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Abstract. Accurate traffic forecasting is pivotal for an efficient data-
driven transportation system. The intricate nature of spatial-temporal
dependencies and non-linearity present in traffic data has posed a signif-
icant challenge to the modeling of accurate traffic forecasting systems.
Lately, there has been a significant effort to develop complex Spatial-
Temporal Graph Neural Networks (STGNN) that predominantly utilize
various Graph Neural Networks (GNN) and attention-based encoder-
decoder architectures due to their ability to capture non-linear dependen-
cies in spatial and temporal domains effectively. However, conventional
GNNs limit explicit propagation of past information among nodes, while
attention-based models such as transformers do not support finer-grained
attention score distribution. In this study, we address the aforementioned
issues and introduce a novel STGNN namely, Spatio-Temporal Bipartite
Graph Attention Network (STBGAT) that allows explicit modeling of
past information propagation among nodes. Further, we present a het-
erogeneous cross-attention mechanism in a transformer to compute finer-
grained feature-wise attention distribution enabling the model to capture
richer and more expressive temporal dependencies. Our experiments re-
veal that the proposed architecture outperforms the state-of-the-art ap-
proaches proposed in recent literature.

Keywords: Graph Attention Network · Traffic Forecasting · Transform-
ers · Spatial Graph Attention Networks

1 Introduction

Transportation systems have become complex with the rapid growth of infras-
tructure and people’s needs. Thus, relevant stakeholders continuously invest in
implementing intelligent transportation systems (ITS) aiming for more efficient,
accurate, and data-driven traffic management solutions . Accurate and real-time
traffic condition forecasting is one of the core components of ITS. Traffic con-
dition forecasting systems are designed to predict future traffic conditions given
the historical traffic condition observations. Particularly, we focus on forecasting
traffic flow, one of the main traffic condition measurements. Typically, traffic
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flow in a specific road section is influenced by not only its own historical traffic
conditions, but also the traffic conditions in adjacent connected road sections.
Hence, it is crucial to consider the propagation of traffic information through
the spatial structure of the road network when forecasting traffic flow. Moreover,
intricate temporal dynamics in road networks have made long-term (30∽60 min-
utes) traffic forecasting even more challenging [28].

To address the aforementioned challenges, researchers have formulated traf-
fic flow forecasting as a spatial-temporal graph modeling problem and proposed
various types of Spatial-Temporal Graph Neural Networks (STGNN) [29, 12].
Even though recent efforts have attained substantial improvements [9] in ac-
curacy compared to early versions of STGNNs [27], they are not sophisticated
enough to effectively discover and leverage intricate spatial and temporal depen-
dencies. This study primarily focuses on two major deficiencies of existing traffic
forecasting STGNNs. First, the effects of traffic conditions on roads take time
to gradually propagate to their adjacent roads through the network. However,
existing approaches fail to ascertain how the traffic flow of a specific road at a
given time is impacted by previous traffic conditions on adjacent roads. Second,
the majority of existing approaches relied on raw historical observations as input
features and have not included and assessed alternative feature sequences, such
as averaged traffic flow sequences which could reveal more temporal and spatial
dependencies [29].

To address these shortcomings, we present a novel spatial-temporal graph
neural network (STBGAT), that consists of a bipartite graph attention net-
work and a transformer with a heterogeneous cross-attention mechanism (Source
code is available here: https://github.com/DimuthuLakmal/STBGAT). We con-
ducted a comprehensive set of experiments using five different traffic datasets
to evaluate the performance of the proposed model. Those experiments revealed
that STBGAT significantly outperforms the current state-of-the-art models. The
main contributions of this study can be summarized as follows:

– We propose a novel Bipartite Graph Attention Network for past neighbor-
hood information propagation towards center nodes. This mechanism ensures
the impact of the previous traffic conditions on adjacent roads is explicitly
considered.

– We introduce a heterogeneous cross-attention mechanism in the transformer
model which enables the decoder to assign separate feature-wise attention
scores to the encoder outputs. This architecture allows for the integration
of multiple encoders, each handling different input sequences. It will allevi-
ate the impact of noise and missing values in each feature sequence while
revealing more temporal and spatial dependencies.

2 Related Work

Prior to recent advancements in Graph Neural Networks (GNN), researchers
have widely adopted classic statistical time series algorithms and machine learn-
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ing models to make predictions [25, 21]. However, these models are only capa-
ble of analyzing temporal dynamics in traffic data leaving spatial correlations
unused. In contrast, Spatial-Temporal Graph Neural Networks (STGNN) have
significantly improved accuracy by efficiently capturing and modeling both tem-
poral and spatial dynamics in road networks [27, 24]. Since the introduction of
STGCN architecture by Yu et al. [27], various highly complex STGNN archi-
tectures have been proposed in the literature attaining substantially improved
accuracy [9, 29].

Various graph neural network architectures have been adopted as the spatial
module in STGNNs, ranging from recurrent GNN to Graph Attention Neural
Networks (GAT) [17, 7, 12]. GCN [11] is one of the prominent works in the Graph
Neural Network domain that led to rapid success in STGNNs [26]. The superi-
ority in efficiency, flexibility, and accuracy of GCN and its variants over prior
GNN architectures have resulted in wide adoption of GCNs in STGNN models.
On the other hand, Graph Attention Network (GAT) [23] outperforms GCNs
as it uses an attention mechanism in the data propagation process within the
graph. In this study, we develop the proposed bipartite graph by extending the
default GAT implementation.

Further, various architectures have been proposed for the temporal module
in STGNNs. There are three frequently used neural network architectures in
the temporal module: 1) RNN-based, 2) CNN-based, and 3) Attention-based [1,
14, 16]. Compared to the other two, the attention mechanism has emerged as
a highly compelling approach in temporal sequence modeling. We develop the
proposed temporal module based on a transformer which is an encoder-decoder
architecture relying on an attention mechanism [22]. None of the recent STGNN
approaches have proposed explicit modeling of past information propagation
from neighbors due to the additional complexity it imposes on these models.
Further, only a few attempted to incorporate features beyond raw traffic flow
values as inputs [5], and these attempts were insufficient to distinctly discern the
significance of each feature in making predictions.

3 Definitions and Problem Statement

3.1 Definitions

Traffic Road Network We represent a traffic road network with a directed
graph G = (V,E,A) where V = v1, ...., vN is a set of N nodes representing traffic
sensors; E is a set of edges among nodes; A ∈ RN×N is a weighted adjacency
matrix representing connectivity among nodes and edge weights between any of
two connected nodes.

Traffic Flow Matrix Xt ∈ N × C denotes the traffic condition feature
matrix at time step t. N represents the number of nodes in the network and C
represents the number of traffic condition-related features including traffic flow
value associated with each individual node. X

′

t ∈ N × 1 denotes the traffic flow
matrix at time step t.



4 Authors Suppressed Due to Excessive Length

Fig. 1. Overall architecture of STBGAT

3.2 Problem Statement

Given the historical observation spanning a specific time frame, the problem is
to establish a mapping function that can output the sequence of future traffic
flow values having a predefined length. Let us assume the number of historical
observations ending at the current step t is T1 and the length of the prediction
sequence is T2. Then the mapping function f can be formally expressed as,
[X(t−T1+1), X(t−T1+2), ...., Xt;G]

f−→ [X
′

(t+1), X
′

(t+2), ..., X
′

(t+T2)
;G]

4 Methodology
4.1 Data Inputs and Data Preprocessing

This section focuses on briefing data inputs and the non-trivial data preprocess-
ing steps we followed in this study.

If the target sequence is the traffic flow in the next hour from the current
time, the most recent available sequence will be the traffic flow from the last
hour, and it is incorporated as a part of the input sequence to the encoder.
Several past studies have utilized additional sequences of historical observations
as inputs, where these sequences may closely resemble either the pattern of the
target sequence or the latest historical observation sequence [19]. We identified
two effective periodic sequence patterns that tend to yield better results across
all the datasets that we experimented with. The first is the sequence of traffic
flow from the same hour as the hour just preceding the target hour, but on the
previous date. The second effective periodic sequence pattern is from the same
hour as the hour just preceding the target hour, but on the same day in last week.
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We concatenate these three shorter sequences into one single sequence and use as
an input sequence to the model. Additionally, we use another input sequence to
the model, referred to as a representative input sequence, representing averaged
behavior corresponding to the time duration of the raw input sequence described
earlier. Incorporating repetitive and representative sequence patterns could ben-
efit the model in two ways. First, it helps the model to identify long-term and
short-term trends. Second, it helps to mitigate the impact of missing values in
shorter sequences. The total length of each encoder sequence can be defined as
Te = Tlast_week + Tlast_day + Tlast_hour.

To construct the representative input sequence, it is required to determine
the average behavior at each weekly time index. All traffic flow datasets we
tested in this study consist of 12 traffic flow values per hour, totaling 2016 per
week. Therefore, we can assign a weekly time index for each traffic flow record.
When calculating the average traffic flow at a particular weekly time index, we
judiciously apply a rule-based filter to remove traffic flow records with noises.

We redefined the connectivity within the sensor network in certain datasets
for more efficient and accurate flow of information among nodes. We introduced
two types of connectivity producing two different connectivity graphs namely:
distance-based bipartite graph and semantic bipartite graph. The distance-based
graph is defined based on the assumption that two sensors in close geographic
proximity to each other exhibit significant correlations between their recorded
traffic flow values. To accommodate this assumption, we calculated edge at-
tributes based on the shortest distance between nodes using Dijkstra’s algorithm
[10]. Then we dropped edges that exceeded a predefined distance threshold.

We defined a second graph based on the time series semantics among nodes.
This helps to identify nodes that have similar behavior, but are not connected
in the geographically connected graph defined above. For instance, in a scenario
where two sensor nodes are located near two different schools, but are physically
distant from each other, it may be important to propagate information between
those two sensor nodes to identify common short-term temporal behaviors. For
each weekly index described above, we picked a certain number of most similar
nodes for every node in the graph. Then, a single global semantic graph is con-
structed assigning the set of nodes as neighbors of each node in the graph, which
have the highest number of short-term similar behaviors with each center node.
This calculation is based on the semantic distances among representative time
series of nodes, each of which consists of 12 time steps. Dynamic Time Warping
(DTW) algorithm is used to measure the similarity between two sequences [3].

4.2 Encoder Decoder Architecture

In this section, we brief the overall architecture of STBGAT model depicted in
Fig.1. The model follows transformer encoder-decoder architecture with some
optimization done focusing on the traffic forecasting problem. The model can
accommodate multiple encoders at once to facilitate feature extraction from
multiple types of input sequences. In this study, we employ two encoders to
process the two input sequences described in Section 4.1. The embedding layer
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Fig. 2. Formation of bipartite graph. Fig.2a shows the example base graph with three
nodes for the bipartite graph depicted in Fig.2b.

maps the inputs to a higher dimensional vector space. The positional embedding
layer fuses time step information and makes sure that the self-attention module
is aware of the positional information.

The output of the positional encoding layer is then processed through a
temporal encoder layer stack comprised of L number of layers. Each encoder
layer includes a convolution layer similar to the one used in the temporal trend-
aware multi-head self-attention layer described in [4]. The processed output of
the convolution layer is then fed into a self-attention layer followed by a feed-
forward layer. The output of the last temporal encoder layer is subsequently
passed into the spatial module that consists of two bipartite graph attention
networks enabling information propagation among nodes. Bipartite graphs are
constructed as explained in Section 4.1. Finally, the output from bipartite GATs
and the output from the final temporal encoder layer are summed together to
produce the final encoder output. The decoder uses the output from the encoder
as the historical context in the process of cross-attention calculation.

The embedding layer, positional encoding layer, self-attention layer, and feed-
forward layer of the decoder are similar to the ones used in the encoder. Further,
the decoder input convolution layer is also similar to the convolution layer used
in the encoder layer. We introduce a heterogeneous feature-wise cross-attention
mechanism as described in Section 4.4. Latent vector output given by the last
decoder layer L is projected to an output with a single dimension by the linear
layer of the decoder.

4.3 Bipartite Graph Attention Layer

In this section, we explain one of the main contributions of this paper that
solves past information propagation problem described in Section 1. Traffic flow
recorded at a sensor at a specific time step is influenced not only by the traffic
flow on neighboring roads at the exact time step but also by previous traffic
conditions on neighboring roads. The dependency on traffic conditions during
previous time steps arises due to the propagation delay between different parts
of the road network [9]. For instance, if a road accident occurs on a road section,
then the traffic conditions of neighboring road segments will gradually adjust
over time to accommodate the impact of the accident.
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It can be argued that as the input sequences pass through a set of temporal
encoder layers before reaching the spatial module, the latent vector output at
each time step comprises a certain level of information about its preceding tem-
poral context. Nonetheless, our study reveals that this implicit representation
of the temporal context alone is not sufficient to effectively address the propa-
gation delay in road networks. Instead, we propose to use a bipartite graph Gt

that consists of two sets of nodes, (ut, vTe
) where ut represents nodes consisting

of outputs of temporal encoder module at time step t, and each node in vTe
con-

sists of concatenated output of temporal encoder from time step t = 1 to t = Te.
The edge attributes of the bipartite graph are equal to the corresponding edge
attributes in the regular graph. The formulation of the bipartite graph from a
regular graph is shown in Fig.2. The implementation of Bipartite GAT can be
outlined in three equations from Eq.1 to Eq.3.

eij = LeakyReLU(aT (Whi||Whj ||WEEij)) (1)

αij =
exp(eij)∑

k∈Ni
exp(eik)

(2)

himm
i = ∥Kk=1σ(

∑
j∈Ni

αk
ijW

khj) (3)

In Eq.1, W,WE and a denote learnable weights while Eij denotes edge at-
tribute associated with the edge connecting nodes i and j. Node i belongs to ut

and node j belongs to vTe . hi represents the value of the central node i while hj

represents the value of neighbor node j. αij in Eq.2 is the attention score calcu-
lated for neighbor node j. The final output for central node i is derived using
Eq.3. A single GAT layer consists of K heads. Thus, the final output himm

i is
formed by either a concatenating or averaging of the outputs generated by K
heads. Eq.3 shows only the concatenation operation over K heads.

4.4 Heterogeneous Cross Attention Layers

In this section, we present the second contribution of this paper that enables
integrating multiple feature sequences. The transformer decoder consists of a
cross-attention component that calculates attention values for elements in the
encoder output sequence with respect to the decoder input sequence. This mech-
anism allows the decoder to focus on relevant information in the encoder out-
put when generating the decoder output. The naive implementation of cross-
attention only accepts the encoder output sequence as a single sequence and
is not granular enough to calculate feature-wise attention. In contrast, we pro-
pose a heterogeneous cross-attention mechanism that is capable of calculating
distinct attention distributions for different feature sequences. This mechanism
allows for more precise modeling of temporal dynamics and relationships present
in different feature sequences. STBGAT produces two separate encoder output
sequences in parallel using the two input sequences described in Section 4.1.
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Table 1. Prediction accuracy results (PEMS04-08)

VAR SVR LSTM DC-
RNN

ST-
GCN GMAN AST-

GNN
PDF-
ormer

PDF-
ormer(L)

ST-
BGAT

P
E

M
S0

4 MAE 23.75 28.66 26.81 23.65 22.27 19.14 18.60 18.39 18.40 18.17

RMSE 36.66 44.59 40.74 37.12 35.02 31.60 31.03 30.01 30.25 28.23

MAPE 18.10 19.15 22.33 14.75 13.87 13.19 12.63 12.13 12.23 12.02

P
E

M
S0

7 MAE 101.20 32.97 29.71 23.63 22.90 20.97 20.62 19.83 N/A 18.34

RMSE 155.14 50.15 45.32 36.51 35.44 34.10 34.02 32.87 N/A 30.86

MAPE 39.69 15.43 14.14 12.28 11.98 9.05 8.86 8.53 N/A 7.63

P
E

M
S0

8 MAE 22.32 23.25 22.19 18.19 17.84 15.31 13.29 13.58 12.51 12.39

RMSE 33.83 36.15 33.59 28.18 27.12 24.92 23.33 23.51 22.10 21.02

MAPE 14.47 14.71 18.74 11.24 11.21 10.13 9.03 9.05 8.55 8.43

Following this, two cross-attention distributions are generated based on encoder
output sequences. The final output of the cross-attention layer will be calcu-
lated according to the Eq.4. In Eq.4, LayerNorm refers to layer normalization.
Xself−attn refers to self-attention output calculated over decoder input. xf is the
encoder output calculated for the sequence of feature type f .

hcross = LayerNorm(Xself−attn +
∑
f∈F

CrossAttn(xf )) (4)

5 Experiments

5.1 Experiment Setup

We evaluate our model on two groups of datasets that are widely used in the
literature. The first group consists of three datasets; PEMS04, PEMS07, and
PEMS08 [2] while the second group consists of two datasets; PEMS-BAY and
METR-LA [8].

We evaluate STBGAT against a variety of baselines proposed in the literature
on the aforementioned two dataset groups. Tested baseline models are listed
below.

– PEMS04-08: VAR [18], SVR, LSTM [6], DCRNN [15], STGCN [27], GMAN
[29], ASTGNN [4], PDFormer [9]

– PEMS-BAY, METR-LA: VAR [18], SVR, FC-LSTM [6], DCRNN [15],
STGCN [27], GMAN [29], STGM [13], STEP [20]

The default PDFormer only supports input sequences with a maximum length
of 12. However, to ensure a fair comparison, we adapted the default PDFormer to
accept a 36-length input sequence that includes repetitive patterns. It is referred
to as PDFormer(L) in Table 1. In contrast, other recent architectures STEP and
ASTGNN support longer sequences by default.

Three evaluation matrices are used namely, Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE).
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Table 2. Prediction accuracy results (PEMS-BAY, METR-LA)

VAR SVR LSTM DC-
RNN

ST-
GCN GMAN STGM STEP ST-

BGAT

PEMS
-BAY

MAE 2.93 3.28 2.37 2.07 2.49 1.86 1.86 1.79 1.75

RMSE 5.44 7.08 4.96 4.74 5.69 4.32 4.37 4.20 3.60

MAPE 6.50 8.00 5.70 4.90 5.79 4.37 4.34 4.18 4.01

METR
-LA

MAE 6.52 6.72 4.37 3.60 4.59 3.44 3.23 3.37 3.94

RMSE 10.11 13.76 8.69 7.60 9.40 7.35 7.10 6.99 7.25

MAPE 15.80 16.70 14.00 10.50 12.70 10.07 9.39 9.61 9.79

Masked versions of MAE, RMSE, and MAPE matrices are used to alleviate the
effect of missing values in the dataset. Experiments on each model are repeated
3 times and we report mean values for said matrices.

The test results of the STBGAT model presented in Table 1 and Table 2
are generated by passing input sequences consisting of repetitive patterns. The
reported error values are the averaged error values computed across the entire
prediction sequence length.

5.2 Comparison of Performance

The overall performance of baseline models and STBGAT is summarized in Ta-
ble 1 and Table 2. It is important to highlight that the PDFormer(L) model fails
to run on PEMS07 dataset due to memory overflow which suggests that it is not
suitable for large road networks (tested on 128GB of RAM). The best results for
each metric reported in each dataset are highlighted in bold. Our model outper-
forms all baselines in every performance metric across four datasets; PEMS07,
PEMS08, PEMS04, and PEMS-BAY. However, the STBGAT model exhibits
lower performance on the METR-LA dataset, particularly in MAE metric. We
discover that this is attributed to the high discrepancy between train and test
data distributions. Moreover, STBGAT model significantly outperforms all base-
lines in terms of RMSE metric. This metric is a useful indicator of performance
when large errors between ground truth and predicted values are undesirable.
Hence, it suggests that STBGAT can better approximate sudden fluctuations in
traffic flow.

The most notable observation across the experiments is the substantial per-
formance enhancement achieved by spatial-temporal models in comparison to
temporal prediction models alone. This accentuates the importance of discover-
ing and exploiting spatial dependencies in road network graphs. LSTM exhibits
the best performance among temporal prediction models leveraging its ability to
identify long temporal dependencies compared to other temporal models. Based
on our experiments, the spatial module can be considered as an enhancement
to improve the accuracy of the temporal module of spatial-temporal models.
Hence, having a comprehensive temporal module is also important to have bet-
ter performance. DCRNN and STGCN models consist of RNN and convolution
components in the temporal module that could hinder performance in modeling
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Fig. 3. Ablation study results (MAE Values)

temporal dependency effectively. In contrast, GMAN, ASTGNN, STEP, STGM,
and PDFormer use various attention mechanisms that help achieve superior per-
formance over traditional RNN-based models. In addition to the performance en-
hancements achieved through the two novel concepts presented here, two other
existing concepts contributed to STBGAT’s performance. First, STBGAT use
CNN layers in temporal module for local context recognition which is also used in
ASTGNN, PDFormer and STGM. Second, STBGAT effectively harnesses both
short-term and long-term spatial dependencies as it uses two types of bipartite
graphs in the encoder. A comparable approach is also utilized in PDFormer and
STGM models. The contribution of the two novel concepts presented in this
paper is discussed in the next section.

5.3 Ablation Study

Additional experiments are carried out to investigate the effectiveness of differ-
ent components of STBGAT using PEMS04, PEMS07 and PEMS08 datasets.
We first study the prediction capability of the temporal module by training the
model without the spatial component of the model. We then test the impact
and contribution of the spatial component to predictions. The evaluation results
are depicted in Fig.3a. Results suggest that the temporal module plays a critical
role in the prediction task. The model with only the temporal module outper-
forms the majority of the baselines except for ASTGNN and PDFormer in every
performance metric. These results also indicate the importance of information
propagation within the graph, particularly in PEMS07 and PEMS08 datasets.

Next, we assess the performance enhancement in the spatial module achieved
by bipartite GAT in comparison to conventional GAT. The results of this ex-
periment are presented in Fig.3b. A substantial improvement can be observed
when utilizing the proposed bipartite GAT in contrast to conventional GAT.

Finally, an experiment is conducted to evaluate the impact of the hetero-
geneous cross-attention mechanism compared to the traditional cross-attention
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mechanism. The results of this experiment are presented in Fig.3c. According
to the experiment, the effect of the heterogeneous cross-attention mechanism
on the performance is not as pronounced as in bipartite GAT. Nevertheless, it
contributes to enhancing the overall performance of the model compared to the
conventional cross-attention mechanism.

6 Conclusion and Future Works

In this paper, we introduce a novel spatial-temporal graph neural network archi-
tecture for traffic forecasting that outperforms the latest state-of-the-art base-
lines across four real-world datasets. We proposed two novel concepts in this pa-
per; bipartite graph attention network and heterogeneous cross-attention mech-
anism. The first concept enhances the spatial information propagation while
the second concept improves the temporal dependency analysis of the model.
The ablation study demonstrates the effectiveness of these two novel concepts
in modeling spatial and temporal dynamics. As future work, the model can be
extended and utilized in various downstream tasks in domains such as traffic
analysis and social media.
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