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Abstract—While in-memory learned indexes have shown
promising performance as compared to B+-tree, most widely used
databases in real applications still rely on disk-based operations.
From our experiments, we observe that directly applying the ex-
isting in-memory learned indexes into on-disk setting suffers from
several drawbacks and cannot outperform a standard B+-tree in
most cases. Therefore, we make the first attempt to show how the
idea of learned index can benefit the on-disk index by proposing
AULID, a fully on-disk updatable learned index that can achieve
state-of-the-art performance across multiple workload types. The
AULID approach combines the benefits from both traditional
indexing techniques and the learned indexes to reduce the I/O
cost – the main overhead under disk setting. Specifically, three
aspects are taken into consideration in reducing I/O costs: (1)
reduce the overhead in updating the index structure; (2) induce
shorter paths from root to leaf node; (3) achieve better locality to
minimize the number of block reads required to complete a scan.
Five principles are proposed to guide the design of AULID which
shows remarkable performance gains and meanwhile is easy to
implement. Our evaluation shows that AULID has comparable
storage costs to a B+-tree and is much smaller than other learned
indexes, and AULID is up to 2.11x, 8.63x, 1.72x, 5.51x, and 8.02x
more efficient than FITing-tree, PGM, B+-tree, ALEX, and LIPP.

I. INTRODUCTION

Nowadays, most widely used database systems still rely on
on-disk indexing techniques for (at least) two reasons. First,
the total index size may be larger than the main memory
available – a consequence of growing data sizes in real
applications [1]. Also, multiple indexes (not just one index)
might be built to optimize workload-specific performance [2];
they are usually operationalized as a “secondary index”, where
the leaf nodes should be included when calculating the total
storage requirements. Second, main memory is also a precious
resource for efficient query processing to store intermediate
results, e.g., a hash table in a hash join [3]. If most of
the available memory is used to hold the indexes, query
performance could be significantly degraded.

When adapting the idea of learned indexes to a fully on-disk
setting, most of their techniques are no longer useful since I/O
costs are the dominant bottleneck. For example, when issuing
a lookup query in a four-layer B+-tree, we find 93.6% of
the total execution time is spent on I/O operations. Hence,
reducing the number of block reads (and writes) is crucial.

An immediate question to ask then is how existing learned
indexes perform on disk? To answer that, we adopt the
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implementation of four state-of-the-art updatable learned in-
dexes [4, 5, 6, 7] on disk in recent experimental study [8] and
compared them against a standard B+-tree across six workload
types commonly encountered by a database. Figures 1(a)-(b)
present the normalized throughput on COVID and FB, which
are representative of easy and hard datasets respectively [9].
We observe that although these learned indexes exhibit dif-
ferent strengths and weaknesses depending on the workload
type and dataset distribution, none of them outperforms or
achieves competitive performance to the B+-tree across all
workload types on any dataset. This should come as no
surprise to database designers, given that most research on
learned indexes has focused on in-memory performance. The
benefit of learned indexes in main memory and the shortage of
current learned index on disk motivate us to develop a high-
performing on-disk learned index.

A. Challenges in Building a Fully On-disk Learned Index

• Challenge 1: a learned index cannot guarantee to reduce
I/O costs when searching data on disk. Figure 1(c) shows the
average number of inner nodes, inner blocks, and total blocks
per query for Lookup-Only and Scan-Only workloads on the
FB dataset1. For LIPP [7], the total number of fetched nodes is
reported, and the number of nodes in the scan is highlighted
in the bracket of the fifth row. When combining the results
for a Lookup-Only workload and a Scan-Only workload in
Figure 1(b), we observe that the performance rank is directly
correlated with the number of fetched blocks. In contrast to in-
memory indexes, reducing the search overhead for each step
does not help on-disk indexes. Instead, reading or writing a
block from/to disk is the main overhead. In a Lookup-Only
workload, among all the learned indexes, only LIPP is more
efficient than B+-tree. We also find that, in contrast to B+-tree,
existing learned indexes have larger scan overheads, which
means fetching the next item becomes more expensive. For
example, to support a scan, LIPP traverses many nodes, which
incurs a higher I/O cost and leads to poorer performance.
• Challenge 2: large insertion overheads. Current indexing
techniques support an insertion using four steps: (1) find a slot
to hold a new key-payload pair (Search); (2) do the insertion
(Insert); (3) induce an index structure modifications operation
(SMO) if necessary; (4) update various statistics (Stats), such

1For a Scan-Only workload, we set the start key to the same key that was
used in the Lookup-Only workload, and then we scan forward 99 keys. This
ensures that ALEX, PGM, a FITing-tree, and a B+-tree fetch the same number
of inner nodes and blocks needed for a lookup and a scan.



FITing-tree PGM ALEX LIPP B+-tree

#I. Nd 3 5 6.7 1.8 (18.8) 3

#I. Blk 3 3.9 6.5 - 3

#L. Blk - L 1.2 1.3 2.6 3.0 1

#L. Blk - S 2 1.7 4.1 24.0 1.5

FITing-tree PGM ALEX LIPP B+-tree

Inner Nodes 3 5 6.7 1.8 (18.8) 3

Inner Blocks 3 3.9 6.5 - 3

Leaf Blocks - Lookup 1.2 1.3 2.6 3.0 1

Leaf Blocks - Scan 2 1.7 4.1 24.0 1.5

# Inner 
Nodes

# Inner
Blocks

# Total
Blocks (L)

# Total
Blocks (S)

FITing-tree 5 3 4.2 5
PGM 6 3.9 5.2 5.6
ALEX 7.7 6.5 8.1 10.6
LIPP 1.8 (18.8) - 3 24

B+-tree 4 3 4 4.5

# Inner 
Nodes

# Inner
Blocks

# Leaf
Blocks (L)

# Leaf
Blocks (S)

FITing 3 3 1.2 2
PGM 5 3.9 1.3 1.7
ALEX 6.7 6.5 2.6 4.1
LIPP 1.8 (18.8) - 3 24

B+-tree 3 3 1 1.5

(c) Fetched Nodes and Blocks for Search on FB

- L and S indicate lookup and scan, respectively.
- We report total fetched nodes in LIPP and node 

count in scan is reported in the bracket (5th row).

# Inner 
Nodes

# Inner
Blocks

# Total
Blocks (L)

# Total
Blocks (S)

FITing-tree 5 3 4.2 5

PGM 6 3.9 5.2 5.6

ALEX 7.7 6.5 8.1 10.6

LIPP 1.8 (18.8) - 3 24

B+-tree 4 3 4 4.5

Fig. 1: Throughput Comparison and Analysis. Each index’s throughput in (a)-(b) is normalized by the largest under the same
workload (higher is better), (c) is an analysis on the fetched blocks per query, and (d) is a latency breakdown per query.

as the total number of lookups and insertions, which determine
when to induce SMOs. An SMO may create new nodes or
re-construct an entire sub-tree during the insertion. This is
necessary for the index to allocate empty slots, and for a
learned index to benefit from future model-based operations.
Figure 1(d) shows the average latency breakdown per query
for a Write-Only workload on the FB dataset. We observe that
existing learned indexes have several shortcomings. ALEX [4]
and LIPP have a large overhead when updating statistics
and performing an SMO. The FITing-tree [5], PGM [6], and
ALEX incur a large overhead for the insertion. LIPP frequently
induces an SMO to resolve conflicts between two keys, while
ALEX re-writes large nodes (the leaf node) in every SMO.
Both lead to large SMO overheads. The shift operations, which
are used to obtain an empty slot to store a new key-payload
pair in a FITing-tree, PGM, and ALEX, may span multiple
blocks on disk – leading to more writes on disk.

B. AULID – Simple Is Better

In this paper, we show that the idea of learned index
can benefit the on-disk index design by proposing AULID,
an updatable learned index on disk. To address the above
challenges, we propose five design principles for an on-disk
learned index in §II-A. Then, we design AULID to meet them
by leveraging the idea of B+-tree and learned indexes in three
ways (an overview from the challenges to our design principles
and solutions is in Figure 2):

1 Leaf Node Layout. Instead of using a learned model to
search items for all layers, we use model-based search only
for inner nodes. This helps reduce the burden on leaf nodes in
maintaining the benefits of model-based search. Specifically,
we use a B+-tree styled layout for leaf nodes, which has a
low overhead when updating the index. Since the majority
of SMOs are on leaf nodes, a lightweight SMO mechanism
for leaf nodes, as achieved with AULID, reduces the insertion
overheads significantly. A B+-tree styled leaf node design also
benefits scan operations in fetching the next item.

2 Inner Node Layout. After building a B+-tree styled leaf
node, the path from the root node to a leaf node should
be shorter than that in a B+-tree. Otherwise, the learned
index cannot outperform a B+-tree for on-disk operations.
The results in Figure 1(a)-(b) inspired us to adopt the Fastest
Minimum Conflict Degree (FMCD) algorithm in LIPP [7] to
reduce the tree depth. Although it is not the best indexing

method for most workload types, it has the smallest number
of fetched blocks for a lookup, making it suitable for on-disk
indexes when attempting to reduce I/O costs. Moreover, a
lookup is often the first step in other operations, e.g., scan
and insert. Thus, a better performance of the lookup operation
should boost their performance. However, for certain workload
types and datasets, e.g., OSM (a hard dataset) [9], directly
applying the aforementioned inner node layout still reveals
several shortcomings – a larger storage size and a lower
throughput. To overcome these shortcomings, we introduce
two new inner node types and design processing algorithms
upon the new layout. For example, with our design, AULID is
1.18x more efficient on the Lookup-Only workload while only
taking 1.13x storage on OSM (as compared to a B+-tree).
3 Structural Modification Operations. With a B+-tree
styled leaf node, AULID already manages to achieve a lighter
overhead in modifying the index structure due to a lower
frequency in updating the inner nodes and a lighter overhead in
updating the leaf node. However, the tree height in some region
could grow and even become larger than that of a standard B+-
tree. In turn, AULID will have a worse performance after lots
of insertions. To avoid that from happening, we monitor the
tree height of each branch and trigger a re-construct process
to bound their tree height if needed.

In summary, we make the following technical contributions:
• To the best of our knowledge, AULID is the first approach

to employ the ideas of learned index to a fully on-disk
setting to replace a traditional B+-tree2.

• We propose five principles to guide the design of AULID
(§II-A), and carefully design the indexing structure (§II-B
- II-C), the query processing algorithms (§III-A - III-C),
and an SMO mechanism, to achieve efficient reads and
writes (§III-D).

• We implement AULID in C++ [12], conduct comprehen-
sive experiments across a wide range of datasets and
workloads and compare it against a B+-tree and on-disk
learned indexes [8]. Our evaluation shows that AULID
has competitive storage costs to a B+-tree and is much
smaller than most other learned indexes. Performance-
wise, AULID achieves up to 2.11x, 8.63x, 1.72x, 5.51x,
and 8.02x larger throughput than FITing-tree, PGM, B+-
tree, ALEX, and LIPP, respectively. We also conduct an

2Two recent on-disk studies [1, 10] are built upon LSM tree [11] and suffer
from poor read performance. Details are presented in §V.



Challenge 1
I/O Cost for Search

Challenge 2
Large Insert Overhead

P1

P3

P2

P4

P5

B+-tree styled leaf nodes

Learned-based inner nodes

Packed array & 2-layer B+-tree node

Tree adjustment based on the height

Fig. 2: An Overview of AULID: from Challenges to Design
Principles and Solutions

in-depth evaluation on the benefits of the AULID design
(§IV).

II. AN OVERVIEW OF AULID

We first introduce the principles and highlights of the
AULID design – addressing the challenges discussed in §I-B.
Then, we present the AULID layout. Figure 2 presents two
challenges identified, the design principles used to resolve
them, and how these principles are reflected in our proposal.

A. Design Principles

Based on the key properties on disk and learned indexes,
we propose five principles to guide the design of AULID:
• P1. Reducing the Tree Height of the Index. Accessing

each level in an index requires at least one disk access when
an index is stored on disk. Reducing the tree height can
reduce the number of disk access.

• P2. Model-based Operations (Search and Insert). An
index with a reduced height usually has larger nodes in
certain levels of the index. Model-based operations help
AULID quickly find search keys in a specific part of the
node, without the need to access the entire node on disk.

• P3. Lightweight Structure Modification Operations.
Structure modification operations (SMOs) for the existing
learned indexes incur a substantial amount of writes on disk.
AULID should reduce the overhead of such SMO calls.

• P4. Support Duplicate Index Keys. Duplicate (i.e. non-
unique) index keys are common in real systems. They can be
supported using a linked list in a main memory setting [7],
but not on disk, since it leads to additional disk reads.

• P5. Better Scan Performance. Existing learned indexes
have their own limitations when supporting scans on disk
(see Figure 1(a)-(b)).AULID must provide a lightweight
method to fetch the next item efficiently.

B. Design Highlights

AULID uses a combination of existing and novel techniques
to meet the above principles and achieve high performance
on disk. AULID consists of inner nodes and leaf nodes, both
of which are stored on disk. Leaf nodes, where most SMOs
occur, are organized in a B+-tree manner. A low update cost
at leaf nodes reduces the SMO overhead (P3). Moreover,
AULID only uses the idea of learned index for inner nodes
to index the maximum key of each leaf node, which leads
to less frequent SMOs in updating the inner nodes (P3) and
a low tree height in inner part (P1). Each leaf node is a

DATANODE NULL

…

Mixed Node Packed Array Node B+-tree NodeNode Type:

Slot Type:

Leaf Nodes

Inner Nodes

……

MetanodeNode A

Node B Node C

Node D Node E Node F

Fig. 3: AULID Index Structure

packed array – it stores pointers to its siblings and its size
is equal to the block size. Using the packed array and links
to siblings, AULID can support efficient scan operations (P5).
We optimize our inner nodes based on properties of the disk
drive. Fast lookup time with the learned model means that
AULID can efficiently locate target leaf nodes (P1, P2). To
achieve robust performance on different datasets (i.e., different
distributions), we also introduce two new node types for the
inner nodes, a packed array and a two-layer B+-tree, with
the purpose of reducing the number of SMOs for non-leaf
nodes (P3). By proposing a tailored mechanism to handle
duplicate keys inserted in inner nodes, AULID manages to
store duplicate values with reduced on-disk costs (P4). To
maintain the performance gains achieved from the learned
model, AULID adjusts the index structure based on the tree
height and bounds the tree height during insertions (P1).

C. Node Structure

The index structure of AULID is presented in Figure 3.
AULID is composed of two components: the inner nodes which
store the route information to leaf nodes, and the leaf nodes
which store the key-payload pairs.

1) Metanode: Metanode in AULID stores (1) the physical
address of the root node, (2) the linear model of the root node,
and (3) the physical address of the last leaf node, as well as
the minimum and maximum keys of that node. We store the
metanode in main memory, which requires only 80 bytes, a
negligible main memory overhead.

2) Inner Nodes: AULID has two node types in the inner
part, a mixed node type and a packed array node type. And
there are three types of slot in the inner part: NODE, NULL,
and DATA. The NODE slot stores the pointer to its child. The
NULL slot is the empty slot and can be converted to NODE or
DATA. The DATA slot stores the key-payload pair. Each mixed
node has a model to predict the slots for a key search and
can include three different slot types above. AULID stores the
model in the parent node, combined with the physical address.
If we store the model at the starting address of a mixed node,
the large fanout for mixed nodes increases the chance that
the predicted position and the model are located in different
blocks. Thus, two blocks must be fetched from disk for each
level in the tree. In contrast, when storing the model in the
parent node, AULID only fetches one block per level.



The NODE slot in AULID can be further divided into three
types, as shown in Figure 3: (1) a pointer to the packed array
of fixed size (e.g. the first slot in Node A); (2) a small B+-tree
node (e.g. the fourth slot in Node A). It contains at most four
child nodes, each of which is a leaf node of a B+-tree. Such
a B+-tree node and its children form a two-layer B+-tree; (3)
a pointer to another mixed node (e.g. the sixth slot in Node
A). For the first case, we introduce four different packed array
types, each with a fixed size. The ith packed array type can
store 2i+2 items of DATA types, where i ∈ [1, 4]. A DATA
slot in the inner nodes stores the physical address of a leaf
node and the largest key it contains, i.e., the key-block pair.
The second case is proposed to improve the performance for
scenarios where the number of keys to be inserted into the
same slot is greater than 64, but smaller than 1020 (which will
be explained later in §II-C2). This indicates the conflict degree
for the region. If we create a new mixed node to hold these
keys, there can be key conflicts in the new node. This leads to
a larger tree height (more than two layers). Conversely, a two-
layer B+-tree can be used to hold the nodes and help AULID
to bound the tree height for the region. Therefore, AULID is
able to bound the number of fetched blocks. Also, the design
of the packed array and the two-layer B+tree can support more
newly inserted key-block pairs (the routing knowledge to the
leaf nodes) to be stored with low overheads. Using the packed
array and a two-layer B+-tree, AULID achieves a better empty
slot ratio, and this translates to smaller storage costs. In our
implementation, we store metadata information for each node,
e.g., its physical position, and node type, in its parent node.
We use an 8-bit number to distinguish different nodes.

The B+-tree node contains only four child nodes for the
following reasons: (1) The conflict degrees in most of the test
datasets we have used (except for one)3 is less than 1000,
which can be stored easily using a two-layer B+-tree. (2) A
larger fanout requires more metadata (pivot keys and physical
addresses) in a slot, and it increases the total storage cost
significantly. A key-block pair occupies 16 bytes on disk in
our implementation. Thus, a block with 4 KB can store 256
pairs. The first item records the item count for a two-layer B+-
tree’s leaf node. Four children can store at most 1020 items.

3) Leaf Nodes: The leaf nodes have the same structure as
a standard B+-tree. The DATA slot in the leaf node stores the
key-payload pairs to be indexed. This layout design is based on
the observation that most SMOs happen on leaf nodes as new
key-payload pairs are added. Learned indexes need to read all
of the items in a large leaf node and re-write them to disk to
maintain the benefits of their unique structure, which incurs
large I/O costs on disk. A lightweight SMO overhead for a
leaf node design can help significantly reduce the number of
SMO operations required (see the experiments in §IV-B2).

This simple design in the leaf nodes has many other benefits.
First, the link between siblings, when using a packed storage
layout, requires no additional utility structure to perform
efficiently when scan operations must locate the start of a

3We have tested all the datasets proposed in a recent benchmark paper [9].

query range. Second, the storage costs of the inner nodes can
be significantly reduced by only storing the largest keys. In our
experiments, AULID has a similar storage size and bulkload
time to a B+-tree on disk, which is better than other learned
indexes. Third, reducing the items inserted into the inner nodes
also decreases the SMO frequency and the number of items
that must be processed. Last, AULID can efficiently support
duplicate index keys when using a B+-tree styled leaf node.

III. AULID OPERATIONS

A. Bulkload

AULID supports bulkload using two steps. In the first step,
it creates leaf nodes to store the key-payload pairs using B+-
tree styled leaf nodes. When building leaf nodes – with the
exception on the last leaf node – AULID records the maximum
key, and the physical address for each leaf node, i.e., the key-
block pairs to be indexed in the inner nodes. For the final leaf
node, AULID stores the minimum and maximum keys, as well
as its physical address in a meta-node.

The second step builds the inner nodes for AULID over the
key-block pairs. We first use the Fastest Minimum Conflict
Degree (FMCD) algorithm in LIPP to generate a linear model
for a node. Given the collection of keys to be indexed and
the number of slots that can be used, FMCD aims to generate
a linear model under which the maximum number of keys
inserted into the same slot is minimized, i.e., the smallest
“conflict degree”. Then, we insert the key using the resulting
model. If only one key is inserted into a slot, this slot is
labeled as DATA and used to store the key-block pair. Different
from LIPP, AULID does not aggressively create a new node
if more than one item is mapped to the same slot. Instead,
we divide them into three cases depending on the size of the
items that are mapped into the same slot: (1) If the size of the
items mapped to one slot is smaller than 64, a packed array is
created. (2) If the size is greater than 64 and less than 1020
(see explanation at the end of §II-C2), a two-layer B+-tree is
created with at most four child nodes. (3) Otherwise, a new
mixed node is created to hold the keys.

B. Lookup & Scan

1) Lookup: Given a search key, we first check whether it
belongs to the last leaf node by comparing it with the minimum
key and the maximum key that are stored in the meta-node.
The overhead of this operation is negligible as the meta-node
resides in main memory. If the key belongs to the last leaf
node, the leaf node is read from disk, and then a binary search
is initiated. Otherwise, the inner nodes are searched to find the
leaf node address where the search key should reside.

When traversing from root to leaf node, five cases of model
prediction can occur (assume a mixed node is the root node):
• DATA Slot: A leaf node is fetched based on the physical

address contained in it. If the key in the DATA slot is less
than the search key, then we fetch the successor.

• NODE Slot for a Packed Array: The packed array content
is retrieved from disk, and a DATA slot is located to hold



the search key. It is then processed in the same way as the
DATA Slot case.

• NODE Slot for a B+-tree: Just as in a standard B+-tree, a
child node is found which holds the search key (if it exists),
and then it is fetched and processed in the same way as the
NODE Slot for a Packed Array.

• NODE Slot for another mixed Node: The model from the
node is used to predict which node to access next, and the
search process is repeated.

• NULL Slot: Using the monotonic linear function from
AULID and indexing the largest keys for each leaf node,
to find the next DATA slot we must search forward. For
example, given a search key, suppose the predicted position
is the 5th slot in Node A of Figure 3, which is a NULL slot.
AULID will scan forward to find the next DATA slot using
Node C and Node F.

2) Scan: Given a query range [u, v], we first call a lookup
operation to locate the leaf node where u should reside, and
the position of u in the node. Then, we scan forward until
reaching the last key v. Using the links to sibling leaf nodes
and the packed array, the next item can be quickly accessed
without additional utility structure, such as bitmaps in ALEX
to differentiate empty slot, or traversing many nodes in LIPP.

3) Optimization for Reading.: When storing only the
largest key of each leaf node in the inner nodes, AULID could
issue additional I/O requests for two reasons:

• Issue 1: When traversing the inner nodes, AULID may need
to find the predecessor (the left sibling of a target node) and
extra I/O is needed to fetch that target.

• Issue 2: If the predicted location is a NULL slot, a scan
operation is triggered to locate the next DATA slot. E.g., if
the predicted position is the 5th slot in Node A of Figure 3,
AULID needs to access Node C and Node F. Due to large
fanout of inner nodes, Nodes A, C, and F are stored in
different blocks, which could incur additional I/O costs.
Note that with a monotonic linear function in AULID, these
two cases cannot happen in a single lookup simultaneously.

To address the first issue, if a DATA slot is found, instead of
fetching the leaf node directly, we first check whether the key it
contains is smaller than the search key. If so, we scan forward
to find the next DATA slot. In contrast to a NULL slot, the
scan operation is initiated only on the currently fetched block.
The DATA slot found before is used if no new DATA slots are
found in the same block. Otherwise, scanning forwards reads
at least one additional block.

To address the second issue, AULID fulfills the preceding
NULL slots for one DATA slot until reaching the previous
DATA node during the bulkloading process. This operation has
negligible overhead for bulkloading but only works with Read-
Only workloads. For workloads involving a write operation,
inserting a new key-block pair into the inner nodes will
incur an update for empty slots and hence leads to increased
latency during an insertion. The effectiveness of these two
optimizations have been verified in our evaluation at § IV-D.

Algorithm 1: Insert(I, k, p)
Input: I: the AULID index, k: the key, p: the payload, T :

maximum slot count in the leaf node
1 accessed nodes = [];
2 leaf node = GetLeafNode(I, k);
3 if leaf node.size ≥ T then
4 block id, kmax = SplitNode(leaf node); ▷ max key and block

id of left child;
5 e = FindEntry(I, kmax, accessed nodes); ▷ first non mixed

Node entry;
6 switch e.type do
7 case NULL do
8 insert (kmax, block id) into e;
9 case DATA do

10 create a packed array PA;
11 insert (kmax, block id) and (DATA.k, DATA.v) into

PA;
12 update e as NODE to PA;
13 case B+-tree do
14 if e is full then
15 K = (kmax, block id)

⋃
items in e;

16 P = BuildMixedNode(K); ▷ Build a mixed node;
17 update e as NODE to P ;

18 else
19 insert (kmax, block id) into e ;

20 case Packed Array do
21 if e is full then
22 create a packed array or a B+-tree node P ;
23 insert (kmax, block id) and items in e into P ;
24 update e as NODE to P ;

25 else
26 insert (kmax, block id) into e ;

27 StatsUpdate(accessed nodes); ▷ Update statistics for SMOs;
28 Adjust(T , accessed nodes); ▷ See Section III-D;

29 else
30 InsertLeaf (k, p, leaf node);

…

𝑖!" packed array (𝑖 + 1)!" packed array

… …

…

two-layer B+-tree

…

mixed node

Fig. 4: AULID ’s Insertion Process

C. Insert & Duplicate Index Keys Support

1) Insert: The full insertion process is presented in Algo-
rithm 1, and the key process is depicted in Figure 4. Given a
new key-payload pair (k, p), a lookup operation is first called
to locate the leaf node that should contain k and the position
of k in the node (Line 2). If the item count in this leaf node
is less than a predefined threshold T , (k, p) is added into this
node (Line 30). Note that, if this is the last leaf node, and
(k, p) was the first or last item in the node, the minimum
key or maximum key is updated in the meta-node. If the item
count exceeds the threshold, a splitting process is triggered
(Line 4). Unlike a B+-tree, which keeps the smaller half of
the items in the original node, AULID keeps the larger half of
the items in the original node. Otherwise, the address of the
last key is updated in the original inner node, which requires
extra writes. After a new leaf node is created, the links to the
sibling nodes are also updated.

The largest key and physical address of each leaf node are



indexed in the inner nodes (Lines 5-28). A lookup process is
initiated to find the first non-mixed node slot to hold the new
key. Just as in the search process, there are five different cases:
1) If we encounter a NULL slot, we insert the new key-block
pair into it and the insertion is completed (Line 8). 2) If we
encounter a NODE slot pointing to a mixed node, the model
is fetched and the search process is repeated. 3) For a packed
array, if full, a larger packed array type will be allocated. If the
maximum supported packed array is already being used, it is
converted into a two-layer B+-tree (Line 20-24). Otherwise,
we insert the new key-payload pair into the empty slot and
complete the process (Line 26). 4) If the B+-tree is not full,
the process proceeds as in a standard B+-tree (Line 19). 5)
Otherwise, it is converted into a mixed node (Lines 15-17).

After completing the insertion, the statistics of the mixed
nodes are updated in the access path to guide later SMOs
(Line 27). AULID records the number of items in a third layer
or a deeper layer. Finally, we check if we need to initiate an
SMO operation by calling the Adjust function (Line 28).

2) Handling Duplicate Keys: Duplicate keys are common
in real databases. A linked list used in main memory is
however not appropriate when on-disk, as it leads to additional
I/O costs when fetching items from the list.

Using a B+-tree styled leaf node, AULID can efficiently
store and search for duplicate keys in the leaf nodes. This
process is the same as a standard B+-tree. If a duplicate key
must be inserted into the inner nodes of AULID, one potential
way is to directly insert the duplicate key into the inner nodes.
AULID can handle key conflicts using the packed array/two-
layer B+-tree proposed earlier. However, in this case, the
maximum number of duplicate keys that can be supported is
163, 840 for a block size of 4 KB4. Using the link between two
sibling leaf nodes, another way is that we can only store the
first leaf node’s address for the duplicate key. With the larger
half of items stored in the original block after the leaf node
is split, the address (block number) stored in the original slot
in the inner nodes needs to be updated. The write overhead
is the same as the last case while we can support an arbitrary
number of duplicate keys.

D. Structural Modification of Inner Nodes

When a two-layer B+-tree node is converted into a new
mixed node, certain regions may have a larger tree height.
Therefore, the index structure must be carefully modified to
bound the height of the branches in AULID’s inner nodes, e.g.,
at most three layers in our test datasets with up to 800M key-
payload pairs. Otherwise, a B+-tree on disk will be the best.
Packed arrays and two-layer B+-tree nodes do not have an
impact on the tree height. Here, we focus on when and how
to re-construct mixed nodes in AULID.

1) When Should the Rebuilding Occur: To bound the tree
height of the inner nodes and avoid aggressive node updates,
we introduce two new constraints to determine when a mixed
node should be reconstructed.

4A B+-tree node with 4 children can store at most 640 leaf node addresses
and each leaf node can store 256 items.

Criterion 1: the percentage of the items in a subtree rooted at
node n in the third layer or a deeper layer (l3 item) is larger
than α. This guarantees that no more than α leaf nodes can
have a longer path than a B+-tree on disk.
Criterion 2: The number of current items rooted at node n is
larger than β times the initial size.

In corner cases where a region has a high degree of conflict,
a mixed node can have more than α items, even when it
is initially being created. To avoid reconstructing this node
frequently, we adjust it after observing a sufficient number
of new items. A smaller value for α and β leads to a more
frequent node reconstruction. By default, we set α = 0.05 and
β = 1.2 to balance the tree height, i.e., lookup performance
and SMO overheads. We have verified the impact of different
settings for α and β in §IV-D3.

2) How to Reconstruct a Node: If a mixed node meets both
of the above criteria, all key-payload pairs stored in the inner
nodes rooted at that node are collected, and then the bulkload
process is called again to build a new mixed node.

E. Other Operations

To support a delete operation, AULID first locates the items
to be deleted at the leaf node, and then deletes it in the same
manner as a standard B+-tree. If no SMO is required (merging
the sibling nodes), the delete operation is finalized. In this case,
even if we delete the last key-payload pair in the leaf node,
AULID still does not update the inner nodes. If a merge is
required, a delete operation in the inner nodes is required. If
the key-block pair to be deleted is in a mixed node, this slot
is marked as an empty slot. If it is contained in the packed
array or a two-layer B+-tree node, it will be removed. AULID
will convert the packed array or a two-layer B+-tree node into
a DATA slot if there is only one key-block pair remaining.

There are two types of update operations, updating the
payload and updating the key. In the former, an in-place
update is used5. For the latter, a delete operation and an insert
operation are initiated.

IV. EXPERIMENTS

We have conducted extensive experiments to mainly answer
three questions – Q1: How good is AULID as compared to
other learned indexes and a B+-tree when disk-resident? Q2:
How well does AULID scale to large datasets? Q3: Do the
proposed index structure design and structural modification
operation help improve the performance?

We start with the experimental setup in §IV-A. Then, we
present our answers to Q1-Q3. To answer Q1, we compare
AULID against five competitors across six different workload
types and four different datasets. We demonstrate that AULID
is superior in terms of throughput and storage cost in §IV-B. To
answer Q2, in §IV-C we use another four datasets with 800M
keys to study the performance of AULID on large datasets of
varying hardness. Notably, most existing studies [4, 7, 13, 14]
use at most 200M key-payload pairs to study index perfor-
mance. Finally, to answer Q3, in §IV-D we compare AULID

5Currently, AULID supports key-payload pairs of a fixed length.



to its variants, with and without the proposed data structures
and structure modification operations, in order to reveal the
performance benefits of our proposed design choices.

A. Experimental Setup

1) Baselines: We implement a standard B+-tree and use
the implementation [8] of the on-disk versions of the state-
of-the-art updatable in-memory learned indexes – PGM [6],
FITing-tree [5], ALEX [4], and LIPP [7].

2) Datasets: The most recent experimental study [9] on
memory-resident learned indexes introduced 11 real datasets
in their evaluation. Based on its profiling results, these datasets
can be roughly divided into four categories (see Figure 2
in [9]): C1: Globally easy and locally easy, C2: globally
normal and locally normal, C3: globally normal and locally
hard, and C4: globally hard and locally normal. We select
one dataset from each of these categories for our experiments:
COVID (C1), PLANET (C2), GENOME (C3), and OSM (C4).
Each dataset has 200M keys of type uint64. The performance
of AULID and LIPP correlates to the conflict degree (the
maximum number of keys being inserted into the same slot)
in one dataset due to the usage of the FMCD algorithm.
Consequently, datasets with a greater conflict degree are more
challenging for AULID and LIPP. A summary of the conflict
degrees of the tested datasets is presented in Table I.

TABLE I: Conflict Degree of Each Dataset

Dataset COVID PLANET GENOME OSM
Conflict Degree 27 22 585 4,106

To test the scalability of AULID on large datasets, we
use OSM from [15], which contains 800M uint64 keys. The
generator proposed in [9] is used to generate another three
datasets, each of which contain 800M uint64 keys and has
different levels of hardness (details presented in Section IV-C).

For all datasets, we generate a uint64 payload for each key
with key plus 1 as their value. The first four datasets require
2.98 GB of storage space on disk, and the last four datasets
(used for the scalability testing) require 11.92 GB.

3) Workloads: We compare AULID against all baselines
across six different workload types typically encountered in a
database. W1 - Lookup-Only workload, where each index is
built on 200M key-payload pairs and the workload consists of
two different search key distributions: (1) 20,000 randomly
sampled search keys (W1-U) and (2) 20,000 search keys
sampled with a skewed Zipf distribution (W1-S). W2 - Scan-
Only workload, where the start key of the search range is
set to the same key in the lookup-only workload, and the
search range is set to 100. The queries are issued on indexes
prebuilt on the full dataset. W3 - Write-Only workload, where
the initial index is built with 10M key-payload pairs that
are randomly selected from a dataset, and then another 10M
key-payload pairs are inserted. W4 - Read-Heavy workload
includes 90% lookup queries and 10% write operations. W5 -
Balanced workload consists of 50% lookup queries and 50%
write operations. W6 - Write-Heavy workload includes 90%
write operations and 10% lookup queries.

Fig. 5: Throughput and Block Count on Lookup-Only Work-
load (W1-U).

Fig. 6: Throughput and Block Count on Lookup-Only Work-
load (W1-S).

We refer to W4-W6 as mixed workloads, with the only
difference between them being the ratio between reads and
writes. For mixed workloads, the initial index is built over 10M
key-payload pairs randomly sampled from a dataset, and then
lookup queries and write operations are issued (10M queries
in total). The search keys in all mixed workloads are randomly
sampled from the existing keys of an index.

4) Metrics & Environment: The primary metric we measure
is throughput. We also report the number of fetched blocks,
the storage size of each index, and the tail latency. We conduct
the experiments on a SATA HDD using a Red Hat Enterprise
Server 7.9 on an Intel Xeon CPU E5-2690 v3 @ 2.60GHz
with 256 GB memory and a 1TB HDD. The block size is 4
KB in all experiments.
B. Efficiency Comparisons on Disk

In this section, we compare AULID against four state-of-the-
art learned indexes, and a B+-tree on disk. AULID outperforms
all five indexes on every dataset and workload tested.

1) Lookup-Only Workload: Figure 5 and Figure 6 show
the throughput and the average number of fetched blocks per
query, for each index under different search key distributions.
Overall, AULID is the most efficient indexing method. Specif-
ically, on W1-U, it achieves up to 1.68x, 2.10x, 1.62x, 1.76x,
and 1.55x higher throughput than the FITing-tree, PGM, B+-
tree, ALEX, and LIPP, respectively. LIPP is the second most
efficient index across all datasets. The performance of each
index is correlated to the number of fetched blocks where
more fetched blocks lead to a lower throughput. On W1-S,
we observe the same behavior as on W1-U.

The performance of the FITing-tree, PGM, and B+-tree
is similar across all datasets. ALEX however has the worst
performance on OSM. The performance of AULID and LIPP
vary across different datasets; specifically, the performance
is related to the conflict degree of a dataset, where a higher
number of conflicts usually leads to a greater tree height, and
in turn more fetched blocks.



Fig. 7: Throughput on Scan-Only Workload (W2).

Fig. 8: Throughput of Mixed Workloads (W3-W6).

2) Scan-Only Workload: Figure 7 summarizes the through-
put and the average number of fetched blocks for the Scan-
Only workload. In terms of throughput, AULID outperforms
FITing-tree, PGM, B+-tree, ALEX, and LIPP by up to 2.11x,
2.44x, 1.65x, 3.04x, 7.94x, respectively. Just as in the Lookup-
Only workload, the performance of the scans is determined by
the number of fetched blocks.

To support a scan query, all indexes first initiate the search
process for a lookup query to locate the start key in the
search range, and then scan forward until reaching the end key.
Consequently, better performance in Lookup-Only workloads
yields better performance in Scan-Only workloads. Using the
packed array in leaf nodes and links between siblings, the B+-
tree and AULID reap the benefits from efficient lookup queries,
and are the two top-performing algorithms. In contrast, LIPP
does not gain any benefits from lookup queries. LIPP only
has one node type, where key-payload pairs, pointers to child
nodes, and empty slots are all interleaved. Thus, when fetching
the next item, LIPP may have to traverse multiple nodes.
Since LIPP has a large fanout, there is a greater chance that
these nodes are in different blocks. Also, we observe that
the performance of ALEX decreases more quickly than the
FITing-tree and PGM. With a gapped array in the leaf node,
ALEX uses a bitmap to indicate whether a slot is occupied,
and thus incurs additional I/O cost when fetching it.

3) Write-Only and Mixed Workloads: Figure 8 shows the
throughput for the workloads that include write operations.
AULID is still the best performer across all workloads and
datasets. The superiority of AULID is attributed to three

Fig. 9: Comparison of Bulkload Time and Storage Usage.

reasons: (1) a lower latency to locate where a new key-
payload should be inserted, i.e., benefiting from the best
lookup performance; (2) a lower SMO overhead on leaf nodes
with the B+-tree styled leaf node design; and (3) a lower
SMO overhead for the inner nodes, and fewer SMOs required.
Based on our design of the packed array and the two-layer B+-
tree nodes, most new key-block pairs can be stored without
creating new mixed nodes. In the tested datasets, no dataset
required AULID creation of new mixed nodes. Other learned
indexes, however, require more SMOs, e.g., on the Write-Only
workload, ALEX and LIPP require 45,897 and 4.5M SMOs
on GENOME, respectively.

PGM outperforms other approaches on the Write-Only
workload, but it performs worse with more reads. Better
insertion support stemming from the LSM tree [11] allows
PGM to be competitive for write operations. However, since
multiple files are maintained as static PGM indexes, PGM may
access more than one file for a lookup query, which increases
the I/O cost. The performance gain from a faster lookup time
can benefit the workloads containing more reads, e.g., the
FITing-tree and LIPP on the Read-Heavy workload. However,
as the number of writes increases, the SMO overhead and
the cost of updating statistics (for ALEX and LIPP) [8] can
outweigh the benefits gained from faster lookups.

4) Bulkloads: Figure 9 reports the bulkloading time and
the on-disk index size after bulkloading. When calculating
index sizes, we report the total size of the index file on disk.
This ensures that the entire on-disk size is reported for a fair
comparison in practice. In terms of bulkloading time, AULID
is similar to the B+-tree, and both of them are significantly
smaller than the other indexes. AULID also achieves similar
storage cost to the B+-tree. The FITing-tree and LIPP have
different storage sizes across different datasets. In the case
of FITing-tree, harder datasets will create more leaf nodes
(segments), and allocate additional buffers on disk for later
key-payload pair insertions. For LIPP, a dataset with a larger
degree of conflict will result in more nodes being created on
disk, and in turn occupy more space. ALEX and LIPP have
larger bulkloading times than the other methods due to model
training, and more on-disk writes.

5) Index Size: Figure 10 presents the storage occupancy of
all indexes after finishing workloads comprising writes (W3-
W6). Overall, AULID achieves similar storage overheads to the
B+-tree across all workload and dataset combinations. Among
the rest of the competitors, PGM has the smallest storage size.



Fig. 10: Storage Occupancy of Mixed Workloads (W3-W6).

Fig. 11: Tail Latency on Lookup-Only (W1) and Write-Only
(W3) Workloads.

This is attributed to the LSM tree used in PGM to support
arbitrary insertions, i.e. after an index has been merged, we
can delete it from disk. For LIPP, a dataset with a higher
degree of conflict usually has a larger storage cost due to the
creation of additional nodes. The FITing-tree has a large space
occupancy, regardless of the dataset or workload.

6) Tail Latency: To study the robustness of each index, in
Figure 11 we report the p99 latency and standard deviation on
the Lookup-Only and Write-Only workloads. Overall, AULID
has the smallest p99 latency in the Lookup-Only workload.
AULID, PGM, and B+-tree have similar p99 latencies for the
Write-Only workload – all of which are better than FITing-
tree, ALEX, and LIPP. However, all learned indexes have a
larger standard deviation than B+-tree across both workloads.
Due to an unbalanced tree structure of LIPP and ALEX,
accessing some regions may issue more I/O requests for the
Lookup-Only case. When indexing only the largest key of each
leaf node in the inner nodes, in a lookup, AULID may access
more blocks to fetch the next DATA slot or read an extra block
to locate the target leaf node as discussed in §III-B3. PGM

Fig. 12: Throughput Speedup on Large Datasets.

Fig. 13: Bulkload Time and Storage Usage Compared to B+-
tree on Large Datasets.

will periodically merge items into a larger index. Heavy SMOs
for certain queries result in a larger latency in the Write-Only
workload, which in turn results in a larger variance.
C. Scalability Test

Setting. Since existing learned indexes perform worse than
the B+-tree overall, in this section, we compare the scala-
bility of AULID against the B+-tree only. To test the per-
formance of AULID on datasets of different hardness, we
include OSM800 [15], and three other datasets of size 800M
generated using the method from [9]. For each, we set the local
hardness and global hardness to 4x of COVID, PLANET, and
GENOME and name them as COVID800, PLANET800, and
GENOME800, respectively.

For the Lookup-Only and Scan-Only workloads, we issue
800,000 queries over the index built on the entire dataset.
Search keys are randomly sampled from the entire dataset.
For the workloads that contain writes, we build an initial index
containing 150M keys sampled from a dataset and issue a total
of 50M operations, where the write ratio is the same as used
for W3-W6 in §IV-A3.

1) Performance Speedup: Figure 12 presents the through-
put speedup of AULID compared to the B+-tree. AULID beats
the B+-tree with up to 1.75x throughput gains on all tested
workloads and datasets. Due to a carefully designed inner node
structure and an SMO mechanism to bound the tree height,
AULID is more efficient when locating the target leaf node,
and also benefits scans and writes.

The superiority of AULID on large datasets also comes
from the smaller SMO overhead for write operations. When
indexing the largest key for each leaf node of the learned
model, AULID reduces the number of SMOs needed to reap
the benefits of model-based search. Moreover, a packed array
and a two-layer B+-tree hold the new key-block pairs without
increasing the tree height (See Figure 4), while incurring only
small update overheads.

2) Bulkload Time & Storage Usage: The results of AULID
and B+-tree are reported in Figure 13. To build an index for



800M key-payload pairs on disk, the B+-tree takes around
20s and AULID is competitive at 27s. Both are much more
efficient than other learned indexes, even on small datasets.
We also conduct an experimental study using different dataset
scales and the results on COVID are shown in Table II. The
bulkload time and storage usage of AULID are only slightly
greater than the B+-tree across all dataset sizes.

TABLE II: Storage and Bulkload Time under Different Dataset
Scales of COVID.

Metric Index 200M 400M 600M 800M

Bulkload Time (s) B+-tree 4.94 11.30 17.25 22.74

AULID 6.26 13.47 19.41 27.82

Storage (GB) B+-tree 3.76 7.52 11.27 15.03

AULID 4.27 7.85 11.76 15.74

D. An In-depth Study of AULID Design

Next, we study how the design of inner nodes meets our
proposed design principles and address the two challenges
aforementioned in §I-A. Typically, basic operations include
the lookup and insertion, which in turn define the studied
workload types (W1, W3-W6) and are also the key step in
W2. Specifically, we first study the impact of the AULID
design on these two operations, and then investigate the impact
of the adjustment strategy proposed in §III-D.

1) Impact of Different Designs on Lookup-Only Workloads:
To study the effectiveness of the proposed design, we compare
AULID against LIPP-B+ – an approach which directly adopts
LIPP as the inner nodes, and organizes the leaf nodes in the
same vein as B+-tree. We report the throughput of the Lookup-
only Workload (W1) in Table III. Across all datasets, AULID
outperforms LIPP-B+ and fetches fewer blocks.

TABLE III: Throughput Comparison of AULID and LIPP-B+
on Lookup-Only Workload (W1).

Metric Index COVID PLANET GENOME OSM

Thrpt LIPP-B+ 158,489 133,404 153,851 104,659

AULID 164,897 141,543 163,825 123,749

Blocks LIPP-B+ 2.15 2.72 2.25 3.30

AULID 2.07 2.50 2.07 2.96

The performance of AULID is attributed to our read opti-
mization strategies (§III-B3), packed array design, and two-
layered B+-tree nodes (§II-C2). The first helps reduce the
number of blocks being fetched, and the latter two help reduce
the tree height.

TABLE IV: Extra Fetched Blocks under Different Optimiza-
tions

Dataset w/o Opt. Fulfill ScanFwd Fulfill & ScanFwd
COVID 26,107 18,337 9,266 277

PLANET 59,711 52,619 30,090 21,027
GENOME 47,229 40,727 9,456 710

OSM 30,148 22,368 23,232 14,924

Benefits of Read Optimizations. Recall §III-B3, in AULID,
there are two cases that may incur additional I/O costs: Case

1 - located in the predecessor of the target leaf node and
require an additional block being fetched; Case 2 - located in a
NULL slot but need to scan forward until the next DATA slot is
found. For the first case, AULID scans forward (ScanFwd) to
determine whether the current block has another DATA slot.
For the second case, AULID fulfills (Fulfill) the empty slot
with the next DATA slot during a bulkloading process.

With the Fulfill optimization, AULID avoids extra blocks
in Case 2. All of the fetched extra blocks in the Fullfill
optimization are stemming from Case 1 (the third column in
Table IV). From Table IV, we observe that most additional
fetched blocks are from Case 2. With the ScanFwd optimiza-
tion, AULID significantly reduces the number of extra fetched
blocks for COVID, PLANET, and GENOME. With the Fulfill
optimization, AULID avoids fetching extra blocks in Case 1.

When enabling both operations, AULID can reduce the
number of extra fetched blocks by at least 50%, particularly
for COVID and GENOME. By default, we only enable the
ScanFwd optimization, which can reduce 0.08, 0.15, 0.18,
and 0.03 blocks per query for COVID, PLANET, GENOME,
and OSM, respectively. Thus, improvements in AULID on
COVID and GENOME in Table III are produced by ScanFwd
optimization only.

TABLE V: Impact of Packed Array and Two-Layer B+-tree
on the Average DATA Slot Height and Storage.

Metric Index COVID PLANET GENOME OSM OSM800

Avg. Height LIPP-B+ 1.00 1.60 1.01 2.29 2.28

AULID 1.00 1.36 1.00 1.83 1.93

Storage (GB) LIPP-B+ 4.27 4.47 4.28 5.11 19.51

AULID 4.27 4.28 4.27 4.29 15.77

Benefits of Data Structure Design. The design of the packed
array and the two-layer B+-tree node in AULID helps further
reduce the number of fetched blocks for the PLANET and
OSM datasets due to the lower tree height than LIPP-B+.

Table V reports the average node heights after a bulkload
on COVID and GENOME. AULID and LIPP-B+ both have
the minimal average node height, where most DATA slots are
located in the first level. However, for datasets with a larger
conflict degree, AULID has a smaller average node height.
This is because LIPP-B+ creates more nodes to eliminate
the number of conflicts in each dataset with a larger conflict
degree, which leads to a greater height. A lower tree height can
be achieved with the packed data structures discussed above,
and thus AULID requires less storage space than LIPP-B+ on
the hard datasets as shown in Table V.
TABLE VI: Throughput Comparison of AULID and LIPP-B+
on Write-Only Workload (W3)

Index COVID PLANET GENOME OSM
LIPP-B+ 111,017 100,430 109,631 76,865.4

AULID 111,669 104,816 107,661 91,707.1

2) Packed Array, Two-Layer B+-tree Nodes, and B+-tree
Styled Leaf Nodes for Write-Only Workloads.: Table VI re-
ports the throughput for the Write-Only workload (W3). We
observe that AULID and LIPP-B+ have similar performance



Fig. 14: Latency Breakdown of Write-Only Workload (W3).

Fig. 15: Latency Breakdown of Append-Only Workload.

Fig. 16: Inner Nodes’ Latency Breakdown of Append-Only
Workload.

for COVID, PLANET, and GENOME, but AULID outperforms
LIPP-B+ by 1.19x on OSM.

We break down the insertion process into three steps: (1)
the search step (Search) to find the leaf node that will hold
the new key-payload pair, (2) the insertion step on a leaf
node (Leaf), and (3) the update step in the inner nodes
(Inner). From Figure 14, we can see that the main overhead is
brought by the first two steps. The overhead from indexing the
new key-block pairs in the inner nodes (Inner) is negligible.
AULID and LIPP-B+ update the inner nodes when a leaf node
is split. When compared against LIPP, both have fewer SMO
operations. For example, on GENOME, AULID and LIPP-B+
only require 49,038 SMOs on the leaf nodes, where the leaf
nodes must be split; in contrast, LIPP requires 4.6M SMOs and
most of them are caused by creating LIPP nodes to eliminate
conflicts. On OSM, AULID has a more efficient Search step
than LIPP-B+. The design of the packed array and the two-
layer B+-tree nodes in AULID consistently results in shorter
paths to leaf nodes, and hence smaller search cost.

TABLE VII: Throughput Comparison of AULID and LIPP-B+
on Append-Only Workload

Index COVID PLANET GENOME OSM
LIPP-B+ 144,432 153,060 152,633 153,214

AULID 182,732 188,015 187,886 184,051

Hot Region Insertions. Another potential problem with LIPP
is insertions in a hot region which occur in the inner nodes.
This produces a high number of conflicts and triggers addi-
tional SMOs. We use an Append-Only workload to analyze
this case. The throughput and latency breakdown for this case
are shown in Table VII and Figure 15, respectively. To support
new key-payload pairs, AULID and LIPP-B+ index the last leaf
node in the meta-node. Thus, they have similar performance
on the Search and Leaf in Figure VII.

AULID has a lower latency when updating the inner nodes
(Inner) across all datasets. To study the overhead of the inner

Fig. 17: Throughput under Different Settings. The dashed line
indicates the throughput of the corresponding workload with
the same color without any adjustments.

nodes, we further break down the process of the inner nodes
into five steps: (1) search to find a slot to hold the new key-
block pair (Search), (2) create a new node or convert the node
type (Create), (3) insert the key-block pair into a DATA slot
(Insert), (4) adjust the tree structure (Adjust), and (5) update
the statistics for later adjustment operations (Update).

In Figure 16, we observe that, except for the Insert, AULID
has a lower latency than LIPP-B+. The packed array and two-
layer B+-tree node design of AULID yield a shorter path to
target slots holding the new key-block pairs, which contributes
to lower search and update times. Moreover, conflicts in the
Append-Only workload require more operations when creating
LIPP nodes and adjusting tree structures in LIPP-B+. For
example, AULID only requires 1,163 and 37 SMOs in creating
new nodes and adjusting the tree structure, while LIPP-B+
requires 38,837 and 1,625 SMOs, respectively.

3) Adjustment Study: Last, we study the effectiveness of
index adjustments and provide an analysis on the parameters
in AULID – α and β presented in §III-D. We use the OSM
dataset, and build an initial index using 50M keys. Then,
another 50M queries are issued with different write ratios,
just as in W3-W6. To study the impact of α and β, we
set β = 1.07 and α = 0.0025 as the default. Using small
default values makes us study the impact of other parameters
in isolation. Figure 17 illustrates the throughput when using
different settings. We also report the throughput without ad-
justing the index (the dashed lines). In Figure 17, we observe:
(1) The index adjustment in AULID significantly improves the
throughput, especially for workloads with writes. (2) Larger
values of α and β usually result in worse performance, and
the workloads with more writes are more sensitive to α and
β. If index is not adjusted, certain regions in the inner nodes
can result in longer paths to the leaf nodes. This incurs more
reads to fetch leaf nodes and more writes to update statistics
on disk. The default values of α (0.05) and β (1.2) in AULID
result in good performance across all tested workloads.

E. Impact of Block Size

In Figure 18, we show the lookup-only workload perfor-
mance under different block sizes. With the same search key
distribution across all testing datasets, B+-tree has the same
average fetched block count in all datasets. The number of
blocks fetched by AULID does not change significantly when
the block size is varied. The position prediction in AULID is
highly accurate. When the block size is 16 KB, the height of



Fig. 18: Impact of Block Size.
B+-tree decreases for a larger fanout. Thus, the fetched block
count is reduced significantly. Regardless, AULID fetches
fewer blocks compared to the B+-tree across all settings.

V. RELATED WORK

Learned Indexes Outside Main Memory. The authors
of [10, 1] studied how to use learned indexes on disk in a
log-structured merge tree (LSM) [11]. A learned model is
constructed for each Sorted Strings Table (SSTable), which is
immutable after being created. The LSM framework supports
efficient writes at the cost of reads. Two recent studies [14, 13]
focus on the larger than main memory setting, where part of
the index is pinned in main memory, and different caching
strategies are proposed. TreeLine [14] uses the partitioning
method proposed in PGM [6] to generate leaf nodes, and
uses a B+-tree to index the nodes. The B+-tree in TreeLine is
pinned in main memory, and a record-level caching strategy
is used to cache frequently accessed items. FILM [13] builds
a PGM index in main memory, and uses one bit for each item
to indicate the item location – in main memory or on disk.
Also, FILM introduces a global chain and a local chain to
organize the segments in the last level and the items in the
segment, respectively. Lan et al. [8] present a comprehensive
experimental study of on-disk learned indexes. All of our
observations align with their conclusions as well.

FILM and TreeLine have considered caching techniques.
Based on the results shown in Figure 8 [14], record-level
caching is the biggest overall contributor to the performance
gains. As a standalone component in TreeLine, record-level
caching could also be directly adopted by AULID. FILM
however is designed for append-only insertions, and we allow
arbitrary insertions. Supporting append-only insertions allows
FILM to use PGM [6] as the index structure, which has the
smallest index size when compared to other index structures,
allowing it to use any remaining space for caching.
Learned Indexes in Main Memory. Kraska et al. [16] first
proposed the idea of a learned index. A hierarchy of mod-
els, called RMI, was built to replace a B+ Tree on sorted
1-dimensional data. Given that RMI only supports lookup
queries, subsequent studies [4, 6, 7, 5, 17, 18] develop tailored
indexes to support index modification. The FITing-tree [5]
replaces the last layer of a B+tree with model-based search and
supports insertions by introducing buffers for each segment.
PGM [6] uses a similar idea to the FITing-tree but leverages
model-based search for every layer based on an optimal
partitioning algorithm [19]. PGM handles arbitrary insertions

in an LSM tree [11] style manner. Although FITing-tree and
PGM leverage model-based search, additional binary search
operations are needed. ALEX [4] inserts a key-payload pair
using model prediction, and hence manages to have accurate
predictions in the inner nodes without a binary search. For
each data node (leaf node), ALEX uses a gapped array, and
an exponential search is used to find the target position. Model
predictions in LIPP [7] are accurate in every layer. LIPP has
been shown to have better performance in practice than other
learned indexes in most settings [9]. However, LIPP requires
much more memory and is not efficient for a range query.
Wu et al. [20] use Normalizing Flows [21] to transform a
dataset so that it can be easily modeled with linear model,
and extend the idea of LIPP. CARMI [22], a cache-aware
learned index, designs novel partitioning algorithms and a
prefetching mechanism. Several studies conduct experimental
studies [15, 9, 23], theoretical analysis [24], and performance
analysis [25]. There are also studies on read-only case [26, 27,
28] and on boosting B+-tree performance [29, 30]. Several
other learned indexes have also been proposed for secondary
indexes [31, 32], for multi-dimensional data [33, 34, 35],
spatial data [36, 37, 38, 39], and string data [40, 41].
Learned Index With Concurrency Support. Among the
in-memory learned indexes, XIndex [42], FINEdex [43],
ALEX+[9], and LIPP+[9] can support concurrent operations.
All of them use optimistic locking – associating a versioning
lock to each node. Since the node size is larger than a single
block in the leaf node, TreeLine [14] proposes several locking
strategies based on node-level lock and block-level lock to
support concurrent operations on LSM data structures. Aligned
with the latest study on the larger than main memory case [13],
we focus on the single-threaded setting in this work. In a
fully on-disk learned index with varying sizes of nodes and
blocks, the node-level lock and the block-level lock should be
introduced simultaneously. Without a novel mechanism, one
cannot achieve consistent scalability in a multi-core setting
when using a block-level lock. Although TreeLine [14] has
introduced these two locks, its inner nodes are pinned in main
memory, which is much easier than the above case. We believe
our work is the first step to solve this problem.

VI. CONCLUSION

We propose AULID, a simple yet efficient on-disk learned
index. We propose five principles to build a learned index on
disk, focusing on reducing the I/O cost, the main bottleneck for
disk-resident indexes. We carefully craft the index structure,
propose the query processing algorithms, and introduce an
index adjustment mechanism to meet these principles. AULID
outperforms all the baselines across a wide range of settings.
Our evaluation shows that AULID has competitive storage cost
to B+-tree (the smallest of the alternatives), and achieves up to
2.11x, 8.63x, 1.72x, 5.51x, and 8.02x higher throughput than
FITing-tree, PGM, B+-tree, ALEX, and LIPP respectively.
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