(δ) = R

√
2 log

det(Vt)1/2 det(V1)−1/2

δ
+
√
λS .

In Thompson Sampling, we may introduce a perturbation parameter ηt ∈ Rd,

which, after rotation and scaling by the inverse square root of the matrix V
−1/2
t ,

and scaling by oversampling factor βt(δ
′), promotes exploration around the point

estimate θ̂t:

θ̃t = θ̂t + βt(δ
′)V

−1/2
t ηt .

Moreover, Abeille et al. (2017) have shown, that if ηt follows distribution DTS

with the following properties:

1. There exists p > 0 such that, for all ∥u∥ = 1 we have Pη∼DTS (uTη ≥ 1) ≥ p;
and

2. There exist positive constants c and c′ such that, for all δ ∈ (0, 1) we have the

inequality Pη∼DTS

(
∥η∥ ≤

√
cd log c′d

δ

)
≥ 1− δ ,

then LinTS is Hannan consistent. We adopt a standard multivariate Gaussian
for ηt which satisfies the above properties (Abeille et al., 2017). With all of these
definitions in mind, the version of LinTS used in this paper can be summarised
as shown in Algorithm 1.
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3. Warm Starting Linear Bandits

We now detail our flexible algorithmic framework for warm starting contextual
bandits, beginning with Linear Thompson Sampling for which we derive a new
regret bound.

3.1. Thompson Sampling

Given the foundation of Thompson Sampling in Bayesian inference, it is natural
to look to manipulating the prior as a means to injecting a priori knowledge of
the reward structure before the bandit is put into operation. The Algorithm 1
implementation of LinTS due to Abeille et al. (2017) decomposes the prior and

posterior distributions on θt as a Gaussian centred at the point estimate θ̂t with
covariance based on oversampling factor βt(δ

′) and the matrix Vt via the random
perturbation vector ηt. Our approach to warm start is to focus on manipulating

the initial point estimate θ̂1 and the matrix V1 to incorporate available prior
knowledge into LinTS.

Remark 1. Although Algorithm 1 appears to offer the freedom to select any θ̂1,
Equations (1) and (2) do not present an immediate route to adapting subsequent

point estimates θ̂t. Generalising Equation (2) to point estimate θ̂t = V −1
t (λθ̂1+∑t−1

s=1 xs(is)rt(is)) is unintuitive and does not clearly admit regret analysis.

We adopt an intuitive approach of adapting Algorithm 1 to model the differ-
ence between an initial guess derived from some process occurring before bandit
learning, and the actual parameter. This pre-deployment process could be
batch supervised learning, an earlier bandit deployment on a related
decision problem, or simply a prior manually constructed by a domain
expert. Our general framework is completely agnostic and generalises
earlier approaches to warm-starting bandits such as (Zhang et al., 2019). With-
out loss of generality we refer to this earlier process as the first phase and the
basis for which initial parameters are designed as the first phase dataset. Let
θ⋆ = µ⋆ + δ̄⋆, where µ⋆ is the true parameter of the first phase dataset and δ̄⋆
represents the concept drift between first phase and bandit deployment. With
this reparametrisation, our linear model becomes:

rt(it) = θT
⋆ xt(it) + ϵt(it) = (µ⋆ + δ̄⋆)

Txt(it) + ϵt(it)

rt(it)− µT
⋆ xt(it) = δ̄T⋆ xt(it) + ϵt(it)

yt(it) = δ̄T⋆ xt(it) + ϵt(it) .

Therefore, our problem has reduced from estimating θ⋆ to estimating δ̄⋆.
Consider a Bayesian linear regression model with the unknown true value of

first phase dataset µ⋆ modeled by random variable µ ∼ N (µ̂,Σµ) with conjugate
context-conditional Gaussian likelihood. We then model the difference parameter
δ̄⋆ as δ̄ ∼ N (0, α−1I). If θ = µ + δ̄ is the random variable modelling θ⋆, then
θ ∼ N (µ̂,Σµ + α−1I) owing to the Gaussian’s stability property. Finally, since
µ̂ is known, we can model θ as θ = µ̂+ δ, that is, a random variable centred at
µ̂ which is shifted by drift δ ∼ N (0, (Σµ + α−1Id)).

We next generalise the coupled recurrence Equations (1) and (2) for efficient
incremental computation of the generalised posterior estimates.
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Proposition 1. Consider linear regression likelihood yi = θTxi + ϵi, where
ϵi ∼ N (0, R2), and prior θ ∼ N (0,V −1

1 ). Then the posterior conditioned on data

zi = (xi, yi) for i ∈ [t] is given by N (θ̂t+1, R
2V −1

t+1) where θt point estimates are
defined by Equation (2), and we replace Equation (1) for Vt with

Vt = R2V1 +

t−1∑
s=1

xs(is)x
T
s (is) , (3)

where R2 is the variance of the measurement noise.

Proof. The posterior distribution is:

p(θ | y1, · · · , yn)

∝ exp

{
−1

2

[
n∑

i=1

(
yi − θTxi

R

)2

+ θTV1θ

]}

∝ exp

{
−1

2

[
θT

(
1

R2

n∑
i=1

xix
T
i

)
θ − 2

R2
θT

n∑
i=1

yixi + θTV1θ

]}

= exp

{
−1

2

[
θT

(
V1 +

1

R2

n∑
i=1

xix
T
i

)
θ

−θT

(
1

R2

n∑
i=1

yixi

)
−

(
1

R2

n∑
i=1

yixi

)T

θ

 .

To avoid clutter, let V̄n+1 = V1 + 1
R2

∑n
i=1 xix

T
i and b̄n+1 = 1

R2

∑n
i=1 yixi.

Therefore, our posterior distribution can be rewritten as

p(θ | y1, · · · , yn)

∝ exp

{
−1

2

[
θT V̄n+1θ − θT b̄n+1 − b̄Tn+1θ

]}
∝ exp

{
−1

2

[
θT V̄n+1θ − θT V̄n+1V̄

−1
n+1b̄n+1 − b̄Tn+1V̄

−T
n+1V̄n+1θ

+ b̄Tn+1V̄
−T
n+1V̄n+1V̄

−1
n+1b̄n+1

]}
=exp

{
−1

2

(
θ − V̄ −1

n+1b̄n+1

)T
V̄n+1

(
θ − V̄ −1

n+1b̄n+1

)}
,

which is proportional to N (V̄ −1
n+1b̄n+1, V̄

−1
n+1). Therefore, our estimator for θ

would be

θ̂n+1 = V̄ −1
n+1b̄n+1 = V −1

n+1bn+1 ,

where we have defined

Vn+1 = R2V1 +

n∑
i=1

xix
T
i , bn+1 =

n∑
i=1

yixi .

This completes the proof.

Our approach comes with an appealing interpretation when setting δ̄ ∼
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N (0, α−1I): when we are confident that our pre-training guess is very close
to the true parameter, we can set drift α−1 to be very small and close to 0. How-
ever, when we are not as confident, α−1 is naturally set large. Large α−1 creates
more “deviation” or error from our first phase parameter µ⋆. This suggests a
promising new direction which we highlight in future work Section 6.

Our simple reduction of warm start bandit learning to LinTS admits a regret
bound. We follow the pattern of the regret analysis of Abeille et al. (2017) with
differences detailed next.

Observe first that ∥θ̂t − θ⋆∥Vt
= ∥(θ̂t − µ̂) − (θ⋆ − µ̂)∥Vt

= ∥δ̂t − δ⋆∥Vt
≤

βt(δ
′). Accordingly the argument yielding the confidence ellipsoid βt(δ

′) stated

in (Abbasi-Yadkori et al., 2011, Theorem 2) bounding ∥θ̂t−θ⋆∥Vt applies in our
case, whose full proof of its modification can be found in the Appendix. However,
as our initial matrix V1 generalises λI, we must alter the penultimate proof step
of Abeille et al. (2017) as follows:

– the inequality proposed by Abbasi-Yadkori et al. (2011) which is used to define
βt(δ) in their paper is not valid in our scenario. This is corrected by using
the version of βt(δ) presented in this paper, removing the assumption that
V1 = λ

R2 I and leave it in terms of V1:

R

√
2 log

det(Vt)1/2 det(R2V1)−1/2

δ
+
√

λmax(R2V1)S

– the inequality of (Abeille et al., 2017, Proposition 2) is no longer valid in
our case. However, the last inequality in (Oetomo, Perera, Borovica-Gajic and
Rubinstein, 2019) has modified (Abeille et al., 2017, Proposition 2) into:

t∑
s=1

∥xs∥2V −1
s
≤ 2 log

(
det(Vt+1)

det(R2V1)

)
and hence serves our purpose; and

– in proving (Abeille et al., 2017, Theorem 1) the authors used the fact that
V −1
t ≤ 1

λI. This is not the case in our setting, but we can generalise the

result with similar reasoning yielding V −1
t ≤ 1

λmin(R2V1)
I, where λmin(R

2V1)

denotes the minimum eigenvalue of the matrix R2V1.

We also need to change the definition of S, since our problem has shifted from es-
timating θ to estimating δ. Therefore, after modifying the framework, the Warm
Start Linear Thompson Sampling bandit can be summarised as in Algorithm 2,
and admits the following regret bound.

Theorem 2 (Warm Start LinTS Regret Bound). Under the assumptions that:

1. ∥x∥ ≤ 1 for all x ∈ X ;
2. ∥δ∥ ≤ S for some known S ∈ R+; and

3. the conditionally R-subgaussian process {ϵt}t is a martingale difference se-
quence given the filtration Fx

t = (F1, σ(x1, r1, · · · , rt−1,xt)) with F1 denoting
any information on prior knowledge,

along with the definition of DTS given in Section 2, then with probability at least
1− δ, with δ′ = δ/(4T ) and γt = βt(δ

′)
√

cd log((c′d)/δ), the regret of LinTS can
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Algorithm 2 Warm Start Linear Thompson Sampler

1: Input: µ̂, α,Σµ, δ, T,R

2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)
−1,

δ′ ← δ
4T , b1 ← 0

3: for t = 1, . . . , T do
4: Sample ηt ∼ DTS

5: θ̃t ← µ̂+ δ̂t + βt(δ
′)V

−1/2
t ηt {perturbed parameter}

6: it ← s ∈ argmaxi∈[k] θ̃
T
t xt(i) {optimal arm}

7: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
8: yt(it)← rt(it)− µ̂Txt(it)
9: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

10: bt+1 ← bt + yt(it)xt(it)

11: δ̂t+1 ← V −1
t+1bt+1 {update Eq. (2)}

12: end for

be decomposed as

Reg(T ) = RTS(T ) +RRLS(T ) ,

with each of the term bounded as

RTS(T ) ≤ 4γT (δ
′)

p

(√
2T log

det(Vt+1)

det(R2V1)
+

√
8T

λmin(R2V1)
log

4

δ

)

RRLS(T ) ≤ (βT (δ
′) + γT (δ

′))

√
2T log

det(Vt+1)

det(R2V1)
.

3.2. Extension to ϵ-Greedy and LinUCB Learners

The core idea of our warm-starting method as derived for Linear Thompson Sam-
pling, lies in the method of setting up the initial phase of the bandit. The same
expression of initial set up can be applied to other contextual bandit algorithms
such as ϵ-Greedy and LinUCB.

In the ϵ-Greedy Algorithm, we balance exploration and exploitation by means
of relatively näıve randomness: in each round we (uniformly) explore with prob-
ability ϵ and exploit with probability 1− ϵ. Specifically, by incorporating warm
start, this means that at each round we choose an arm at random uniformly from
the set [k] with probability ϵ, and choose an arm at random uniformly from the

set S = argmaxi∈[k] θ̂
T
t xt(i) with probability 1 − ϵ. We summarise the Warm

Start ϵ-Greedy Algorithm in Algorithm 3
We can also extend our warm-starting technique to LinUCB using the fact

that θ ∼ N (µ̂+V −1
t bt, R

2V −1
t ), which is a powerful result. It was proposed by

Li et al. (2010) that one way to interpret their algorithm is to look at the distri-
bution of the expected payoff θT

⋆ xt. With the affine transformation property of

multivariate Gaussian distributions, we have that θTx ∼ N (θ̂T
t x, R

2xTV −1
t x).

Therefore, the upper bound of such a quantity is:

µ̂Tx+ (V −1
t bt)

Tx+ ρR

√
xTV −1

t x
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Algorithm 3 Warm Start ϵ-Greedy

1: Input: µ̂, α,Σµ, ϵ, T,R

2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)
−1, b1 ← 0

3: for t = 1, . . . , T do
4: Sample ut ∼ U(0, 1)
5: if ut < ϵ then
6: choose it ∈ [k] uniformly at random
7: else
8: θ̂t ← µ̂+ δ̂t
9: it ← s ∈ argmaxi∈[k] θ̂

T
t xt(i) {optimal arm}

10: end if
11: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
12: yt(it)← rt(it)− µ̂Txt(it)
13: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

14: bt+1 ← bt + yt(it)xt(it)

15: δ̂t+1 ← V −1
t+1bt+1 {update Eq. (2)}

16: end for

Algorithm 4 Warm Start LinUCB

1: Input: µ̂, α,Σµ, ρ, T,R

2: Initialize δ̂1 ← 0, V1 ← R2(Σµ + α−1Id)
−1, b1 ← 0

3: for t = 1, . . . , T do

4: θ̂t ← µ̂+ δ̂t

5: it ← s ∈ argmaxi∈[k] θ̂
T
t xt(i) + ρR

√
xT
t V

−1
t xt

6: Pull arm it and observe reward rt(it) = Rit(t)|xt(it)
7: yt(it)← rt(it)− µ̂Txt(it)
8: Vt+1 ← Vt + xt(it)x

T
t (it) {update Eq. (3)}

9: bt+1 ← bt + yt(it)xt(it)

10: δ̂t+1 ← V −1
t+1bt+1 {update Eq. (2)}

11: end for

for some value ρ, which is left as a hyperparameter. The summary of our Warm
Start LinUCB Algorithm can be seen in Algorithm 4.

Theorem 3 (Warm Start LinUCB Regret Bound). The regret bound of warm-
started LinUCB follows an argument of Lattimore and Szepesvári (2020) very
closely. The regret, whose complete derivation is provided in the appendix, admits
bound

Reg(T ) ≤

R

√√√√2 log

(
det(VT )

1
2 det(R2V1)−

1
2

δ

)
+
√
λmax(R2V1)S

 ·

√
8T log

(
det(VT+1)

det(R2V1)

)
.
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3.3. A Regret Lower Bound

We here present a lower bound for the warm-started bandit linear contextual
ϵ-greedy algorithm. Consider the best-case scenario for ϵ-Greedy with constant
ϵ, that is, that we have the true weight as our initial guess i.e., µ̂ = θ⋆. Assume
that we use the hyperparameter α→∞, which ensures the weight’s resistance to

changes from observations, i.e., θ̂t = µ̂ = θ⋆ for all t. With this setting, denoting
∆i,t ≥ 0 as the difference between the expected rewards of the optimal arm and

arm i at round t, the regret is ϵ
K

∑T
t=1

∑K
i=1 ∆i,t. This argument, detailed in

Lemma 4, proves a lower bound since it is derived from a best case scenario.

Lemma 4. The regret for warm-started ϵ-greedy is at best ϵ
K

∑T
t=1

∑K
i=1 ∆i,t.

Proof. Since θ̂t = θ⋆ for all t, each exploitation round will yield one of the
optimal arms with probability 1. Assume that there are K arms in total. Let
E denote the event that exploration occurs, and Ai be the event that arm i is
chosen. Then the expected cumulative regret for the linear contextual ϵ-greedy
is:

R(T ) =

T∑
t=1

[0P (Ec) +

K∑
i=1

∆i,tP (E ∩Ai)]

=
ϵ

K

T∑
t=1

K∑
i=1

∆i,t

=
ϵT

K

K∑
i=1

∆̄i ,

where ∆̄i is the average of ∆i,t over t, i.e., ∆̄i =
1
T

∑T
t=1 ∆i,t.

Note that in this analysis we have used a constant ϵ for our ϵ-Greedy algo-
rithm. In practice the value of ϵ can be scheduled to recede over time. Auer,
Cesa-Bianchi and Fischer (2002) have shown that in the case of non-contextual
bandits, this regime enjoys a sub-linear upper regret bound.

Reduction From Non-Contextual to Contextual Bandits. The above
lower bound of the contextual ϵ-Greedy algorithm leads naturally to a lower
bound for non-contextual bandits. The non-contextual bandit is different from
its contextual counterpart where it does not provide any context. In each round,
the true means of each non-contextual arm remain constant and are independent
of each other (i.e., θi,t = θi for all t), thus the parameters to estimate are θi for
arm i ∈ [K]. A non-contextual bandit can be formulated as a contextual ban-
dit, as shown in Lemma 5. By performing such a reduction, essentially using a
contextual bandit to act in a non-contextual setting, we can relate lower bounds
between the settings.

Lemma 5. A non-contextual bandit can be formulated as a contextual bandit.
Therefore, any fundamental limitations for non-contextual bandits must also hold
for contextual bandits.

Proof. Let the non-contextual bandit arm be i = 1, . . . ,K and let the expected
reward for arm i be θi. A contextual bandit equivalent can be constructed by
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setting the context for arm i as x(i) = ei, which is the standard basis of RK , i.e.,
the vector whose element is 1 in its ith element and 0 otherwise. Furthermore,
assuming that the shared model is used, then the ith element of the true weight
θ⋆ can be taken to be θi. This setting leads us to set the initial weight µ̂ =

[µ̂1 · · · µ̂K ]
T
to provide an initial guess of the true mean of each arm µi for

i ∈ [K], with V1 = diag(λ1, · · · , λK) reflecting the confidence we have for our
initial estimate. A diagonal matrix is particularly chosen for this purpose since
the means of each arm are independent of each other. Thus, the (contextual)
estimate of θ⋆ is

θ̂t+1 = µ̂+V −1
t+1bt+1 = µ̂+

(
V1 +

t∑
s=1

xsx
T
s

)−1 t∑
s=1

(rs − µ̂T xs)xs .

Now since xs = eis , and noticing that eie
T
i = diag(1(i = 1), · · · ,1(i = K)) for

all i ∈ [K], i.e., a matrix with all zero entries except at entry (i, i) with value 1,
we have

t∑
s=1

xsx
T
s = diag

(
t∑

s=1

1(is = 1), · · · ,
t∑

s=1

1(is = K)

)
= diag(T1, · · · , TK),

rs − µ̂T xs = rs − µ̂is

and
t∑

s=1

(rs − µ̂T xs)xs = [w1 . . . wK ]
T

,

where Ti is the number of times arm i is pulled and wi =
∑t

s=1(rs − µ̂i)1(is =

i) =
∑t

s=1 rs1(is = i) − Tiµ̂i is the total sum of all the reward differences
observed by arm i. Therefore, the estimate of the weight is

θ̂t+1 = µ̂+V −1
t+1bt+1

= [µ̂1 · · · µ̂K ]
T
+

[diag(λ1, · · · , λK) + diag(T1, · · · , TK)]−1 [w1 · · · wK ]
T

= [µ̂1 · · · µ̂K ]
T
+ [diag(λ1 + T1, · · · , λK + TK)]−1 [w1 · · · wK ]

T

=
[
µ̂1 +

w1

λ1+T1
. . . µ̂K + wK

λK+TK

]T
=
[
µ̂1λ1+

∑t
s=1 rs1(is=1)

λ1+T1
. . .

µ̂KλK+
∑t

s=1 rs1(is=K)

λK+TK

]T
=
[
θ̂1 . . . θ̂K

]T
.

This result can be interpreted such that for each arm i ∈ [K], our estimate
of the true mean θi is its sample mean with a pseudo-observation of mean µ̂i

worth of λi observations. Indeed, when we choose λi = 0 for all i ∈ [K], we
recover each arm’s mean estimate typically calculated by a non-contextual ban-
dit ϵ-greedy algorithm. With this, when we exploit, we choose an arm which

maximise θ̂Tx(i) = θ̂Tei = θ̂i, which is the same as what is performed in the
non-contextual case.
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Since a non-contextual bandit can be formulated as a contextual bandit,
our approach may be applied to warm-start a non-contextual bandit. Its lower
bound when the ϵ-greedy algorithm is used follows the lower bound of contextual
ϵ-greedy, with ∆i,t = ∆̄i for all t since the mean reward (hence the regret each
arm) is stationary across t. In other words, Lemma 4 is a fundamental lower
bound on our warm-start setting also.

4. Experiments

We now report on a comprehensive suite of experimental evaluations of our
warm start framework against a number of baselines and different datasets. We
are interested in the benefit of warm start over cold start—in such cases we focus
on short-term performance differences, as this is a practical limitation of bandits
in high-stakes applications. We also explore the impact of prior misspecification
as a potential risk of incorrect warm start. We summarise our experiments next,
and then describe them with results in more detail below.

Datasets. Experiments in database index selection explore the effect of warm
start in selecting a single index per round where queries arrive to the database in
batches and rewards correspond to (negative) execution time. We use a commer-
cial database system, and the standard TPC-H benchmark (TPC, n.d.). Results
on two OpenML datasets (Letters and Numbers) test bandits on online multi-
class classification, as a benchmark previously used to evaluate the ARRoW
warm-start technique (Zhang et al., 2019). These datasets are advantageous to
ARRoW in that they supply the (restrictive) kind of prior knowledge needed—
supervised pre-training. Experiments on synthetic data provide sufficient control
of the environment to explore limitations of our warm start approach.

Baselines. On the database index selection task, we use cold start TS as a
natural and fair baseline. On the OpenML datasets we include the ARRoW
warm-start framework, which was originally tested in the same way. We also
demonstrate the performance of both frameworks on the ϵ-greedy and LinUCB
learners, as well as LinTS. Where cold start corresponds throughout to having
no pre-training dataset (i.e., Algorithm 1), hot start in the synthetic experiment
corresponds to having 100% accuracy on the pre-training parameter µ⋆, and
warm start corresponds to having an estimate on the pre-training parameter µ⋆,
namely µ̂. By its very nature, we can only produce hot start results with the
artificial dataset, since 100% accuracy on the pre-training parameter requires an
infinite amount of observation in the real world database index selection problem.

Hardware. All experiments are performed on a commodity laptop equipped
with Intel Core i7-6600u (2 cores, 2.60GHz, 2.81GHz), 16 GB RAM, and 256
GB disk (Sandisk X400 SSD) running Windows 10. In database experiments, we
report cold runs only: we clear database buffer caches prior to query execution—
the memory setting thus does not impact our findings.
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Fig. 1. Cold Start vs. Warm Start LinTS for database index selection on the the
TPC-H benchmark.

4.1. Database Index Selection

As the real-world problem of database index selection motivated this work, we
begin with a demonstration in this setting. In a database management system,
an index is a data structure used to speed up database execution of a set of
queries (a.k.a workload). While a huge space of possible indices could be con-
sidered, only a few can actually be created due to memory constraints (since
each index occupies space in memory). With a tremendous number of indices, it
is impractical for humans to decide which indices to create without assistance.
A recent effort has been made to automate this task by using bandits (Perera
et al., 2021) to propose an optimal set of indices to boost the workload execution.
This recent framework we will be adopted in our work and expanded to support
warm start. The aim of this experiment is to demonstrate that the warm-started
bandit will yield similar performance as the cold-started bandit in the long run
whilst having better performance in earlier rounds. The consequence of such a
demonstration, is a system more suitable for deployment.

In particular, our problem setting is as follows. At round t = 1, 2, . . . , T , we
observe a workload Wt with a set of queries, and the system recommends one
index it out of the set of all possible indices I. After index it is created, we
execute the queries in workload Wt. Our chosen aim is to minimise the query
execution time, noting we do not take into account the time it takes to create the
index it. After qt is executed, the index it is dropped and the buffer is cleaned.

In this paper, the adopted database comes from the TPC-H benchmark (TPC,
n.d.). This publicly available industrial benchmark comes with a set of predefined
query templates. A query template is a parameterized query whose parameter
values (a.k.a conditions) are missing, keeping only the structure of the query and
leaving number and string values as variables. We chose five query templates at
random and instantiated them with actual parameter values in each round. These
queries will be used as the workload in both pre-training and deployment phase.

It should be noted that the value of R and S are unknown in the real-world
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dataset. In this case, we treat these as hyperparameters which need to be chosen,
adding to α.

In running this experiment, we have used the context features as described
by Perera et al. (2021), with the reward being the performance gain, described
as tno index − ti, where tno index corresponds to the execution time of the whole
workload without any indices and ti the execution time of the whole queries in
the workload using index i.

Due to the lack of information on the most optimal index, it is impossible to
retrieve the regret for each round. Therefore, with this real-world experiment,
we present the average execution time (loss) of workload Wt based on what both
algorithms recommend, which can be found in Figure 1.

Results. It can be seen that the warm-started LinTS outperforms the cold-
started LinTS, in short-term rounds and cumulatively. This can be explained by
the query templates used to pre-train the warm-started bandit resembling the
templates used in the testing dataset. This leads the warm-started bandit’s guess
of the initial weight θ1 = µ̂ being closer to the actual weight θ⋆ compared to the
initial guess of θ1 = 0 by the cold-started bandit.

4.2. OpenML Classification Dataset

We chose two of the datasets used in (Zhang et al., 2019), which correspond to
letters and numbers identification respectively. We split the data such that 10%
is used as the supervised learning examples and the other 90% used as the actual
bandit rounds. This advantages ARRoW (Zhang et al., 2019) as the only form
of permissible prior knowledge. We try all learners presented in this paper for
this dataset: ϵ-greedy, LinUCB and LinTS. As for the hyperparameters, we used
ϵ = 0.0125 for ϵ-greedy, ρR = 0.2 for LinUCB, βt(δ) = 1 for LinTS in Letter
dataset and βt(δ) = 0.05 for LinTS in Numbers dataset with R = 0.25. All of
these hyperparameters were found iteratively by grid search.

As described in (Zhang et al., 2019), we transform the dataset into a dataset
capable of evaluating bandit algorithm by mapping the classes as the arms and
the cost of each class as c(a) = 1(a ̸= y) given example (x, y). For the classi-
fication problem, we also modify our bandit algorithm which usually shares its
parameter across the arms. However, since the context of each arm is the same
for the classification task, we distinguish the value by making the parameter dif-
ferent, leading to the disjoint bandit with arm i having the weight θi,t. As such
its reward is modelled by the equation rt(i) = θT

i,⋆xt(i) + ϵt(i)
We have used the term cost instead of rewards in this dataset, which requires

minor modification of the learners: we change the argmax operation into argmin
and in the case of LinUCB, the Upper Confidence Bound in Line 5 to Lower

Confidence Bound θ̂T
i,txt(i)− ρR

√
xT
t (i)V

−1
t xt(i).

The ARRoW algorithm presented in (Zhang et al., 2019) is also executed
partially, with the size of the class |Λ| set to 1. We chose the best performing
λ to be compared against our algorithm, for fairness. We note that sensitivity
analysis in Figure 3 and Figure 4, demonstrate that the choices are generally not
very important.

We follow a suggestion of the original ARRoW paper to evaluate (Zhang
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et al., 2019, Algorithm Line 5), evaluating

argmin
f∈F

(1− λ)
∑

(x,c)∈S

K∑
a=1

(f(x, a)− c(a))2

+ λ

t∑
τ=1

1

pτ,aτ

(f(xτ , aτ )− cτ (aτ ))
2

}
where f(x, a) is a linear function and F is the class of all linear functions. The
solution of which can be obtained via the weighted linear regression.

Another algorithm we used for comparison is by Li et al. (2021), hereby
labelled as WWW’21 for convenience (denoting the publication venue). This
algorithm employs virtual plays in every round by sampling the context according
to a cdf FX(x), estimated by its empirical cdf F̂X(x), ultimately equivalent to
random sampling of the seen contexts with replacement. A feedback is provided
by an offline evaluator whenever the online confidence band is wider than the
offline counterpart. The virtual plays are continued indefinitely until the offline
evaluator does not give a feedback.

We present the results for the OpenML Dataset in Figure 2, where we have
labelled our algorithm diff for the fact that our algorithm models the differ-
ence between the true parameter from the guessed weight. It can be seen that
our algorithm performs as well as previous algorithms, whilst still offering the
flexibility to choose the initial guess.

Sensitivity analysis for this experiment (with accurate prior) is presented in
Figure 3 and Figure 4. As mentioned, neither ARRoW nor our warm start ap-
proach are very sensitive to their hyperparameters, while the algorithm proposed
by Li et al. (2021) does not require any hyperparameter tuning. These results
also support our choice of α = 107 across these experiments.

Effect of Warm-Start on Exploration Hyperparameters. In this section,
we present the final cumulative cost as a means of measuring the performance
of warm-started bandit under different exploration hyperparameters. As previ-
ously observed from Figures 3 and 4, the temperature hyperparameter does not
appear to have a significant impact on final performance. Thus, for this analysis,
we again fixed the value α = 107. We reran the experiment for both Letters
and Numbers datasets using the ϵ-greedy, LinUCB, and LinTS algorithms, vary-
ing the value of the exploration hyperparameters ϵ, ρR and β respectively. The
results, as shown in Figure 5, suggest that lower values of the exploration hyper-
parameters are preferred. This is intuitive since a goal of warm-starting bandits
is to reduce the demand on exploration during initial rounds. This effect is very
prominent especially in the ϵ-greedy algorithm. This can be explained by the
fact that exploration in the ϵ-greedy is strictly dictated by the value of ϵ, while
in LinUCB and LinTS the exploration terms are partly influenced by the matrix
Vt, which initially depends on the covariance matrix Σµ. Therefore, in ϵ-greedy,
we recommend ‘manually’ reducing the exploration hyperparameter ϵ, while in
LinUCB the exploration is partially automatically reduced thanks to the lower
exploration boost when Σµ has smaller eigenvalues.

Effect of Pre-Training Data Ratio on Performance. As previously done
in Zhang et al. (2019), we can explore the fraction of the dataset available for
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 2. Comparisons of both our and ARRoW warm-start frameworks on the
(column i) Letters and (ii) Numbers datasets, with learners (row a) ϵ-greedy, (b)
LinUCB and (c) LinTS.
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 3. Sensitivity analysis showing total cumulative cost achieved vs. hyperpa-
rameter on the Letters dataset. Column (i) demonstrates ARRoW results with
varying λ while column (ii) shows our warm start approach Diff with varying α.
Finally the learners vary over (row a) ϵ-greedy, (b) LinUCB, (c) LinTS.
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 4. Sensitivity analysis showing total cumulative cost achieved vs. hyperpa-
rameter on the Numbers dataset. Column (i) demonstrates ARRoW results with
varying λ while (ii) shows our warm start approach Diff with varying α. Finally
the learners vary over (row a) ϵ-greedy, (b) LinUCB, (c) LinTS.
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 5. Effect of warm-starting the bandits showing total cumulative cost achieved
vs. exploration hyperparameter. Column (i) is on the Letters dataset while col-
umn (ii) is on Numbers. The learners vary over (row a) ϵ-greedy, (b) LinUCB
and (c) LinTS. The performance appears better when the exploration hyperpa-
rameter is relatively small.
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pre-training. In this section, we present how the cumulative cost evolves as
the pre-training dataset to total dataset ratio changes. Here the total dataset
refers to the union between the pre-training dataset and the bandit deployment
dataset. In particular, we investigate the performance for each of the ratios in
{0, 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.05, 0.1}. For fairness, all experiments
from the different ratios in the same dataset share the same deployment data,
thus the maximum ratio in the experiment, which is 0.1, is used to determine
the deployment dataset. Since there are 20000 data in Letters Dataset and 2000
data in Numbers dataset, we used the last 18000 and 1800 data in Letter and
Number Dataset, respectively. Figure 6 supports the intuition that higher ratios
likely lead to better performance. This effect is particularly apparent during the
initial increase, while the gain gradually fades away as the ratio is increased fur-
ther. This diminishing return can be explained since the biggest improvement in
the correctness of θ occurs in the beginning of the supervised learning, whereas
its accuracy, while increasing, improves more slowly as more data is observed.

Effect of Misspecified Pre-Training Data Ratio on Performance. A se-
ries of experiments investigating sensitivity to the warm-start temperature and
exploration hyperparameters was carried out. We also investigated the effect of
the fraction of dataset used as pre-training in both settings: accurate prior and
misspecified prior.

We investigated the effect of a misspecified prior with both datasets. For
this, we need to create another dataset in which the true weight θ⋆ is different
from the deployment dataset’s. To do this, we have trained a linear regression
for the whole dataset for each arm i, giving us the disjoint parameter θ1(i),
which is then transformed by a rotation matrix Rγ to give a new parameter
θ2(i) = Rγθ1(i). For each datum at round t used for pre-training, we extracted
the context xt(i) for all arms, then calculate dr(i) = (θ2(i)− θ1(i))

Txt(i). This
acts as the perturbation of the original reward rt(i), yielding the inaccurate
reward r′t(i) = rt(i) + dr(i). In our data generation, we have calculated the
similarities between the two parameters, yielding the similarities cos(θ1,θ2) =
⟨θ1,θ2⟩

∥θ1∥∥θ2∥ = 1√
2
for all arms and both datasets. This consistent rotation attempts

to maintain a similar amount of misspecification across datasets, however as we
shall see, properties of the data interact with the magnitude of perturbation.

Due to the nature of the semi-synthetic dataset generation process, the re-
ward might no longer be in {0, 1} as previously generated from the classification
problem. This observation does not effect the validity of the model, or appropri-
ateness of warm-start in this setting thanks to the flexibility of reward structures
accommodated.

We present our result in Figure 7. Differing to the previous experiment, we
no longer have the privilege to have a very similar dataset as our pre-training
data. It can be seen that for the Letter dataset, some warm-starting provides
a modest initial boost to performance, while warm-starting appears to hurt the
performance in Numbers dataset.

4.3. Synthetic Experiments

In generating the artificial dataset, we started off by choosing a value for θ⋆.
In this case, we chose the value to be θT

⋆ = [0.1 0.3 0.5 0.7 0.9], with the
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 6. Effect of different ratios of pre-training data (fraction of full dataset used
in pre-training). Column (i) is on the Letters dataset while column (ii) is on
Numbers. The learners vary over (row a) ϵ-greedy, (b) LinUCB and (c) LinTS.
The 2001st to 20000th data and the 201st to 2000th data is used as the deployment
data in Letter and Number Dataset respectively regardless of the ratio used.
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(a-i) (a-ii)

(b-i) (b-ii)

(c-i) (c-ii)

Fig. 7. Effect of different fractions of misspecified pre-training data. Column (i)
is on the Letters dataset while column (ii) is on Numbers. The learners vary over
(row a) ϵ-greedy, (b) LinUCB and (c) LinTS. The 2001st to 20000th data and
the 201st to 2000th data is used as the deployment data in Letter and Number
Dataset respectively regardless of the ratio used.
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(a) (b)

Fig. 8. Artificial dataset experimental results for (a) an accurate prior and (b) a
misspecified prior, comparing cold-, warm- and hot-start LinTS.

bandit having 10 arms. After the value of θ⋆ is chosen, we generate a random
vector xt(i) ∈ Rd, d = 5 where each element is drawn from uniform distribution
U(0, 1) for each i = 1, 2, · · · , 10, followed by taking the inner product and adding
the Gaussian noise ϵi(t) ∼ N (0, R2), R = 0.25, independent on the arm i and
round number t. The noisy reward ri(t) = θT

⋆ xt(i)+ ϵi(t) is saved, as well as the
regret of pulling arm i, namely θT

⋆ xt(i)−maxi∈[k] θ
T
⋆ xt(i). This makes it possible

to compare all bandit algorithms equally without needing off-policy evaluation.
We repeat this process 100,000 times, which corresponds to 100,000 rounds of
the second phase dataset.

To generate the pre-training dataset, we firstly choose the value of α−1, before
sampling the true parameter deviation δ⋆ ∼ N (0, α−1I). After the value δ⋆ is
sampled, we calculate µ⋆ = θ⋆ − δ⋆ and conducted the process exactly as we
generated the second phase dataset. We generated two types of pre-training
dataset: accurate prior, where we chose α−1 = 10−4 and misspecified prior,
where we chose α−1 = 0.25. We produced 10,000 rounds worth of pre-training
dataset.

We observed that, with the dataset generated both from the accurate and
misspecified prior regime, α = 10 seems to be the cut-off point where all algo-
rithms work quite well. Therefore, we plot for all warm-starting methods the
cumulative regret for α = 10, as shown in Figure 8.

Results. In the accurate prior regime, it is clear that the hot-started and warm-
started bandits outperform the cold-started bandit. This can be explained by
the fact that the value of θ⋆ is closer to µ̂ or µ⋆ as opposed to 0. However, the
opposite problem occurs when the prior is misspecified, as the cold-start bandit
slightly outperforms the hot-started bandit and warm-started bandit, due to the
fact that θ⋆ is closer to 0 compared to µ̂ or µ⋆.

It should be noted as well, that we have held the hyperparameter α the
same for all regimes here. When the hyperparameter α is tuned optimally, the
hot-started and cold-started bandits are able to perform even better, as the
pre-training dataset is treated as if they are the real dataset.
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5. Towards Adaptive Drift Hyperparameter

In this section we take a closer look at a key hyperparameter of our warm-start
algorithms: the drift hyperparameter α which controls how much exploration
follows pre-training. While this has so far been set manually, based on how much
the operator believes pre-training to be aligned with deployment time, in practice
we believe this parameter may sometimes be difficult to set.

Limitations of the current approach. The advantage of our current ap-
proach of warm-starting as applied in Algorithms 2, 3 and 4 has been centralised
around the selection of the drift hyperparameter. This drift hyperparameter α
has been used as a means for temperature tuning: how much can we trust the
initial weight guess? With an accurate prior, a sufficiently large value of α will
give the bandit an early advantage in the deployment phase as unnecessary ex-
ploration is eliminated. On the other hand, although the warm-started bandit is
somewhat insensitive to α with an accurate prior, its sensitivity will be largely
augmented when the prior is highly misspecified; a large α value makes the
bandit retain its highly misaligned initial guess and resist changes made from
observations. Therefore, it is advantageous to choose a value of α which is not
too far off from its optimum. Alternatively, we may attempt to adapt α based
on data, which is the approach adopted in this section.

Empirical Bayes. We choose the value of α using the fact that even though
this hyperparameter is completely unknown before the deployment phase starts,
a better estimate can be made as we observe more data from the deployment
phase. If the data matches with how the initial weight is chosen, we may decide
to put more trust on µ̂ (large α). On the other hand, we may decide to doubt our
initial weight when the observed data does not support it (small α). This strategy
invites adoption of empirical Bayes, a general method of using observations to
estimate or set prior distributions.

Assumptions. In an attempt to do this, we make a hierarchical structure as-
sumption such that δ̄ | α ∼ N (0, α−1Id), where α ∼ Γ(ᾱ, β̄) for convenience.
Furthermore, in order to obtain a well-known distribution, we also assume that
θ⋆ = µ̂+ δ̄⋆ as represented by the random variable θ = µ̂+ δ̄ for deterministic
µ̂, where the dissimilarity between µ̂ and θ⋆ is captured by the random variable
α embdedded in δ̄. Compared to the initial assumption, α is now treated as
random variable and the variance of the initial guess Σµ is now absorbed and
partially represented by α.

Lemma 6. With the above assumptions, the marginal δ̄ follows a multivariate
student-t distribution with degrees of freedom νt, location µt and scale matrix

Σt, denoted St(νt, µt,Σt), with νt = 2 ᾱ = 2 β̄ αt, µt = 0,Σt =
β̄
ᾱId = α−1

t Id.

Proof. Firstly, notice that in the case of one-dimensional (scalar) weight, the joint
distribution of (δ̄, α) collapses to normal-gamma distribution. It is a standard
result that the marginal distribution of δ̄ follows non-standardised Student-t
distribution with degrees of freedom νt = 2α, location µt = µ and scale σ2

t = β
α ,

so we expect a similar result for multidmensional δ̄.
To prove the main result, we compute the required marginal density by

marginalising α out of the joint distribution itself found by multiplying the
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model’s likelihood and prior, noting the integrand of the fifth equation to be

the pdf of a gamma distribution with shape ᾱ+d
2 and rate β̄+ 1

2 δ̄
T
δ̄, hence

integrates to 1:

pδ̄(δ̄) =

∫ ∞

0

pδ̄|α(δ̄ | α)pα(α) dα

=

∫ ∞

0

(2π)−
d
2 det(α−1Id)

− 1
2 exp

{
−1

2
δ̄
T
(α−1Id)

−1 δ̄

}
·

β̄
ᾱ

Γ(ᾱ)
αᾱ−1e− β̄ α dα

=

∫ ∞

0

(2π)−
d
2α

d
2 exp

{
−α

2
δ̄
T
δ̄
} β̄

ᾱ

Γ(ᾱ)
αᾱ−1 exp{− β̄ α} dα

=
(2π)−

d
2 β̄

ᾱ

Γ(ᾱ)

∫ ∞

0

αᾱ+ d
2−1 exp

{
−α(β̄+

1

2
δ̄
T
δ̄)

}
dα

=
(2π)−

d
2 β̄

ᾱ

Γ(ᾱ)

Γ(ᾱ+d
2 )

(β̄+ 1
2 δ̄

T
δ̄)ᾱ+ d

2

·

∫ ∞

0

(β̄+ 1
2 δ̄

T
δ̄)ᾱ+ d

2

Γ(ᾱ+d
2 )

α(ᾱ+ d
2 )−1 exp−(β̄+ 1

2 δ̄T δ̄)α dα

=
(2π)−

d
2 β̄

ᾱ
Γ(ᾱ+d

2 )

(β̄+ 1
2 δ̄

T
δ̄)ᾱ+ d

2Γ(ᾱ)

=
1

2
d
2 π

d
2

β̄
ᾱ Γ( 2 ᾱ+d

2 )

Γ( 2 ᾱ
2 )

(β̄+
1

2
δ̄
T
δ̄)−

2 ᾱ+d
2

=
1

2
d
2 π

d
2

β̄
ᾱ Γ( 2 ᾱ+d

2 )

Γ( 2 ᾱ
2 )

β̄
− 2 ᾱ+d

2

(
1 +

1

2
δ̄
T 1

β̄
Id δ̄

)− 2 ᾱ+d
2

=
1

2
d
2 π

d
2

Γ( 2 ᾱ+d
2 )

Γ( 2 ᾱ
2 )

β̄
− d

2

(
1 +

1

2 ᾱ
δ̄
T ᾱ

β̄
Id δ̄

)− 2 ᾱ+d
2

=
1

2
d
2 π

d
2

ᾱ
d
2

ᾱ
d
2

Γ( 2 ᾱ+d
2 )

Γ( 2 ᾱ
2 )

β̄
− d

2

(
1 +

1

2 ᾱ
δ̄
T
(
β̄

ᾱ
Id

)−1

δ̄

)− 2 ᾱ+d
2

=
1

(2 ᾱ)
d
2 π

d
2

(
ᾱ

β̄
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Γ( 2 ᾱ
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[
1 +

1

2 ᾱ
δ̄
T
(
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ᾱ
Id
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δ̄

]− 2 ᾱ+d
2

=
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ᾱ
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T
(
β̄

ᾱ
Id

)−1
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=
Γ( 2 ᾱ+d

2 )

Γ( 2 ᾱ
2 )(2 ᾱ)

d
2 π

d
2

[
det
(

β̄
ᾱId

)] 1
2

·

[
1 +

1

2 ᾱ
(δ̄−0)T

(
β̄

ᾱ
Id

)−1

(δ̄−0)

]− 2 ᾱ+d
2

=
Γ(νt+d

2 )

Γ(νt

2 )ν
d
2
t π

d
2 (detΣt)

1
2

[
1 +

1

νt
(δ̄−µt)

TΣ−1
t (δ̄−µt)

]− νt+d
2

,

which is multivariate t-distribution with νt = 2 ᾱ, µt = 0 andΣt = α−1
t Id = β̄

ᾱId.

Therefore, we conclude that δ̄ ∼ St(2 ᾱ,0, β̄
ᾱId), i.e., a student-t distribution

with zero mean and spherical covariance. Notice that we can express νt in terms
of αt and β̄ as νt = 2 β̄ αt since αt =

ᾱ
β̄
. By setting the hyperparameters in terms

of (αt, β̄), we control the prior of α by its mean αt and variance αt

β̄
, which is

more intuitive instead of its shape and rate (ᾱ, β̄).

Following Song and Xia (2016), we adopt noise such that

ϵ ∼ St

(
2 ᾱ+d,0,

2 ᾱ

2 ᾱ+d

(
1 +

1

2 β̄
∥ δ̄ ∥22

)
β−1
t In

)
.

Adaptive Hyperparameter Algorithm. Since δ̄ follows a student-t distri-
bution, our assumptions follow the premise laid out by Song and Xia (2016). By

rewriting X = [x1 · · · xn]
T
and y = [y1 · · · yn]

T
, the value of αt and βt

can then be optimised by the q-EM algorithm following Song and Xia (2016),
summarised in Algorithm 5. This algorithm takes β̄ as its hyperparameter, which
controls the degrees of freedom in the underlying distribution of δ̄: when a Gaus-
sian distribution of δ̄ is preferred, we let νt → ∞ by letting β̄ → ∞, recovering
the Gaussian distribution from the t-distribution.

Some steps in Algorithm 5 require expensive computations. To mitigate such
costs, Song and Xia (2016) suggest to diagonalise the Gram matrix XTX =
PDP T and compute the following quantities beforehand:

yp = XTy, ypV = P Typ, ∥y∥22 .

The required quantities in each iteration can then be calculated as:

µopt = P

(
D +

αt

βt
Id

)−1

ypV

yTB−1
opty = βt

(
∥y∥22 − yT

p µopt

)
tr(Copt) =

ν + yTB−1
opty

ν + n
tr((αtId + βtD)−1)

tr(XTXCopt) =
ν + yTB−1

opty

ν + n
tr(D(αtId + βtD)−1)

∥y −Xµopt∥22 = ∥y∥22 − 2yT
p µopt + ∥Xµopt∥22 ,

where the Woodbury matrix identity is used in the second equation and the
cyclic property of the trace operation is used in the fourth equation. We argue
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Algorithm 5 Adaptive Optimisation of αt and βt

Input: X,y, β̄, αt, βt, tol
αt,old ← αt, βt,old,← βt

while
|αt−αt,old|

αt
> tol or

|βt−βt,old|
βt

> tol do

ν ← 2 β̄ αt

αt,old ← αt, βt,old ← βt

Aopt ← (αtId + βtX
TX)−1

µopt ← (XTX + αt

βt
Id)

−1XTy

Bopt ← β−1
t In + α−1

t XXT

Copt ← 1
ν+n (ν + yTB−1

opty)Aopt

bopt ← ∥µopt∥22 + tr(Copt)
copt ← ∥y −Xµopt∥22 + tr(XTXCopt)

αt ← d
bopt

βt ← n
copt

end while
return αt, βt

that when one wishes to store XTX and not X, then the second term of the
last equality can be calculated as

∥Xµopt∥22 = µT
opt(X

TX)µopt = ∥µopt∥2XTX .

These quantities can then be used to calculate bopt and copt which yield new αt

and βt until convergence.

Regret Bound. Algorithm 5 may be invoked at the start of each round to
give updated values of αt and βt. However, under this adaptive hyperparameter,
α−1 is no longer independent of the other variables. This violates one of the
assumptions made in (Abbasi-Yadkori et al., 2011), as the choice of λ in their
scenario is independent of other variables. Therefore, the validity of the over-
sampling factor becomes questionable. As the regret analysis for LinTS depends
on the validity of the upper bound provided by (Abbasi-Yadkori et al., 2011),
this in turns becomes invalid as well. As such, regret analysis for the adaptive
case would become another open problem. A possible remedy for this problem
may be to halt the hyperparameter optimisation update after a certain number
of rounds, in which case α−1 might be viewed as constant in the long run as a
direct consequence of Theorem 2 and 3.

Corollary 7 (Warm-Start Bandit with Adaptive Hyperparameters). Consider a
multi-armed bandit agent with hyperparameters updated as per Algorithm 5 every
round up to round ns when no further update is invoked. Then, round ns+1 can
be treated as the first bandit round with constant hyperparameter.
For LinTS, this is equivalent to

Reg(T + ns) = RTS(T + ns) +RRLS(T + ns) ,
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with each of the term bounded as

RTS(T + ns) ≤ RTS(ns) +
4γ̄T (δ

′)

p

(√
2T log

det(Vns+T+1)

det(R2Vns+1)
+√

8T

λmin(R2Vns+1)
log

4

δ

)

RRLS(T + ns) ≤ RRLS(ns) +
(
β̄T (δ

′) + γ̄T (δ
′)
)√

2T log
det(Vns+T+1)

det(R2Vns+1)
,

where RRS(ns) and RRLS(ns) are constant, γ̄T (δ) = β̄T (δ
′)
√

cd log((c′d)/δ) and
β̄T (δ) is the upper bound of the ellipsoid whose rounds start at ns, defined as:

β̄T (δ) = R

√√√√2 log

(
det(Vns+T )

1
2 det(R2Vns+1)−

1
2

δ

)
+
√
λmax(R2Vns+1)S̄ ,

where S̄ is defined such that ∥θ̂ns+1 − θ⋆∥ ≤ S̄.
For LinUCB, this is equivalent to

Reg(T + ns) ≤ Reg(ns) + β̄T (δ)

√
8T log

(
det(Vns+T+1)

det(R2Vns+1)

)
,

where Reg(ns) is constant and β̄T (δ) is defined as above.

Experimental Results. To demonstrate the advantage of the adaptive hy-
perparameter tuning, we repeated the experiment for the artificial dataset. We
generated two types of pre-training data: accurate and misspecified. For the gen-
eration of accurate dataset, we chose true α−1 = 10−4 and for the misspecified
dataset, we chose true α−1 = 100. Notice that such a high value of α in the
misspecified dataset is intentionally chosen to be extreme to demonstrate the
capability of the adaptive hyperparameter algorithm, and hence does not reflect
a real world setting. For the bandit, we have used LinUCB with ρ = 0.2, ban-
dit hyperparameters initial αt = 1, initial βt = 1/R2 = 16 (both unchanged
over time for bandits with manually chosen hyperparameters), and β̄ = 1 with
tol = 0.1 for hyperparameter tuning convergence requirements of both αt and βt.
As shown in Figure 9 (a), the adaptive hyperparameter algorithm is capable of
exploiting the accurate prior, even outperforming its non-adaptive counterpart.
On the other hand, when the prior is highly misspecified in Figure 9 (b), a disas-
trous result occurs for warm-started bandit without automatic hyperparameter,
while our adaptive hyperparameter algorithm is able to detect the mismatch and
ignore the initial guess, attempting to restore its performance should cold-start
regime had been deployed.

6. Conclusions and Future Work

In this paper we have developed a flexible framework for warm starting lin-
ear contextual bandits that inherits the flexibility of Bayesian inference in in-
corporating prior knowledge. Our approach generalises the Linear Thompson
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(a) (b)

Fig. 9. Experimental results for (a) an accurate prior and (b) a misspecified
prior, comparing cold-start (cold), warm-start with non-adaptive hyperparame-
ters (warm manual) and warm-start with adaptive hyperparameters (warm auto)
using LinUCB.

Sampler of Abeille et al. (2017), by permitting arbitrary Gaussian priors for po-
tentially improving short-term performance, while maintaining the regret bound
that guarantees the long-term performance of Hannan consistency. While little
attention has been paid to the warm start problem since the direction was sug-
gested by Li et al. (2010), the few existing works on warm start are far less
flexible in catering to potential sources of prior knowledge, and in how uncer-
tainty is quantified. We motivate the opportunity for warm start in the database
systems domain where bandit-based index selection could be pre-trained prior to
deployment by users, and we demonstrate the practical potential for warm start
on a standard database benchmark. We have also contributed an approach to
adapting the key hyperparameters responsible to the control of the exploration
temperature based on misspecification of pre-training.

Being relatively unexplored, we believe that warm start bandits offer a num-
ber of intriguing future directions for research, well suited to the Thompson
Sampling framework on which our approach was developed.

Adaptive Oversampling Factor. In this paper, it is assumed that the ℓ2-
norm of the parameter is bounded by S. However, this may not be known with
confidence in some applications. In such cases the algorithms are still valid, but
the bounds may not be. However, as more data is observed, we gain information
(accuracy) about δ⋆: the variance of random variable δ drops. Therefore, one
may wish to bound ∥δ∥ with some level of probability. It is interesting to note
that how large the value of S is closely related on the drift hyperparameter—
potentially both quantities could be optimised using one algorithm jointly.

Reward Unit Mismatch. When the pre-training data is provided, there is a
potential difference between the units of the pre-training and deployed datasets.
An interesting problem arises by noticing that the performance of the contextual
bandit algorithm is not measured by how close the predicted reward is to the
actual reward, but rather the rank of the arm values. As such it is the direction
of the initial guess of θ that is important, not its norm. A simple solution could
be learning a constant scaling the size of the pre-training reward to the deployed
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rewards. Ideally this scalar would be incorporated into the Warm Start LinTS,
provided performance is not sacrificed.

A. Full Proof of the Confidence Ellipsoid of Warm-Started
Bandit

We now detail the full proof of Theorem 2, by extending a previous analy-
sis (Abbasi-Yadkori et al., 2011). We restate our estimate of the parameter for
convenience:

θ̂n = V −1
n bn ,

where for n ≥ 2 we have defined

Vn = V̄1 +

n−1∑
i=1

xix
T
i , bn =

n−1∑
i=1

yixi .

Let X1:t and Y1:t be matrices comprising the contexts and the rewards up to
round t respectively and ϵ1:t be the vector containing their corresponding sub-
gaussian noise, that is:

X1:t =

x
T
1
...

xT
t

 , Y1:t =

y1...
yt

 , ϵ1:t =

ϵ1...
ϵt

 .

Therefore, we can write θ̂t as

θ̂t = (XT
1:t−1X1:t−1 + V̄1)

−1(XT
1:t−1Y1:t−1) .

To avoid clutter, let X = X1:t−1,Y = Y1:t−1, ϵ = ϵ1:t−1. Then, we have Vt =
V̄1 +XTX. Therefore, we can expand the expression of θt above as:

θ̂t = (XTX + V̄1)
−1(XTY )

= (XTX + V̄1)
−1[XT (Xθ⋆ + ϵ)]

= (XTX + V̄1)
−1XT ϵ+ (XTX + V̄1)

−1XTXθ⋆

= (XTX + V̄1)
−1XT ϵ+ (XTX + V̄1)

−1(XTX + V̄1 − V̄1)θ⋆

= (XTX + V̄1)
−1XT ϵ+ (XTX + V̄1)

−1(XTX + V̄1)θ⋆−
(XTX + V̄1)

−1V̄1θ⋆

= (XTX + V̄1)
−1XT ϵ+ θ⋆ − (XTX + V̄1)

−1V̄1θ⋆ .

Next, we would like to obtain for any vector with appropriate size c:

cT θ̂t − cTθ⋆

= cT (XTX + V̄1)
−1XT ϵ− cT (XTX + V̄1)

−1V̄1θ⋆

= ⟨c,XT ϵ⟩V −1
t
− ⟨c, V̄1θ⋆⟩V −1

t
.

Now as we have assumed that V̄1 is positive definite, and since Vt is the sum
of positive definite matrices, then Vt is also a positive definite matrix, thus the
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inner products are well-defined. Therefore, we can invoke the Cauchy-Schwarz
Inequality to obtain

|cT θ̂t − cTθ⋆| ≤ ∥c∥V −1
t
∥XT ϵ∥V −1

t
+ ∥c∥V −1

t
∥V̄1θ⋆∥V −1

t

= ∥c∥V −1
t

(
∥XT ϵ∥V −1

t
+ ∥V̄1θ⋆∥V −1

t

)
.

Now (Abbasi-Yadkori et al., 2011, Theorem 1), where V = V̄1, yields, with
probability at least 1− δ that

∥XT ϵ∥V −1
t
≤ R

√√√√2 log

(
det(Vt)

1
2 det(V̄1)

1
2

δ

)
.

Furthermore, since c can be any vector, we choose c = Vt(θ̂t− θ⋆), which yields

cT θ̂t − cTθ⋆ = cT (θ̂t − θ⋆)

= (θ̂t − θ⋆)
TVt(θ̂t − θ⋆)

= ∥θ̂t − θ⋆∥2Vt
,

and

∥c∥V −1
t

= ∥Vt(θ̂t − θ⋆)∥V −1
t

=

√
(θ̂t − θ⋆)TV T

t V −1
t Vt(θ̂t − θ⋆)

= ∥θ̂t − θ⋆∥Vt .

Combining both expressions above, we have:

∥θ̂t − θ⋆∥Vt
≤ ∥V̄1θ⋆∥V −1

t
+R

√√√√2 log

(
det(Vt)

1
2 det(V̄1)

1
2

δ

)
.

Now we use the fact that Vs ≤ Vt for s ≤ t, thus we can bound:

∥V̄1θ⋆∥V −1
t

=

√
θ⋆V̄ T

1 V −1
t V̄1θ⋆

≤
√
θ⋆V̄ T
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Thus, we conclude that

∥θ̂t − θ⋆∥Vt
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√√√√2 log
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1
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2
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B. Full Proof of the Regret Bound of Warm-Start LinUCB

The regret analysis for LinUCB is included here for completeness, and follows
closely the proof laid out by Lattimore and Szepesvári (2020). Let Ct be a closed
confidence set containing θ⋆ with high probability such that Ct ⊆ {θ ∈ Rd :

∥θ− θ̂t∥Vt ≤ βt}. Furthermore, let θ̃t ∈ Ct be such that θ̃T
t xt = UCBt(xt). This

implies that

θT
⋆ x

⋆
t ≤ UCBt(x

⋆
t ) ≤ UCBt(xt) = θ̃T

t xt .

Therefore,

regt = θT
⋆ x

⋆
t − θT

⋆ xt

≤ θ̃T
t xt − θT

⋆ xt

= (θ̃t − θ⋆)
Txt

≤ ∥xt∥V −1
t
∥θ̃t − θ⋆∥Vt

= ∥xt∥V −1
t
∥(θ̃t − µ̂)− (θ⋆ − µ̂)∥Vt

= ∥xt∥V −1
t
∥δ̃t − δ⋆∥Vt

≤ 2∥xt∥V −1
t

βt

where we have defined δ̃t as the vector θ̃t relative to µ̂. The next step follows
from Jensen’s Inequality:

Reg(T ) =
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regt
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where

βT = R

√√√√2 log

(
det(VT )

1
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1
2

δ

)
+
√
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Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011), ‘Improved algorithms for linear stochas-
tic bandits’, Advances in Neural Information Processing Systems 24, 2312–2320.

Abeille, M., Lazaric, A. et al. (2017), ‘Linear Thompson sampling revisited’, Electronic Journal
of Statistics 11(2), 5165–5197.

Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A. P., Narasayya, V. R. and Syamala, M.
(2004), Database tuning advisor for Microsoft SQL Server 2005, in ‘VLDB’.

Agrawal, S. and Goyal, N. (2013), Thompson sampling for contextual bandits with linear
payoffs, in ‘International Conference on Machine Learning’, pp. 127–135.

Auer, P., Cesa-Bianchi, N. and Fischer, P. (2002), ‘Finite-time analysis of the multiarmed
bandit problem’, Machine learning 47(2), 235–256.

Bouneffouf, D., Parthasarathy, S., Samulowitz, H. and Wistub, M. (2019), ‘Optimal ex-
ploitation of clustering and history information in multi-armed bandit’, arXiv preprint
arXiv:1906.03979 .

Bruno, N. and Chaudhuri, S. (2006), To tune or not to tune?: A lightweight physical design
alerter, in ‘VLDB’.

Bruno, N. and Chaudhuri, S. (2007), An Online Approach to Physical Design Tuning, in
‘ICDE’.

Cao, B., Pan, S. J., Zhang, Y., Yeung, D.-Y. and Yang, Q. (2010), Adaptive transfer learning,
in ‘AAAI’, p. 7.

Csurka, G. (2017), Domain adaptation in computer vision applications, Springer.
Dageville, B., Das, D., Dias, K., Yagoub, K., Zäıt, M. and Ziauddin, M. (2004), Automatic
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