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Abstract—Multi-armed bandits have long been known to enjoy
optimal long-term performance, with sub-linear cumulative re-
gret bounds standard. Recent developments take the performance
of early rounds into consideration by ‘warm-starting’ bandits via
incorporating pre-existing information into initialisation. Unfor-
tunately, existing warm-start approaches are brittle to differences
in the reward distributions between pre-training and deployment
phases. This paper considers one such contextual bandit setting,
where the same linear relationship relates contexts and rewards in
pre-training and deployment phases, but only up to (unknown)
constant scaling. A probabilistic model is proposed to capture
this novel transfer learning problem, and a simple algorithm is
derived as a maximum a posteriori point estimate. We present a
regret bound for our method, with empirical evaluation across
a range of datasets and against several cold- and warm-start
baselines. A real-world motivated experiment on database index
selection demonstrates non-linear modelling via neural network
feature embeddings.

Index Terms—multi-armed bandits, warm-start, pre-training

I. INTRODUCTION

Multi-armed bandits (MABs) [1][2][3] have been studied
and applied widely thanks to sub-linear cumulative regret
bounds and practical algorithms. Compared to the more gen-
eral framework of reinforcement learning, a contextual MAB
acts based on current state to maximise a reward that may
depend on given state and action taken. However specific
to the MAB setting, state is independent of previous states
and actions. This seemingly minor difference eliminates the
need for MAB learners to plan, and provides for the simplest
setting for balancing exploration-exploitation while offering
significant practical utility. Many applications of sequential
decision-making under uncertainty use bandit learners, from
news [4], movie [5], crowd-sourcing recommendation [6],
strategic playing [7], software testing [8], to database index
selection [9], [10], [11], query optimisation [12], and adaptive
online query plan processing [13].

Although long-term cumulative regret remains an important
performance metric of bandit learners, short-term performance
has emerged as an important consideration in practice. Were
a bandit deployed to optimise database system performance,
an administrator may not be willing to suffer terrible system
performance over several dozen rounds as the bandit approxi-
mates a performant policy especially if each round spans a day.

§R. Malinga Perera worked as a PhD candidate at the University of Mel-
bourne. This paper describes work performed at the University of Melbourne
and is not associated with Amazon.

Known as the cold-start problem [14] in recommendation sys-
tems, the poor early performance of bandit learners originates
from the demand of balancing exploitation with exploration
necessary to attain its long-term sub-linear regret guarantee.

The problem in warm-starting bandits bears similarity to the
conservative bandit problem [15]. For non-contextual bandit
problems, an approach was proposed by [16]. Many methods
have also been proposed for the contextual variant. For exam-
ple, [17] addressed the cold-start problem via metric learning
and graph regularisation while [18] employed an additional
bandit to help each arm choose the user passively in an item-
user problem setting. Another warm-starting approach is to
group bandit arms into clusters, where arms coming from
the same cluster intuitively behave similarly. This realisation
was used extensively by [19], [20], [21], [22] and [23]. In
some cases, historical data containing similar information to
the bandit rounds exist. These data can be used to pre-train
the bandit prior to its deployment. This pre-existing dataset is
the core of the recent development of warm-starting bandits
by [23], [24], [25] and [26], where the last two notably take
the possibility of prior misspecification into account. This
development mirrors parallel research in deep learning where
pre-trained large language models [27], models in speech
recognition [28] and vision [29][30], are now the norm.

Despite positive progress towards warm-starting bandits
with the availability of pre-training data, any kind of reward
distribution drift between pre-training and deployment phases
presents a major challenge to today’s methods. For example,
units for rewards being mismatched can lead to counterpro-
ductive warm start, where performance may be inferior to
cold start. This may occur even when the reward distribution,
and its dependence on context, is otherwise unchanged, since
training a value function to predict two very different scales
of rewards may fail spectacularly. As an example, the rewards
in adaptive query processing within databases [13] measure
total elapsed processing time, which varies from machine to
machine with an unknown scaling factor. Therefore, using
a dataset obtained from one machine to pre-train a bandit
destined for a different machine would likely lead to very
poor short-term performance.

Building on the warm-start framework of [26], we develop a
practical algorithm to address exactly this challenge of rescal-
ing rewards, with an accompanying regret bound. Experiments
following [25] and [26] and on synthetic data demonstrate



state-of-the-art performance. The real-world experiment to au-
tomate index selection in a highly non-linear database system
with our algorithm demonstrates its potential when LinUCB
is applied on top of a neural network which also supplies the
bandit’s initial weights.

II. BACKGROUND: CONTEXTUAL LINEAR BANDITS

The contextual multi-armed bandit problem is a sequential
decision-making task. At round t = 1, 2, . . . , T the bandit:

1) observes k actions (or arms), along with their context
vectors xt(i) ∈ Rd for each arm i ∈ [k] = {1, . . . , k};

2) selects an action (or pulls an arm) it ∈ [k]; and
3) observes scalar Rit(t), a random reward for the chosen

arm it at time t, sampling from a stationary distribu-
tion on the arm, conditionally on context. Rewards are
independently drawn over rounds.

Notably an arm’s rewards are only observed by pulling that
arm. The goal of the MAB is to choose a sequence of arms
maximising the expected cumulative reward, equivalent to
minimising the cumulative regret at round T , formally defined
as:

Reg(T ) =

T∑
t=1

E[Ri⋆t
(t) | xt(i

⋆
t )]− E[Rit(t) | xt(it)] ,

where i⋆t ∈ argmaxi∈[k] E[Ri(t) | xt(i)], which is an arm
yielding the maximum expected reward at round t given
the contexts are known. One important metric for a bandit
algorithm is its long-term performance, which is typically
sub-linear in T , implying that the average regret Reg(T )/T
approaches zero as T approaches infinity—a property known
as Hannan consistency.

A linear contextual bandit problem is a contextual bandit
setting in which the (expected) reward is linear in the context
vector. Specifically, we model the reward as a random variable
satisfying

rt(i) = Ri(t) | xt(i) = θ⋆(i)
Txt(i) + ϵt(i) ,

where θ⋆(i) ∈ Rd is a latent variable vector for each arm i
and ϵt(i) is conditionally R-subgaussian noise.

Since the reward model is linear, it is natural to apply
regularised empirical risk minimisation to estimate the latent
variable via (linear) ridge regression: θ̂t = V −1

t bt, where

Vt = λI +

t−1∑
s=1

xs(is)x
T
s (is) , bt =

t−1∑
s=1

xs(is)rt(is) ,

with λ > 0 being the regularisation hyperparameter. We
discuss three algorithms considered in this paper, built on
this parameter estimate. These span the standard approaches
to (cold-start) linear contextual bandit learning.

a) ϵ-Greedy: This relatively crude approach explores by
pulling an arm uniformly at random with small probability
ϵ and otherwise greedily exploits by pulling any arm in
argmaxi∈[k] θ̂

T
t xt(it) uniformly at random with probability

1− ϵ.

b) LinUCB: Linear contextual UCB [4] follows the
upper confidence bound (UCB) principle of pulling an arm
that maximises an optimistic value function: added to a
maximum likelihood estimate of an arm’s reward is an
upper confidence bound which effectively provides an ex-
ploration boost to under-explored arms. Formally we pull

it ∈ argmaxi∈[k] θ̂
T
t xt(i) + ρR

√
xt(i)TV

−1
t xt(i). This

provides a more nuanced trade-off between exploration and
exploitation.

c) LinTS: The linear Thompson sampler [31][32] em-
ploys the general approach of Thompson sampling, whereby
a Bayesian posterior estimates future rewards, and to act, we
simply draw a parameter from the posterior then pull greedily.
The randomness introduced by the sampling ensures sufficient
exploration for long-term optimality. We may introduce a
random perturbation term to our current parameter estimate,
to implement LinTS: θ̃t = θ̂t + βt(δ

′)V
−1/2
t ηt, where β(δ)

is scalar and ηt is a random perturbation. We choose an arm
with the highest value of θ̃Txt(i). [32] has shown that with
probability at least 1 − δ, it is sufficient for the distribution
of ηt to follow a certain concentration and anti-concentration
property, to yield a sub-linear regret bound. Meanwhile, the
scalar βt(δ) is chosen such that

βt(δ) = R

√
2 log

det(Vt)1/2 det(V1)−1/2

δ
+
√
λS ,

with S being the upper bound of the true parameter’s ℓ2-norm
∥θ⋆∥.

III. WARM STARTING LINEAR BANDITS WITH LATENT
REWARD SCALING

Suppose that we have a pre-training phase prior to deploy-
ment. This pre-training setting might involve bandit interaction
(for example training a bandit to optimally configure a devel-
opment machine), or it might offer a non-interactive supervised
regression dataset. Irrespectively, a true (optimal) weight pa-
rameter µ⋆ ∈ Rd minimises risk when predicting rewards in
this pre-training phase. This parameter is unobserved. After
pre-training is complete, we have our estimate of µ⋆, given
by µ̂.

In the next subsection we will expand on how this pre-
trained estimate may be used to warm start the deployment
phase of contextual bandit learning. Subsequently we will
detail our rescaled rewards setting and present an algorithm
for warm starting under rescaled rewards. We will then present
a regret bound for our approach.

A. Warm-Start Basic Model

We follow [26] who assume that the optimal (but unobserv-
able) deployment weight parameter θ⋆ is related to the true
pre-training weight µ⋆ via θ⋆ = µ⋆+ δ̄⋆, where δ̄⋆ is the true
concept drift between the two datasets. A Bayesian perspective
suggests employing random variables θ = µ+ δ̄ for all latent
parameters. The basic principle of the [26] approach is that
one could model the drift instead of the full weight parameter
θ. Any randomness we might have had in µ (due to using a



posterior to summarise the pre-training phase) can be absorbed
into the second term without loss of generality, and so the new
drift is modelled around µ̂, taking: θ = µ̂+ δ.

Since µ̂ is deterministic (as we condition on it), the problem
of estimating θ reduces to inferring δ. By our reward model
assumption, we have

yt(i) = rt(i)− µ̂Txt(i) = δT⋆ xt(i) + ϵt(i) ,

which can be estimated using ridge regression, this time with
δ as the weight. The point estimate is δ̂t = V −1

t bt, where

Vt = R2V1 +

t−1∑
i=1

xix
T
i , bt =

t−1∑
i=1

yixi ,

and V1 = R2(Σµ + α−1Id)
−1 as parameter of similarity

between datasets α and covariance of pre-training dataset’s
weight Σµ.

B. Rescaling Rewards via Recalibration

We now introduce this paper’s reward distribution shift
setting, where pre-training phase rewards are rescaled in the
deployment phase. Specifically, we assume that there exists
some unknown scalar κ which scales pre-training rewards as:
θ = κµ+δ. Following the above basic warm-start setting, we
model δ as having a Gaussian distribution.

Now given an intermediate recalibration phase between pre-
training and deployment, assume we observe a supervised set
of contexts and rewards (x1, r1), . . . , (xn, rn).1 A maximum
likelihood estimate (MLE) of κ can then be found by minimis-
ing

∑n
i=1(ri − (κµ̂ + δ)Txi)

2. To address short-length pre-
training phases we may regularise the drift parameter with a
penalty on the ℓ2-norm leading to the following minimisation
objective

L(κ, δ) =

n∑
i=1

(ri − (κµ̂+ δ)Txi)
2 + λ∥δ∥22 .

To simplify our derivation’s notation, we introduce matrices
r = [r1, . . . , rn]

T and X = [xT
1 , . . . ,x

T
n ]

T , after which we
may rewrite the objective function as

L(κ, δ) = ∥r −X(κµ̂+ δ)∥22 + λ∥δ∥22 . (1)

Algorithm 1 solves this minimisation problem, to estimate how
to rescale a pre-trained µ̂ using a recalibration dataset X, r.
This rescaling serves as a bridge between reward distribution
shifted pre-training/deployment phases and current warm-start
methods such as [26] which operate with standard contextual
bandits. Algorithm 2 describes how these methods are com-
posed, and is discussed following the next lemma.

Lemma 1. Algorithm 1 produces rescaling estimates δ̂t, κ̂t
that exactly estimate the MAP for log-posterior Equation (1).

1This recalibration phase need not be distinct. It could be a small number
of rounds at deployment if the user is willing to run the policy parametrised
by µ̂ in parallel. Our approach is agnostic to the specific source of this data.

Algorithm 1 Rescale Pre-trained Rewards

Require: recalibration training set X, r, pre-trained parame-
ters µ̂, regularisation hyperparameter λ > 0

1: V −1
t ← (λI +XTX)−1

2: d← ∥µ̂∥2
I−λV −1

t

// ∥c∥A denotes
√
cTAc

3: if d = 0 then
4: κ̂t ← 1
5: else
6: κ̂t ← 1

d ⟨µ̂,X
Tr⟩V −1

t
// ⟨u,v⟩A denotes uTAv

7: end if
8: δ̂t ← V −1

t XT (r − κXµ̂)
9: return κ̂t, δ̂t

Proof. We find the extrema by taking the partial derivatives
with respect to κ and δ and set them to zero, noting minimality
is assured by convexity, yielding:

δ̂t = (λI +XTX)−1XT (r − κ̂tXµ̂)

κ̂t =
1

b− a
µ̂T (I −XTX(λI +XTX)−1)XTr ,

where we have defined a = ∥µ̂∥2XTX(λI+XTX)−1XTX

and b = ∥µ̂∥2XTX . Now consider M = XTX(λI +
XTX)−1XTX , thus:

M = XTX(λI +XTX)−1(XTX + λI − λI)
= XTX − (XTX + λI − λI)(λI +XTX)−1λ

= XTX − λI + λ2(λI +XTX)−1 ,

which leads to a simpler expression of b− a as follows:

b− a = µ̂TXTXµ̂− µ̂TMµ̂

= µ̂TXTXµ̂−
µ̂T (XTX − λI + λ2(λI +XTX)−1)µ̂

= λµ̂T (I − λ(λI +XTX)−1)µ̂

= λ∥µ̂∥2
I−λV −1

t
.

Now, the numerator for κ̂t can be simplified further:

(b− a)κ̂t = µ̂T (I −XTX(λI +XTX)−1)XTr

= µ̂T (I − (I − λ(λI +XTX)−1)XTr

= λµ̂T (λI +XTX)−1XTr

= λ⟨µ̂,XTr⟩V −1
t

,

yielding a much simpler expression for κ̂t:

κ̂t =
⟨µ̂,XTr⟩V −1

t

∥µ̂∥2
I−λV −1

t

as required.

C. Warm Start Under Rescaled Rewards

Algorithm 2 outlines the key stages of warm-started bandit
learning under rescaled rewards, bringing together our algo-
rithmic contribution. First a pre-training oracle ω(·) is called to
produce an estimate µ̂. This oracle might involve an interactive



bandit learning session, supervised regression on batch context
and reward data, or manually estimated parameters coming
from a domain expert. Our approach is agnostic to the specifics
of this first oracle. Second, a recalibration phase produces
recalibration data via a call to r(·)—again we are agnostic
to how this phase operates but foresee either a small separate
source of destination (deployment) environment contexts and
rewards or operation of the pre-trained parameters as a policy
for a number of rounds of deployment without any need to
update the bandit during that period. Third, Algorithm 1 is
run to rescale the obtained µ̂ with recalibration data. Finally,
the deployment phase can begin by initialising any standard
bandit like ϵ-greedy, LinUCB or LinThompson with the pre-
trained and rescaled policy instead of a “blank” initial policy,
parameterised by κµ̂+ δ.

Estimating Warm-Start Covariance While Algorithm 2
deploys bandits requiring only a point estimate for weights
θ⋆, LinUCB and LinThompson require a covariance estimate
also [26]. Assuming a deterministic model θ = κµ, we may:
obtain a covariance estimate Σ̂µ alongside µ̂ from pretraining
line 1; discard δ estimated in line 3; and replace line 4
with Deploy m(κµ̂, κ2Σ̂µ). The rescaled covariance estimate
follows immediately from the definition of covariance under a
random variable’s linear transformation. Alternatively, we can
absorb all this randomness into the hyperparameter λ and call
line 3 and line 4 every round before we stop updating κ.

Algorithm 2 Warm-Start MAB Under Latent Reward Scaling

Require: warm-start oracle ω(·), recalibration oracle r(·),
deployment MAB m(µ0) requiring an initial parameter
vector, hyperparameter λ > 0

1: µ̂← ω(·)
2: X, r ← r(·)
3: δ, κ← Rescale(X, r, µ̂, λ) // Algorithm 1
4: Deploy m(κµ̂+ δ)

D. Regret Analysis

We state a cumulative regret bound for the deployment
phase of Algorithm 2 when used with a LinThompson learner.
Its proof is a direct consequence of [26] and [32] by providing
valid initialisations for both µ̂′, Σ̂′

µ.

Theorem 2. Consider Algorithm 2 with m(κµ̂, κ2Σ̂µ) deploy-
ing LinThompson. If the deployment phase contexts x, concept
drift δ, and noise {ϵt}t satisfy all of:

1) ∥x∥ ≤ 1 for all x ∈ X ;
2) there exists constant S ∈ R+ such that ∥δ∥ ≤ S;
3) Letting F1 be the information on prior knowledge,
{ϵt}t is conditionally R-subgaussian process and
is a martingale difference sequence with Fx

t =
(F1, σ(x1, r1, · · · , rt−1,xt)) as its filtration; and

4) LinThompson samples its perturbation random vectors
η from a standard normal,

then for δ the regret bound’s confidence, δ′ = δ/(4T ), and
βt(δ), γt(δ) respectively a confidence region radius for ridge

regression and a scaled version thereof, and Vt a scaled
precision matrix within LinThompson, each defined in full in
[26], with probability at least 1 − δ, the cumulative regret
of deployed LinThompson can be decomposed as Reg(T ) =
RTS(T ) +RRLS(T ) with upper bounds:

RTS(T ) ≤ 4γT (δ
′)

p

(√
2T log

det(Vt+1)

det(R2V1)

+

√
8T

λmin(R2V1)
log

4

δ

)

RRLS(T ) ≤ (βT (δ
′) + γT (δ

′))

√
2T log

det(Vt+1)

det(R2V1)
.

As suggested in the previous section, we may update κ
and δ every round and absorb the randomness we have in
µ̂ into λ. This approach requires further analysis since there
is randomness in the estimator for κ. We next present a
confidence ellipsoid bound, which plays a crucial role in the
regret bound of many bandit algorithms.

Theorem 3. For a given initial guess µ̂, with randomness
absorbed into λ, consider calling Algorithm 1 for every round
in the calibration phase, until round nc. With Vt = λI +∑t−1

i=1 xix
T
i , if all the context vectors xi and the noise {ϵt}t

satisfy all of the following conditions:

• Letting F1 be the information on prior knowledge, {ϵt}t
is a Fx

t -measurable conditionally R-subgaussian process
and is a martingale difference sequence with Fx

t =
(F1, σ(x1, r1, · · · , rt−1,xt)) as its filtration;

• ∥x∥ ≤ L for all x ∈ X ; and
• x is Fx

t−1–measurable,

then for any δ ∈ (0, 1), we have with probability at least 1−δ:

∥θ̂t−θ⋆∥Vt

≤ R

√
2 log

(
1

δ

)
+ d log

(
1 +

(t− 1)L2

λd

)

+ λϕkR

√
2 log

(
1

δ

)
+ d log

(
1 +

(k − 1)L2

λd

)
+ λ

∥∥∥θ⋆ − proj
I−λV −1

k

µ̂ θ⋆

∥∥∥
V −1

k

,

hold simultaneously for t ≥ 2, where we have defined:

k = min{t, nc + 1}

ϕk = min

{
1

λmin(XT
k−1Xk−1)

,

∥µ̂∥2
V −1

2

∥µ̂∥2 − λ∥µ̂∥2
V −1

2

}

projAµ̂ θ⋆ =
⟨µ̂,θ⋆⟩A
∥µ̂∥2A

µ̂ .



Proof. We now detail the derivation of the confidence bound.
We begin by rewriting our estimator θ̂t, following [33] closely:

Xt =

x
T
1
...

xT
t

 , rt =

r1...
rt

 , ϵt =

ϵ1...
ϵt

 .

To avoid clutter, we further abbreviate X = Xt−1, r = rt−1

and ϵ = ϵt−1. With these notations, our estimator for the
parameter at round t can be written with initial scaled precision
matrix λI as V as follows:

θ̂t = κ̂t µ̂+δ̂t

= κ̂t µ̂+(V +XTX)−1XT (r − κ̂tX µ̂)

= κ̂t µ̂+(V +XTX)−1XTr−
(V +XTX)−1(XTX + V − V )κ̂t µ̂

= (V +XTX)−1(V κ̂t µ̂+XTr) ,

which can be thought of as a weighted average between κ̂t µ̂
and XTr. We next expand this by using r = X θ⋆ +ϵ:

θ̂t = (V +XTX)−1(V κ̂t µ̂+XT (X θ⋆ +ϵ))

= (V +XTX)−1V κ̂t µ̂+

(V +XTX)−1(XTX + V − V )θ⋆ +

(V +XTX)−1XT ϵ

= θ⋆ +(V +XTX)−1V (κ̂t µ̂−θ⋆)+

(V +XTX)−1XT ϵ .

Therefore, for any c ∈ Rd, we have:

cT (θ̂t − θ⋆) = cT (V +XTX)−1V (κ̂t µ̂−θ⋆)+

cT (V +XTX)−1XT ϵ

= ⟨c,V (κ̂t µ̂−θ⋆)⟩V −1
t

+ ⟨c,XT ϵ⟩V −1
t

.

Since the matrix Vt is positive definite (hence V −1
t ), the inner

product is well-defined, so by the Cauchy-Schwarz inequality:

|cT (θ̂t − θ⋆)| ≤ ∥c∥V −1
t

(∥V (κ̂t µ̂−θ⋆)∥V −1
t

+ ∥XT ϵ∥V −1
t

)

Now letting c = Vt(θ̂t− θ⋆), so that ∥c∥V −1
t

= ∥θ̂t− θ⋆ ∥Vt

yields:

∥θ̂t − θ⋆ ∥Vt
≤ ∥V (κ̂t µ̂−θ⋆)∥V −1

t
+ ∥XT ϵ∥V −1

t
. (2)

At the start of the recalibration phase, we have V = λI ,
thus Inequality (2) may be simplified into:

∥θ̂t − θ⋆ ∥Vt ≤ λ∥(κ̂t µ̂−θ⋆)∥V −1
t

+ ∥XT ϵ∥V −1
t

.

For this analysis, we will assume that XTX is full rank
and 2 ≤ t ≤ nc + 1, so the eigenvalues of I − λV −1

t are:

λi(I − λV −1
t ) = 1− λλi(V −1

t )

= 1− λ

λ+ λi(XTX))

> 0 ,

which shows that I−λV −1
t is positive definite, hence defining

the inner product in the denominator of κ̂t.

Noting µ̂ is deterministic, we can separate κ̂t into the de-
terministic part and the random part by writing r = Xθ⋆+ϵ:

κ̂t =
⟨µ̂,XTr⟩V −1

t

∥µ̂∥2
I−λV −1

t

=
1

∥µ̂∥2
I−λV −1

t

µ̂T (λI +XTX)−1XTXθ⋆+

1

∥µ̂∥2
I−λV −1

t

µ̂T (λI +XTX)−1XT ϵ

= κ̂det + κ̂ran .

Therefore, by the triangle inequality:

∥κ̂tµ̂− θ⋆∥V −1
t

= ∥κ̂detµ̂− θ⋆ + κ̂ranµ̂∥V −1
t

≤ ∥κ̂detµ̂− θ⋆∥V −1
t

+ ∥κ̂ranµ̂∥V −1
t

.

1) The Deterministic Part of the Error: In this section, we
will analyse κ̂det. Notice that the numerator can be written as:

µ̂T (λI +XTX)−1XTXθ⋆

= µ̂T (I − λ(λI +XTX)−1)θ⋆

= ⟨µ̂,θ⋆⟩I−λV −1
t

,

which yields:

κ̂det =
⟨µ̂,θ⋆⟩I−λV −1

t

∥µ̂∥2
I−λV −1

t

.

This expression has some geometrical interpretation. Upon
scaling µ̂ with this expression, we have:

κ̂detµ̂ =
⟨µ̂,θ⋆⟩I−λV −1

t

∥µ̂∥2
I−λV −1

t

µ̂ ,

which we realise as the weighted projection of θ⋆ onto µ̂.
What this means is that the correct magnitude for the initial
guess is not required. As long as µ̂ is parallel to θ⋆, our
algorithm will give the correct κ under a noiseless regime.

We now analyse the weight for the inner product by varying
the value for λ. Firstly, notice that limλ→0 κ̂det = ⟨µ̂,θ⋆⟩

∥µ̂∥2 .
Therefore, upon substituting this value, we have:

lim
λ→0

κ̂detµ̂ =
⟨µ̂,θ⋆⟩
∥µ̂∥2

µ̂ ,

which corresponds to the standard Euclidean projection of θ⋆
onto µ̂. On the other hand, λ can be tuned to be as large as
possible. To analyse this behaviour, we rewrite I − λV −1

t as
follows:

I − λV −1
t = I − (I +

1

λ
XTX)−1

= I − I −
∞∑
i=1

(− 1

λ
XTX)i

=

∞∑
i=1

(−1)i+1

λi
(XTX)i .



When λ is large, the first term dominates, hence:

lim
λ→∞

κ̂det =
⟨µ̂,θ⋆⟩ 1

λXTX

∥µ̂∥21
λXTX

=
µ̂T 1

λX
TXθ⋆

µ̂T 1
λX

TXµ̂
=
⟨Xµ̂,Xθ⋆⟩
∥Xµ̂∥2

.

Therefore, we have:

lim
λ→∞

κ̂detXµ̂ =
⟨Xµ̂,Xθ⋆⟩
∥Xµ̂∥2

Xµ̂ ,

which is the projection of the noiseless reward vectors onto
the predicted reward vectors.

Therefore, the magnitude for the deterministic part of the
error can be written as:

∥κ̂detµ̂− θ⋆∥V −1
t

=
∥∥∥θ⋆ − proj

I−λV −1
t

µ̂ θ⋆

∥∥∥
V −1

t

,

which is the weighted norm of the orthogonal component of
θ⋆ with respect to µ̂ under the matrix transformation (I −
λV −1

t )1/2.
When XTX is not a full-rank matrix, the matrix I−λV −1

t

is no longer positive definite hence we lose our interpretation
of the projection, since the inner product is no longer well-
defined. However, our expression will remain correct as long
as ∥ µ̂ ∥I−λV −1

t
̸= 0, which will be the restriction of our

algorithm.
2) The Random Part of the Error: In this section, we will

analyse the random part of the error and we will assume that
our contexts are Fx

t−1–measurable. Firstly, by the Cauchy-
Schwarz inequality:

κ̂ran =
1

∥µ̂∥2
I−λV −1

t

⟨µ̂,XT ϵ⟩V −1
t

≤ 1

∥µ̂∥2
I−λV −1

t

∥µ̂∥V −1
t
∥XT ϵ∥V −1

t
.

Therefore,

∥κ̂ranµ̂∥V −1
t
≤
∥µ̂∥2

V −1
t

∥µ̂∥2
I−λV −1

t

∥XT ϵ∥V −1
t

= ψt∥XT ϵ∥V −1
t

.

The term ∥XT ϵ∥V −1
t

is common with the second term of
Inequality (2), so we begin by finding an upper bound to ψt.
Expanding its denominator:

∥µ̂∥2
I−λV −1

t
= µ̂T (I − λV −1

t )µ̂ = ∥µ̂∥2 − λ∥µ̂∥2
V −1

t
,

so that ψt can be written as:

ψt =
∥µ̂∥2

V −1
t

∥µ̂∥2 − λ∥µ̂∥2
V −1

t

=
1

∥µ̂∥2

∥µ̂∥2

V
−1
t

− λ

Therefore, ψt is maximised when ∥µ̂∥V −1
t

is maximised.

Moreover, since ∥µ̂∥2

∥µ̂∥2

V
−1
t

> λ, then ψt > 0 and we have

avoided the singularity point. Maximising ∥µ̂∥V −1
t

yields:

∥µ̂∥V −1
t
≤
√
λmax(V

−1
t )∥µ̂∥ .

Therefore, ψt can be bounded in terms of λmax(V
−1
t ) as:

ψt ≤
1

1
λmax(V

−1
t )
− λ

.

Now λi(V
−1
t ) = (λ + λi(X

TX))−1. Therefore, it must be
true that λmax(V

−1
t ) = (λ + λmin(X

TX))−1. Substituting
this value to the upper bound of ψt above gives us:

ψt ≤
1

λmin(XT
t−1Xt−1)

,

where X is rewritten as its full form, Xt−1.
Although the expression above is correct, it is not useful

when XTX is not full-rank as it tells us that λmin(X
TX) =

0, thus ψt is unbounded. However, it is often the case that
∥ µ̂ ∥I−λV −1

t
̸= 0 even though XTX is not full-rank. In other

words, we allow XTX to be a non-full-rank matrix as long
as µ̂ does not lie in the null space of I − λV −1

t .
We have previously concluded that ψt will be larger as
∥µ̂∥2

V −1
t

is increased. However, since xtx
T
t is positive semi-

definite for all t, we also have Vt ⪯ Vt+1, which implies that
V −1
t ⪰ V −1

t+1. Since substituting t = 1 will give us 0 in the
denominator, we step back and substitute t = 2 to give us
a non-zero value in the denominator. This gives us another
upper bound for ψt as:

ψt ≤
∥µ̂∥2

V −1
2

∥µ̂∥2 − λ∥µ̂∥2
V −1

2

.

Since the two inequalities above hold simultaneously, it must
be true that ψt is less than the minimum of the two upper
bounds. Therefore, we conclude that ψt ≤ ϕt , where we have
defined

ϕt = min

{
1

λmin(XT
t−1Xt−1)

,
∥µ̂∥2

V −1
2

∥µ̂∥2 − λ∥µ̂∥2
V −1

2

}
.

3) Putting it all together: Now we come back to Inequal-
ity (2). We can rewrite Inequality (2) as:

∥θ̂t − θ⋆ ∥Vt
≤ λ∥(κ̂t µ̂−θ⋆)∥V −1

t
+ ∥XT ϵ∥V −1

t

≤ λ
∥∥∥θ⋆ − proj

I−λV −1
t

µ̂ θ⋆

∥∥∥
V −1

t

+

λϕt∥XT ϵ∥V −1
t

+ ∥XT ϵ∥V −1
t

.

To bound ∥XT ϵ∥V −1
t

, we use the result presented by [33]
after assuming that all the contexts are ∥xt∥ ≤ L. Then, with
probability at least 1− δ,

∥XT ϵ∥V −1
t
≤ R

√
2 log

(
det(Vt)1/2 det(λI)−1/2

δ

)

≤ R

√
2 log

(
1

δ

)
+ d log

(
1 +

(t− 1)L2

λd

)
.

Notice that the two terms we are bounding are essentially
the same variable, thus the probability that both inequalities
hold is at least 1 − δ. We have finally arrived to the upper



bound of our confidence ellipsoid for 2 ≤ t ≤ nc + 1, which
is:

∥θ̂t − θ⋆∥Vt
≤ R

√
2 log

(
1

δ

)
+ d log

(
1 +

(t− 1)L2

λd

)
+

λϕtR

√
2 log

(
1

δ

)
+ d log

(
1 +

(t− 1)L2

λd

)
+

λ
∥∥∥θ⋆ − proj

I−λV −1
t

µ̂ θ⋆

∥∥∥
V −1

t

.

To analyse the upper bound for t ≥ nc+1, we may interpret
this as a new bandit with initial guess κ̂nc+1 µ̂+δ̂nc+1 and
initial scaled precision matrix V = Vnc+1. Inequality (2) still
applies under this condition, noting that κ̂t = κ̂nc+1 for t ≥
nc + 1. Therefore, upon substituting V = Vnc+1 and shifting
the round number:

∥θ̂t − θ⋆ ∥Vt
≤ ∥Vnc+1(κ̂nc+1 µ̂−θ⋆)∥V −1

t
+ ∥XT ϵ∥V −1

t
.

Now, again using V −1
t ⪰ V −1

t+1, and since t ≥ nc + 1, we
may bound the first term as:

∥Vnc+1(κ̂nc+1 µ̂−θ⋆)∥V −1
t

≤ ∥Vnc+1(κ̂nc+1 µ̂−θ⋆)∥V −1
nc+1

= ∥κ̂nc+1 µ̂−θ⋆ ∥Vnc+1

≤ λ
∥∥∥∥θ⋆ − proj

I−λV −1
nc+1

µ̂ θ⋆

∥∥∥∥
V −1

nc+1

+

λϕnc+1∥XT ϵ∥V −1
nc+1

.

This yields the following inequality:

∥θ̂t − θ⋆ ∥Vt
≤ λ

∥∥∥∥θ⋆ − proj
I−λV −1

nc+1

µ̂ θ⋆

∥∥∥∥
V −1

nc+1

+

λϕnc+1∥XT ϵ∥V −1
nc+1

+ ∥XT ϵ∥V −1
t

.

Notice that our upper bound for ∥XT ϵ∥V −1
t

includes the
upper bound for ∥XT ϵ∥V −1

nc+1
since our inequality holds

simultaneously for all t ≥ 0, thus both inequalities hold
simultaneously with probability at least 1− δ. Thus,

∥θ̂t − θ⋆∥Vt ≤ R

√
2 log

(
1

δ

)
+ d log

(
1 +

(t− 1)L2

λd

)
+

λϕnc+1R

√
2 log

(
1

δ

)
+ d log

(
1 +

ncL2

λd

)
+

λ

∥∥∥∥θ⋆ − proj
I−λV −1

nc+1

µ̂ θ⋆

∥∥∥∥
V −1

nc+1

holds simultaneously for t ≥ nc + 1.
Finally, combining two of the cases where 2 ≤ t ≤ nc + 1

and t ≥ nc+1 is done by simply substituting k = min(t, nc+
1) to the relevant quantities in the second and third terms,
which yields the desired result.

An important consequence of this theorem is that, even
though our algorithm is based on making a Gaussian noise

modelling assumption, our confidence ellipsoid bound applies
for any R–subgaussian noise.

Remark 1. The key idea of our algorithm is to notice that,
by warm-starting the bandit, we have a smaller value of
the sum of the second and the third terms of Theorem 3’s
bound compared to the cold-started bandit. However, as time
progresses, these terms start to grow and by halting updates
to the estimate of κ, the last two terms will be left as constant,
hence achieving the same or smaller error compared to a cold-
started bandit. Thus, assuming that our initial guess is good
enough, there exists an optimal number of recalibration phase
rounds n⋆c such that the sum of the last two terms achieves
its minimum. This depends on the contexts chosen during the
round which depends on the bandit algorithm. Minimising this
value requires future research on new bandit designs.

IV. EXPERIMENTS

We conducted experiments demonstrating the effectiveness
of our algorithm on artificial and OpenML datasets used
by [26] and [25] previously. For simplicity, with fewer hy-
perparmaters, we focus on Algorithm 2 using ϵ-greedy at
deployment.

a) Static Configuration: We refer to static, Algorithm 2
and the Section III setup of a fixed κ̂t: a small number of
rounds of the deployment phase are set aside to learn scalar
κ. During this recalibration phase, we choose arms uniformly
at random. This ensures consistency of Algorithm 1’s MAP
estimate, as samples of contexts and rewards are i.i.d. The κ
estimate is only calculated once at completing of recalibra-
tion, while the value of δ̂t in Algorithm 1 is calculated per
deployment round.

b) Dynamic Variation: An alternative dynamic approach
continues to update κ̂t in every deployment round. In this
regime, κ̂t updates indefinitely without fixing it after a pre-
determined number of rounds.

A. Artificial Dataset

Our artificial dataset provides ground truth not typi-
cally available. We set an arbitrary true parameter θ⋆ =[
0.1 0.3 0.5 0.7

]T
, shared between arms. Then, 105

rounds of data is generated with 10 arms. For each round t
and arm i, a random context vector xt(i) generated with i.i.d.
sampling from U(0, 1). The expected reward is then calculated
via θTxt(i) before noise ϵt(i) ∼ N (0, 0.252) is added. As the
true expected reward is known in all arms, all arms’ regrets
can be calculated.

The pretraining dataset is produced in a similar manner
with 104 rounds. The same method to generate the deploy-
ment dataset is repeated again using µ⋆ = 3

4θ⋆ as the true
parameter, leading to true κ⋆ = 4

3 .
In this experiment, the hyperparameters are chosen to be

λ = 10 and ϵ = 0.001. Another bandit is deployed as a pre-
training method. Four regimes are assigned on top of that: one-
cold start regime and three warm-start regimes with varying
methods of choosing κ̂t. One is oblivious to unit mismatch
(κ̂t = 1, equivalent to [26]), one has dedicated first few



Fig. 1: Artificial data results comparing cold start, warm start with
oblivious (no rescaling), dynamic, and static κ.

Fig. 2: Comparison between cold- and warm-start regimes on the
OpenML “Letters” dataset.

rounds (static) and one is updated every round (dynamic).
For the static method, we chose to calibrate the bandit at
round 4. Each experiment is repeated 10 times and the average
reward is recorded to account for randomness. Results are
shown in Figure 1. It can be seen that the cold start regime
performs the worst, followed by the warm start with oblivious
unit mismatch, then the dynamic calibration and the static
calibration performs the best. It is interesting to note that the
dynamic calibration performs the best at the beginning before
the static case overtakes it. This might be explained by the
fact that in the dynamic case, the last two terms in Theorem 3
are still growing with t.

B. OpenML Dataset

The experiments of [25] and [26] use OpenML datasets.
Here we use the same “Letters” dataset. Consisting of dif-
ferent properties or characteristics of letters along with the
actual letter presented, this dataset was originally designed for
classification. As is convention in bandit research, we adapt

this data to a bandit setting. 26 arms are assigned to the letters
‘A’ to ‘Z’. Contexts correspond to original features (properties
of the letter presented), so that xt(i) = xt(j) ∀i, j ∈ [26].
Naturally, to create different expected reward predictions per
arm, we use the disjoint model, necessitating the estimation
of 26 latent variables θ⋆(i) ∀i ∈ [26]. The bandit will guess
which letter is being presented, and at the end of the round
it will be given a cost of 1 if it guesses incorrectly and 0 if
it guesses correctly, that is, the cost is c(a) = 1(a ̸= y) for
arm a and true label y. Since the bandit models costs instead
of rewards, it is compelled to choose an action with minimum
cost as opposed to maximum reward.

The first 10% of the data—2000 rounds—is used to pre-train
each arm. The rewards of the remainder were scaled by 100
(simulating latent reward scaling) and used for the deployment
phase.

We assessed five approaches capable of tackling this prob-
lem: cold-start, warm-start with oblivious unit mismatch (i.e.,
κ̂t = 1), warm-start with the correct unit conversion (i.e.,
κ̂t = 100), warm-start with κ̂t updated in every round
(dynamic) and with κ̂t calibrated at round 100 (static). For
warm start with calibrated κ̂t, whether once or every round,
we learn different κ̂t per arm. The hyperparameter used is
ϵ = 0.0125 following [25], while the choice of λ was observed
to have little effect—matching findings of [26]—so we used
λ = 1. For static, we calibrate κ̂t at round 100 and ran a
random policy prior to round 100 for reasons described above.
To maintain the same effective number of rounds among all
approaches, we cut the first 10% of the data for the cold-start
regime, so that it starts at round 2001.

The experiment was repeated 10 times and the average cost
is calculated and then plotted in Figure 2. As for the artificial
data, cold start performs the worst, followed by warm starting
with oblivious unit reward mismatch, and warm start with one
recalibration. As we know the exact value κ = 100, we can
plot the ideal graph should the bandit learner have known the
true κ. This regime along with dynamic κ̂t warm start, similar
to this regime, yield the best performance.

a) Calibration Duration: The effect of calibration timing
is captured in Figure 3, assessed with the Letter dataset over 10
repetitions. The more calibration, the more rounds Algorithm 2
spends following a purely random policy. On the other hand,
rushed calibration observes insufficient rewards to estimate an
accurate κ. In some cases, not all arms’ rewards have been
observed, rendering the bandit unable to estimate κ. In this
case, recalibration at round 100 seems to be ideal. We have
also observed that calibration at around round 4k yields a
consistently performing disjoint model.

b) Linear Thompson Sampling: In Section III, we have
stated that Algorithm 2 can be performed while deploying
any one of several standard linear contextual bandits. As we
presented a regret bound for Linear Thompson Sampling, it
is natural to perform an experiment with LinThompson for
empirical validation. In this experiment, we examine four
regimes: cold start, warm start with oblivious unit reward
mismatch, warm start with the correct κ i.e., κ̂t = 100



Fig. 3: Effect of calibration duration with OpenML “Letters” dataset.

Fig. 4: Comparison between cold- and warm-start regimes with
LinThompson deployed on OpenML “Letters” data.

and warm start with static recalibration at round 100. We
choose hyperparameters λ = 1 as previously and β = 0.2
matching the selections by [26]. Figure 4 shows the cold-
start regime performing worst, followed by warm start with
κ̂t = 1. Warm starting with static recalibration performs
better than these approaches. As expected, the regime with
the correct κ performs best. This corresponds to an ablation
study demonstrating possible gain in better estimation of κ.

C. Database Experiment

Index data structures help databases execute queries (i.e.,
workload) faster by amortising query-time computation at
the expense of (modest) space overhead. However, the sheer
number of possible indices makes it difficult for human
database administrators to choose a useful set of indices (i.e.,
to tune the index). Multi-armed bandits have been employed
to solve this problem for unseen workloads by identifying a
performant set of indices [9], [10], [11]. However, cold-starting
a database’s bandit executes queries with an ineffective set of
indices, for the sake of exploration, leading to poor early round
performance and discouraging continued usage of the bandit.
On the other hand, most database systems are embedded with

Fig. 5: Database experiment using LinUCB.

a query optimiser capable of (inexpensively) estimating the
cost of a query under a set of indices. This cost is however not
measured in seconds—the unit used to minimise the execution
time in the deployment phase. Rather, artificial units of a
different scale are used to estimate work. Such a discrepancy
may be remedied by the automatic scaling provided by our
algorithm. In this experiment, our aim is to demonstrate the
ability of our bandit to take the query optimiser’s estimation
as our initial guess while giving the bandit learner freedom to
explore. It also demonstrates how our algorithm can adopt non-
linear models via a neural network context feature embedding.

a) Method: Similar to [9], in each round, we generate a
set of feasible arms (indices) based on individual queries. The
raw context is fed into a neural network which outputs a cost
estimate. We pre-train the network with the query optimiser’s
cost estimates as target outputs. Following [34], [35] and [36],
we take the value of the last hidden layer as context for our
bandit, and the negative of the last layer’s weights as our
initial guess µ̂. The negative is taken since we use −texc
as our reward, while texc is workload execution time. The
index is dropped at the end of each round. A total of 25
rounds are taken, the first of which involves no index, with
ensuing execution time acting as a measuring stick on future
rounds’ index quality. In this experiment, we use LinUCB with
exploration parameter α = 10, λ = 1, and dynamic κ̂t.

b) Network Architecture: The neural network has three
fully-connected hidden layers with 427, 161 and 61 neurons.
ReLU activation functions are used across all layers but the
last, which uses linear activations to mimic the linear model
of our bandit setting.

c) Results: Figure 5 demonstrates our algorithm per-
forming successfully with an accurate prior: the bandit rec-
ommends the same index deemed best by the query optimiser
having different unit reward, while maintaining a moderate
level of exploration. The former is important, i.e., in the case
where the query optimiser fails to produce accurate estimates
(common for complex real-world workloads, [37], [38], [39]),
the bandit will be able to mitigate misspecification via early
round exploration, showing promise even in advanced database
settings.



V. CONCLUSIONS

We have introduced a simple approach to accommodate
reward drift in the form of rescaling rewards, when transi-
tioning from pre-training to deployment in bandit learning.
We introduce this setting, motivated by applications such as
configuration management in database systems, where a bandit
for recommending index selection [9] might be pre-trained
on a vendor’s servers, and then deployed to a server having
different performance characteristics. The relationship between
context and expected rewards may be maintained between pre-
training and deployment, but only up to some latent constant.

We adopt a flexible framework for warm-starting common
linear contextual bandits. We employ a probabilistic model of
latent reward rescaling, compute exact MAP point estimates
from deployment phase data, and then plug the corrected
parameters in to the bandit initialisation. Two variations were
considered: correcting parameters once (static) or per round
(dynamic). Experiments with synthetic and OpenML datasets
demonstrate the effectiveness of our approach. An experiment
on database index selection demonstrates our algorithm’s
flexibility and ability to adopt non-linear models. Experimental
results are complemented by regret analysis.
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