
E�icient Cost Modeling of Space-filling Curves
Guanli Liu

The University of Melbourne

guanli@student.unimelb.edu.au

Lars Kulik

The University of Melbourne

lkulik@unimelb.edu.au

Christian S. Jensen

Aalborg University

csj@cs.aau.dk

Tianyi Li

Aalborg University

tianyi@cs.aau.dk

Renata Borovica-Gajic

The University of Melbourne

renata.borovica@unimelb.edu.au

Jianzhong Qi
∗

The University of Melbourne

jianzhong.qi@unimelb.edu.au

ABSTRACT
A space-�lling curve (SFC) maps points in a multi-dimensional space

to one-dimensional points by discretizing the multi-dimensional

space into cells and imposing a linear order on the cells. This way,

an SFC enables computing a one-dimensional layout for multi-

dimensional data storage and retrieval. Choosing an appropriate

SFC is crucial, as di�erent SFCs have di�erent e�ects on query per-

formance. Currently, there are two primary strategies: 1) determin-

istic schemes, which are computationally e�cient but often yield

suboptimal query performance, and 2) dynamic schemes, which

consider a broad range of candidate SFCs based on cost functions

but incur signi�cant computational overhead. Despite these strate-

gies, existing methods cannot e�ciently measure the e�ectiveness

of SFCs under heavy query workloads and numerous SFC options.

To address this problem, we propose means of constant-time cost
estimations that can enhance existing SFC selection algorithms, en-

abling them to learn more e�ective SFCs. Additionally, we propose

an SFC learning method that leverages reinforcement learning and

our cost estimations to choose an SFC pattern e�ciently. Experi-

mental studies o�er evidence of the e�ectiveness and e�ciency of

the proposed means of cost estimation and SFC learning.

PVLDB Reference Format:
Guanli Liu, Lars Kulik, Christian S. Jensen, Tianyi Li, Renata

Borovica-Gajic, and Jianzhong Qi. E�cient Cost Modeling of Space-�lling

Curves. PVLDB, 17(13): 4773 - 4785, 2024.

doi:10.14778/3704965.3704982

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Liuguanli/LBMC.

1 INTRODUCTION
Data layout signi�cantly impacts the e�ciency of querying increas-

ingly massive multidimensional data. In this setting, space-�lling
curves (SFC) are used widely for data ordering and layout computa-

tions. For example, Z-order curves (ZC, see Figures 1a and 1b) [22]

are used in Hudi [2], RedShift [1], and SparkSQL [4]; C-Curves,

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.

doi:10.14778/3704965.3704982

which order data points lexicographically by their dimension val-
ues (CC, see Figure 1c), are used in PostgreSQL [24] and SQL

Server [16]; and Hilbert curves (HC) [5] are used in Google S2 [27].

The range query emerges as an important type of query. The

most e�cient query processing occurs when the data needed for a

query result is stored consecutively, or when the data is stored in a

few data blocks. Thus, the storage organization—the order in which

the data is stored—a�ects the cost of processing a query profoundly.

When storing data with SFC-based ordering, the choice of which

SFC to use for ordering the data is important.

x

y

q1
q3

q2

(a) Curve 1 (ZC)

x
y
q1

q3

q2

(b) Curve 2 (ZC)

x

y

q1
q3

q2

(c) Curve 3 (CC)

Figure 1: Examples of SFCs (in grey) and queries (in red).

Di�erent range queries bene�t di�erently from di�erent SFCs.

In Figure 1, three SFCs on the same data space are shown along

with three queries. The fewer disconnected segments of an SFC

that need to be accessed to compute a query, the better. To compute

@1, the SFC in Figure 1a is preferable because only a single segment

needs to be accessed. Put di�erently, the data needed may be in a

single or in consecutive blocks. In contrast, the SFCs in Figures 1b

and 1c map the needed data to two and four segments, respectively.

Next, we observe that no single SFC is optimal for all queries.

While the SFC in Figure 1a is good for @1, it is suboptimal for @2 and

@3. It is thus critical to select the right SFC. This in turn calls for

e�cient means of estimating the cost of processing a query using a

particular SFC (without query execution) to guide SFC selection.

Existing studies [18, 34] provide cost estimations based on count-

ing the number of clusters (continuous curve segments) covered

by a query. However, their calculations rely on curve segment

scans that require $ (+) time, where + is proportional to the size

of a query. Given a workload of = queries and< candidate SFCs,

$ (= ·< · +) time is needed to choose an SFC. This is expensive

given large = and< (e.g., a : × : grid can form< = :2! candidate

SFCs), thus jeopardizing the applicability of the cost model.

In this paper, we provide e�cient means of SFC cost estimation

such that a range query-optimal SFC can be found e�ciently. Specif-

ically, we present algorithms that compute the cost of a query in

https://doi.org/10.14778/3704965.3704982
https://github.com/Liuguanli/LBMC
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704982

$ (1) time. After an $ (=)-time initialization, the algorithms com-

pute the cost of = queries in $ (1) time for each new SFC to be con-

sidered. This means that given< candidate SFCs, our algorithms

can �nd the optimal SFC in$ (<) time, which is much smaller than

$ (= ·< ·+) and thus renders SFC cost estimation practical.

Our algorithms are based on a well-chosen family of SFCs, the

bit-merging curves (BMC) [7, 19]. A BMC maps 3-dimensional

(3 ≥ 2) points by merging the bit sequences of the point coor-

dinates (i.e., column indices) from all 3 dimensions. We consider

BMCs for two reasons: (1) BMCs generalize ZC and CC used in

real systems [2, 4, 16, 24]. Algorithms to �nd optimal BMCs can be

integrated seamlessly into real systems. (2) The space of BMCs is

large. For example, in a 2-dimensional space, each dimension uses

16 bits (ℓ = 16) and has : = 2
ℓ
columns in each grid dimension.

This yields about 6 × 108 (i.e., (3 ·ℓ)!(ℓ!)3) candidate BMCs.

Our algorithms model the cost of a range query based on the

number and lengths of curve segments covered by the query, which

in turn relate to the di�erence between the curve values of the

end points of each curve segment. We exploit the property that the

curve values of a BMC come from merging the bits of the column

indices. This property enables deriving a closed-form equation to

compute the length of a curve segment in $ (3 · ℓ) = $ (1) time

(given that 3 and ℓ are constants) for = queries. The property also

enables pre-computing 3 look-up tables that allow computing the

number of curve segments in$ (3 ·ℓ) = $ (1) time. Thus, we achieve

constant-time SFC cost estimation. We show the applicability of our

cost estimation algorithms by integrating them into the BMTree [13],
reducing its curve learning time by up to two orders of magnitude.

Furthermore, we develop an SFC learning algorithm named

LBMC that uses Reinforcement Learning (RL) to �nd the optimal

BMC. Importantly, the reward calculation in RL leverages our ef-

�cient cost estimations, thus making the entire learning process

extremely fast. This enables the RL agent to converge rapidly to

near-optimal solutions while navigating the state space.

In summary, the paper makes the following contributions:

(1) We propose algorithms for e�cient range query cost esti-

mation when using BMC-based data layout for multi-dimensional

datasets. The algorithms can compute the cost of a range query in

$ (1) time as well as the cost of a workload of = queries in $ (1)
time, after a simple scan over the queries. (2) We generalize the

applicability of the cost estimation to existing state-of-the-art SFC

learning methods based on BMCs, enhancing the learning e�ciency

of such methods. (3) We propose LBMC, an e�cient BMC learning

algorithm that leverages the proposed cost estimation. (4) We eval-

uate the cost estimation and LBMC algorithms on both real and

synthetic datasets, �nding that (i) our cost estimation outperforms

baselines consistently by up to 10
5
times in e�ciency, (ii) our cost

estimation accelerates the reward calculation of the BMTree by

400x with little impact on query e�ciency, and (iii) the LBMC al-

gorithm is applied in a real data lake platform and improves query

e�ciency by up to 61% compared to other ordering techniques.

2 RELATED WORK
Space-�lling curves. SFCs �nd use in many �elds, including in

indexing [10, 12, 21, 33], data mining [3], and machine learning [8,

31]. Two popular SFCs, ZC [22] and HC [5], have been deployed in

practical data systems [1, 2, 4]. Bit-merging curves (BMCs) are a

family of SFCs, where the curve value of a grid cell is formed by

merging the bits of the cell’s column indices from all dimensions.

To order data points for speci�c query workloads, QUILTS [19]

provides a heuristic method to design a series of BMCs and selects

the optimal one. The Bit Merging Tree (BMTree) [13] learns piece-

wise BMCs by using a quadtree [6]-like strategy to partition the data

space and selecting di�erent BMCs for di�erent space partitions.

SFC cost estimation. To learn an optimal SFC, cost estimation

is employed to approximate the query costs without computing the

queries. Studies [18, 34] o�er theoretical means of estimating the

number of curve segments in a query. They do not o�er empirical

results or guidance on how to construct a query-e�cient SFC.

QUILTS formulates the query cost CC for a BMC-based data lay-

out over a set of queries as CC = C6 ·C; , where C6 is a global cost and
C; is a local cost. The global cost is the length of a continuous BMC

segment that can cover a query range@ fully minus the length of the

BMC segments in @. The idea is to count the number of segments

outside @ that may need to be visited to compute the queries. The

local cost is the entropy of the relative length of each segment of

the BMC curve outside @ counted in the global cost, which re�ects

how uniformly distributed the lengths of such segments are. These

two costs rely on the length of the curve segments outside @, which

is expensive to compute. Given = queries, it takes $ (= · 2C) time to

compute CC , where $ (2C) is the average estimation cost per query.

The BMTree estimates query costs using data points sampled

from the target dataset. Such cost estimations are expensive for large

datasets and many queries. LMSFC [7], another recent proposal,

learns a parameterized SFC (e�ectively a BMC) using Bayesian

optimization [9]. Like the BMTree, LMSFC uses a sampled dataset

and a query workload for cost estimation and thus shares the same

issues with the BMTree. Our study aims to address these issues by

providing a highly e�ective and e�cient cost estimation.

SFC-based data layout. SFCs, especially ZCs and HCs, are used
for data layout in data systems to preserve data locality. For example,

in Apache Hudi, for each data record, its values at user chosen

columns for data layout are each converted into an 8-byte integer

(with truncation if necessary), forming a multi-dimensional point

of integer coordinates. This point is mapped to a one-dimensional

value using a ZC or HC, and all mapped values are used to order

the data records to produce a data layout. We aim to learn SFCs to

optimize the data layout for more e�cient range query processing.

SFC-based indices. The Hilbert R-tree [10, 26] and Z-Rtree [21]
use HCs and ZCs to order multi-dimensional data for bulk-loading

R-trees. Another index, the Instance-Optimal Z-Index [23], uses a

quadtree-like strategy to partition the data space recursively and

each sub-space follows a ‘Z’ or an ‘N’ shape. Recently, learned

multi-dimensional indices [25, 32] use SFCs to enable the leverage

of one-dimensional learned indices [11]. Our cost estimations can

be applied to learn SFCs for the mapping step of these indices.

However, our work is orthogonal to these studies, and we do not

aim to propose another learned index.

3 PRELIMINARIES
We start with core concepts underlying BMCs and list frequently

used symbols in Table 1.

Table 1: Frequently used symbols.

Symbol Description

3 The data space dimensionality

ℓ The number of bits for grid cell numbering in each dimension

� A multi-dimensional dataset

? A data point

@ A range query

& A set of range queries

� The block size

?B , ?4 The start and end points on an SFC of a range query

= The number of range queries

f A bit-merging curve (BMC)

Ff The curve value calculation function over BMC f

U
9

8
The 9 th bit value in dimension 8

W
9

8
The position (0-indexed) of U

9

8
in a BMC f

G8 A value in dimension 8

[GB,8 , G4,8] A value range in dimension 8

3.1 BMC De�nition
A BMCmaps multi-dimensional points by merging the bit sequences
of the coordinates (i.e., column indices) from all 3 dimensions into

a single bit sequence that becomes a one-dimension value [19].

 00 01 10 11x

00

01

10

11

y

0 0 0 0
0

0 0 0 1
1

0 0 1 0
2

0 0 1 1
3

0 1 0 0
4

0 1 0 1
5

0 1 1 0
6

0 1 1 1
7

1 0 0 0
8

1 0 0 1
9

1 0 1 0
10

1 0 1 1
11

1 1 0 0
12

1 1 0 1
13

1 1 1 0
14

1 1 1 1
15

BMC Y X Y X

 00 01 10 11x

00

01

10

11

y

0 0 0 0
0

0 0 0 1
1

0 0 1 0
2

0 0 1 1
3

0 1 0 0
4

0 1 0 1
5

0 1 1 0
6

0 1 1 1
7

1 0 0 0
8

1 0 0 1
9

1 0 1 0
10

1 0 1 1
11

1 1 0 0
12

1 1 0 1
13

1 1 1 0
14

1 1 1 1
15

BMC Y X X Y

 00 01 10 11x

00

01

10

11

y

0 0 0 0
0

0 0 0 1
1

0 0 1 0
2

0 0 1 1
3

0 1 0 0
4

0 1 0 1
5

0 1 1 0
6

0 1 1 1
7

1 0 0 0
8

1 0 0 1
9

1 0 1 0
10

1 0 1 1
11

1 1 0 0
12

1 1 0 1
13

1 1 1 0
14

1 1 1 1
15

BMC Y Y X X

Figure 2: BMC examples (3 = 2 and ℓ = 2).

Figure 2 plots three BMC schemes, which are represented by

YXYX, YXXY, and YYXX. Here, the ordering of the X’s and Y’s

specify how the bits from dimensions G and ~ are combined to

obtain a BMC f . The coordinates from each dimension have two

bits, i.e., the bit length ℓ of each dimension is 2. The merged bit

sequence (i.e., the curve value in binary form) has 3 · ℓ = 4 bits.

The bit length ℓ is determined by the grid resolution, which is a

system parameter. For simplicity, we use the same ℓ for each dimen-

sion (our techniques allow di�erent ℓ’s in di�erent dimensions),

and we call the column indices of a point ? in a cell (or the cell

itself) the coordinates of ? (or the cell).

BMC value calculation. Given a BMC f , we compute the curve

value of a point ? = (G1, G2, . . . , G3) using function Ff (?):

Ff (?) =
3∑
8=1

ℓ∑
9=1

U
9

8
· 2W

9
8 (1)

Rank of a bit in BMC. Let G8 be the dimension-8 coordinate of

? . In Equation 1, U
9
8
∈ {0, 1} is the 9th (9 ∈ [1, ℓ]) bit of G8 , and W 98

is the rank of U
9
8
in the BMC.

ℓ∑
9=1

U
9

8
· 29−1 = G8 (2)

Note that the order among the bits from the same dimension does

not change when the bits are merged with those from the other

dimensions to calculate Ff (?), i.e., for bits U 98 and U
9+1
8

, W
9
8
< W

9+1
8

.

For ease of discussion, we use examples with up to three dimen-

sions G , ~, and I. Figure 3 calculates Ff (?) for ? = (2, 1, 7) given
f = XYZXYZXYZ. Here, U1

3
= 1 is the �rst bit value in dimension I,

and the rank of the �rst (i.e., rightmost) Z bit in f is zero, which

means W1
3
= 0. To calculate the curve value of a point for a given f ,

we derive each U
9
8
and W

9
8
based on G8 and f , respectively.

8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 1 1
X Y Z X Y Z X Y Z

0 1 0 (2) 0 0 1 (1) 1 1 1 (7)

2 1 0

Y Y YX X X Z Z Z

2 1 0 2 1 0

Little Endian
High Low

Position:

Bit sequence:

Figure 3: BMC curve value calculation (3 = 3 and ℓ = 3).

BMCmonotonicity. The BMC value calculation process implies

that any BMC is monotonic [13].

Theorem 1 (Monotonicity [13]). Given ?1 = (G1,1, . . . , G1,3) and
?2 = (G2,1, . . . , G2,3) then ∀8 ∈ [1, 3] (G1,8 ≤ G2,8) → Ff (?1) ≤ Ff (?2) .

3.2 Range Querying Using a BMC
Next, we present concepts on range query processing with BMCs.

Definition 1 (Range �ery). Given a 3-dimensional dataset �
and a range query @ = [GB,1, G4,1] × . . .× [GB,3 , G4,3], where [GB,8 , G4,8]
denotes the query range in dimension 8 , query @ returns all points
? = (G1, ..., G3) ∈ � that satisfy: ∀8 ∈ [1, 3] (GB,8 ≤ G8 ≤ G4,8).

As mentioned earlier, computing a query @ using di�erent BMCs

can lead to di�erent costs. To simplify the discussion for determin-

ing the cost of a query, we use the following corollary.

Corollary 1. Given ?B = (GB1 , . . . , GB3) and ?4 = (G41 , . . . , G43),
any query @ is bounded by the curve value range [Ff (?B), Ff (?4)].

Corollary 1 follows directly from the monotonicity of BMCs. To

simplify the discussion, we use a point ? and the cell that encloses

? interchangeably and rely on the context for disambiguation.

Query section [19]. A continuous curve segment in a query @ is

called a query section. We denote a query section B with end points

?8 and ? 9 by [Ff (?8), Ff (? 9)], which translates to a data scan

over the range [Ff (?8), Ff (? 9)]. The number of query sections in

[Ff (?B), Ff (?4)] determines the cost of @.

Example 1. In Figure 4a, there are three query sections B1, B2, and
B3, with B2 = [Ff (?8), Ff (? 9)] = [36, 39]. By de�nition, a point (cell)
immediately preceding ?8 or succeeding ? 9 must be outside @; other-
wise, it is part of the query section. For example, ?8−1 (Ff (?8−1) = 35)
and ? 9+1 (Ff (? 9+1) = 40) in Figure 4a are outside @. The number of
query sections in @ varies across di�erent BMCs, e.g., the same @ as in
Figure 4a has four query sections in Figure 4b.

Directed edge [34]. A pair of two consecutive points ?8 and

? 9 forms a directed edge 4 if the curve values of ?8 and ? 9 di�er by

 0 1 2 3 4 5 6 7x

0
1
2
3
4
5
6
7

y

q

pi¡ 1
pj+1
40

39

35

36

s1
s2

s3

e1

e2 e3 e4

e5

pi

pj

(a) BMC XYXYXY

 0 1 2 3 4 5 6 7x

0
1
2
3
4
5
6
7

y

q

s1

s2

s3

s4e3

e1

e2 e4

(b) BMC YXYXYX

Figure 4: Query sections and directed edges in BMCs.

one under a given f , i.e., Ff (? 9) − Ff (?8) = 1. As each point is

represented through a binary value, the di�erence occurs because

Ff (?8) = ...︸︷︷︸
pre�x

0 1...1︸︷︷︸
 1s

and Ff (? 9) = ...︸︷︷︸
pre�x

1 0...0︸︷︷︸
 0s

, where the last

 ≥ 0 bits are changed from 1 to 0 and the (+ 1)st bit from 0 to 1.

Example 2. We use two examples to illustrate this concept, one
for > 0 and the other for = 0. First, suppose that the binary
representations of Ff (?8) = 15 and Ff (? 9) = 16 are 001111 and
010000, respectively. Four bits starting from the right (i.e., = 4)
are changed from 1 to 0, and the �fth bit from 0 to 1. The last bit
0 is the shared pre�x. Second, if the binary forms of Ff (?8) = 16

and Ff (? 9) = 17 are 010000 and 010001, respectively, only the �rst
bit (from the right) is changed from 0 to 1, i.e., no bits (= 0) are
changed from 1 to 0, and the shared pre�x is 01000.

The number of directed edges (denoted by Ef (@)) plus the num-

ber of query sections (denoted by Sf (@)) in a given query @ yields

the number of distinct points (denoted byV(@)) in @:
Ef (@) + Sf (@) = V(@) (3)

Here, V(@) is independent of f , while the values of Ef (@) and
Sf (@) depend on f . The intuition is that if @ consists of a single

section B , i.e., the curve stays completely inside B and Sf (@) = 1

then there areV(@)−1 directed edges connecting a given start point
?B and end point ?4 of B . In other words, we obtain Ef (@) +Sf (@) =
V(@)−1+1 = V(@). Further, each time a curve exits a query section

B8 and enters the next section B8+1, the last point in B8 becomes

disconnected (minus one directed edge) but one new query section

is added (plus 1 for the query section) when the curve reenters B8+1.
For example, in Figure 4a, there are 3 query sections (Sf (@)) and 5

directed edges (Ef (@)); in Figure 4b, there are 4 query sections and

4 directed edges in @. Both �gures haveV(@) = 8 points in @.

4 EFFICIENT BMC COST ESTIMATIONS
When conducting a range query @ with start point ?B and end point

?4 , over a dataset � ordered by a BMC f , a straightforward query

method retrieves all data points within the range [Ff (?B), Ff (?4)]
and then �lters out any false positives outside @. The e�ciency of

this method relies on the number of data points in [Ff (?B), Ff (?4)]
and the clustering of data points to eliminate false positives.

To measure BMCs e�ectively without executing real queries, we

introduce two metrics: (i) the global cost, C6f (@), which measures

the length of the range [Ff (?B), Ff (?4)], re�ecting the total span

of data covered by @; and (ii) the local cost, C;f (@), which quanti�es

the number of query sections within @, re�ecting the e�ectiveness

of data clustering. We present e�cient algorithms for computing

these costs in Sections 4.1 and 4.2, respectively.

4.1 Global Cost Estimation for BMC
Wede�ne the global cost of query@ as the length of [Ff (?B), Ff (?4)].

Definition 2 (Global Cost). The global cost C6f (@) of query @
under BMC f is the length of the curve segment from ?B to ?4 :

C6f (@) = Ff (?4) − Ff (?B) + 1 =
3∑
9=1

ℓ∑
:=1

(U:4,9 − U:B,9) · 2
W:
9 + 1 (4)

E�cient computation. Given a set & of = queries, their total

global cost can be calculated by visiting every query @ ∈ & and

adding up C6f (@). This naive approach takes time proportional to the

number of queries to compute. Without loss of accuracy, we rewrite

the global cost as a closed-form function for e�cient computation.

C6f (&) =
=∑
8=1

C6f (@8) =
=∑
8=1

3∑
9=1

ℓ∑
:=1

(U:8,4,9 − U:8,B,9)︸ ︷︷ ︸
BMC independent

· 2
W:
9︸︷︷︸

BMC dependent

+=

=

3∑
9=1

ℓ∑
:=1

=∑
8=1

(U:8,4,9 − U:8,B,9) · 2
W:
9 + = =

3∑
9=1

ℓ∑
:=1

�:
9 · 2

W:
9 + =

(5)

Here, @8 ∈ & ; U:8,B, 9 and U
:
8,4, 9

denote the :th bits of the coordinates

of the lower and the upper end points of @8 in dimension 9 , re-

spectively; �:
9
=
∑=
8=1 (U:8,4, 9 − U

:
8,B, 9
), which is BMC independent

and can be calculated once by scanning the = range queries in &

to compute the gap between ?4 and ?B on the :th bit of the 9th

dimension, for any BMC. Only 2
W:
9
is BMC dependent and must

be calculated for each curve because W
9
8
represents the rank of the

9th bit from dimension 8 of a BMC. If the BMC f is changed, e.g.,

from XYXYXY to XYXYYX, then W1
1
= 1 and W1

2
= 0 are changed to

W1
1
= 0 and W1

2
= 1.

Algorithm costs. The above property helps reduce the cost of

computing the global cost when given multiple candidate BMCs, to

learn the best BMC from a large volume of candidate BMCs.Without

an e�cient cost modeling, the global cost takes$ (< · = · 3 · ℓ) time

for< candidate BMCs over = queries (based on Equation 4). Based

on our proposed closed form (Equation 5), after an initial$ (=)-time

scan over the = queries (to compute �:
9
), the holistic global cost

over = queries can be calculated in $ (< · 3 · ℓ) time to examine

the “goodness” of a candidate BMC, i.e., $ (<) time given constant

number of dimensions 3 and number of bits ℓ in each dimension.

4.2 Local Cost Estimation for BMC
The local cost measures the degree of segmentation of the curve

in [Ff (?B), Ff (?4)], which indicates the number of false positive

data blocks to be �ltered. We de�ne the local cost as the number of

query sections, following existing studies [18, 34] that use the term

“number of clusters” for the same concept.

Definition 3 (Local Cost). The local cost C;f (@) of query @
under BMC f is the number query sections in @, i.e., Sf (@).

Intuition. Recall thatV(@) is the number of distinct points in

@. We assume one data point per cell and that every � data points

are stored in a block. A point is a true positive if it (and its cell) is

in query @ and a false positive if it is outside @ but is retrieved. If @

has only one query section, the largest number of block accesses is

b(V(@) − 2)/�c + 2, i.e., only the �rst and last blocks can contain

false positives (at least one true positive point in each block). In this

case, the precision of the query process is at least
V(@)

V (@)+2· (�−1) . If
there are =B query sections, in the worst case, each query section

incurs two excess block accesses, each for a block containing only

one true positive point. The largest number of block accesses is

b(V(@) − 2 · =B)/�c + 2 · =B , and the precision is
V(@)

V (@)+2·=B · (�−1) .
The excess block accesses grows linearly with =B , i.e., the local cost.

query start query end
True positive False positive

One query
section under

Three query
sections under

Figure 5: Query sections vs. block accesses

Example 3. In Figure 5, we order points based on BMCs f1 and f2
with block size � = 4. There are 14 true positives (V(@) = 14). Under
f1, there is only one query section with 5 block accesses and a precision
of 14

5×4 = 70%. In contrast, f2 produces three query sections, increasing
the block accesses to 7 and lowering the precision to 14

7×4 = 50%.

E�cient computation. A simple way to compute the local

cost of an arbitrary range query is to count the number of query

sections by traversing the curve segment from ?B to ?4 , but this is

also time-consuming. To reduce the cost, we rewrite Equation 3 as:

Sf (@) = V(@) − Ef (@) (6)

Given a query @ and the grid resolution, it is straightforward (with

$ (3) = $ (1) time) to compute the number of cells in @ (V(@)).
Then, our key insight is that Sf (@) can be computed by counting

the number of directed edges Ef (@), which can be done in $ (1)
time as detailed below. Thus, Sf (@) can be computed in $ (1) time.

4.2.1 Rise and Drop Pa�erns. To compute Ef (@), we analyse how
the bit sequence of a BMC changes from one point to another

following a directed edge. A directed edge is formed by two consec-

utive points with (binary) curve values that share the same pre�x,
while the remaining bits are changed. We observe that di�erent

directed edges have the same shape when they share the same

pattern in their changed bits, even if their pre�xes are di�erent.

In Figure 6a, consider edges 41 = (5, 6) = [000101, 000110] and
42 = (13, 14) = [001101, 001110]. Both edges share the same ‘\’

shape because their rightmost bits change from “01” to “10”.

The bits of the curve values come from the coordinates (i.e., col-

umn indices) of the two end points of a directed edge. By analyzing

the bit patterns of the column indices spanned by a query @ in each

dimension, we can count the number of directed edges in @.

To generalize, recall that given a directed edge from ?8 to ? 9 ,

Ff (?8) = ...︸︷︷︸
pre�x

0 1...1︸︷︷︸
 1s

and Ff (? 9) = ...︸︷︷︸
pre�x

1 0...0︸︷︷︸
 0s

(≥ 0) must

exist where the rightmost bits are changed from 1 to 0, while the

(+ 1)st rightmost bit is changed from 0 to 1. The bits of Ff (?8)
and Ff (? 9) come from those of the column indices of ?8 and ? 9 .

Thus, the +1 rightmost bits changed from Ff (?8) to Ff (? 9) must

also come from those of the column indices. In particular, there

must be one dimension, where the column index has contributed :

(1 ≤ : ≤) changed bits and one of the bits has changed from 0 to

1, while the rest dimensions contribute bits changing from 1 to 0.

Our key observation is that the bit-changing patterns across the

column indices in a dimension only depend on the column indices

themselves, making them BMC independent. By pre-computing the

number of bit-changing patterns that can form the (+ 1)-bit
change of a directed edge, we can derive e�ciently the number of

directed edges given a query @ and a BMC.

We summarize the bit-changing patterns to form a directed edge

with two basic patterns: a rise pattern and a drop pattern.

Definition 4 (Rise Pattern). A rise patternR:
1
of a directed edge

from ?8 to ? 9 represents a:-bit (: ≥ 1) change in the dimension-1 coor-
dinate of ?8 (i.e., G8,1) to that of ? 9 (i.e., G 9,1), where the rightmost :−1
bits are changed from 1 to 0 and the :th bit (from the right) is changed
from 0 to 1, i.e., G8,1 = ...︸︷︷︸

pre�x

0 1...1︸︷︷︸
(:−1) 1s

and G 9,1 = ...︸︷︷︸
pre�x

1 0...0︸︷︷︸
(:−1) 0s

.

Definition 5 (Drop Pattern). A drop pattern D:
1
of a directed

edge from ?8 to ? 9 represents a rightmost :-bit (: ≥ 0) 1-to-0 change
in the dimension-1 coordinate of ?8 (i.e., G8,1) to that of ? 9 (i.e., G 9,1),
i.e., G8,1 = ...︸︷︷︸

pre�x

1...1︸︷︷︸
: 1s

and G 9,1 = ...︸︷︷︸
pre�x

0...0︸︷︷︸
: 0s

.

Given a dimension where the coordinates use ℓ bits, there can

be ℓ di�erent rise patterns, i.e., : ∈ [1, ℓ], and there can be ℓ + 1
di�erent drop patterns, i.e., : ∈ [0, ℓ]. Note the special case where
: = 0, i.e., D0

1
, indicating no bit value drop in dimension 1.

Example 4. In Figure 6a, consider the directed edge from ?8 to
? 9 , where Ff (?8) = 1 (000001) and Ff (? 9) = 2 (000010), i.e., the ‘ \’
segment at the bottom left. The G-coordinate of ?8changes from 000
to 001 to that of ? 9 (rise pattern R1G). The ~-coordinate of ?8 changes
from 001 to 000 to that of ? 9 (drop pattern D1

~). Thus, this directed
edge can be represented by R1G and D1

~ , denoted as R1G ⊕ D1

~ . This
same combination also applies in other directed edges, such as that
from Ff (?8) = 13 to Ff (? 9) = 14 (also in ‘\’-shape). Other directed
edges may use a di�erent combination, e.g., R3G ⊕D3

~ for Ff (?8) = 31

to Ff (? 9) = 32, and R2G ⊕ D2

~ for Ff (?8) = 39 to Ff (? 9) = 40.

Figure 6a shows the rise patternsR:G in dimension-G and the drop

patterns D:~ in dimension-~. Combining a rise and a drop pattern

from these forms a directed edge (in red). Similarly, Figure 6b shows

the rise patterns R:~ in dimension-~ and the drop patterns D:G in

dimension-G , which when combined forms a directed edge in blue.

The pattern combination operator ‘⊕’ applied on rise and drop

patterns means that a directed edge is formed by the two patterns.

While the rise and the drop patterns on a dimension are BMC

independent, the ones that can be combined to form a directed

edge are BMC dependent because di�erent BMCs order the bits

di�erently. Consider f = X
3
Y
3
X
2
Y
2
X
1
Y
1
(i.e., XYXYXY). From the

right to the left of f , the �rst rise pattern is R1G . It can only be

(a) Rise pattern in dimension G and
drop pattern in dimension ~.

(b) Rise pattern in dimension ~ and
drop pattern in dimension G .

Figure 6: Example of forming a directed edge with rise and
drop patterns: for BMC XYXYXY (3 = 2 and ℓ = 3), each
directed edge is formulated by a rise and a drop pattern.

combined with drop pattern D1

~ , as there is just one bit .
1
from

dimension-~ to the right of - 1
. Similarly, R2G and R3G can each be

combined with D2

~ and D3

~ , respectively, i.e., all 1-bits to the right

of - 2
and - 3

must be changed to 0. In general, for each dimension,

there are only ℓ valid combinations of a rise and a drop pattern,

which generalizes to 3 · ℓ in a 3-dimensional space given a BMC.

Next, Ef (@) can be calculated by counting the number of valid

rise and drop patterns in @. For example, when 3 = 2:

Ef (@) =
ℓ∑

8=1

(
N(R8G) · N(D

A~
~) + N(R8~) · N(D

AG
G)

)
(7)

Here, N(·) counts the number of times that a pattern occurs in @,

and AG (A~) is a parameter depending on the drop patterns that can

be combined with R8G (R8~). In Figure 6, for @ = ([0, 4] × [2, 3]),
there are two R1G , one R2G , and one R3G , i.e.,N(R1G) = 2,N(R2G) = 1,

and N(R3G) = 1. Next, there is one D1

~ , zero D2

~ , and zero D3

~

that are valid to match with these rise patterns, i.e., N(D1

~) = 1,

N(D2

~) = 0, and N(D3

~) = 0. Similarly, N(R1~) = 1, and R1~ can

be matched with D0

G , where N(D0

G) = 5. Recall that D0

G is the

special case with no bit value drop. It is counted as the length of the

query range in dimension G . Overall, Ef (@) = 2 × 1 + 1 × 5. Thus,
there are 10 − 7 = 3 query sections in @ according to Equation 6.

E�cient counting of rise and drop patterns. A rise pattern

R:
1
represents a change in the dimension-1 coordinate from G8,1 =

0 · 2: + (2:−1 − 1) to G 9,1 = 0 · 2: + 2
:−1 (0 ≥ 0 ∧ 0 ∈ N).

Here, 0 · 2: is the pre�x, while 2
:−1 − 1 (i.e., 0 1...1︸︷︷︸

(:−1) 1s

) and 2
:−1

(i.e., 1 0...0︸︷︷︸
(:−1) 0s

) represent the changed bits. Then, given the data

domain [GB,1 , G4,1] of dimension 1, each pattern can be counted by

calculating b(G4,1 − 2:−1)/2: c − d(GB,1 − (2:−1 − 1))/2: e + 1, i.e., a
bound on the di�erent values of 0, which takes$ (1) time. Similarly,

a drop pattern D:
1
represents a change from G8,1 = 0 · 2: + 2: − 1

to G 9,1 = 0 · 2: + 0 (0 ≥ 0 ∧ 0 ∈ N). Here, 2: − 1 (i.e., 1...1︸︷︷︸
: 1s

) and 0

(i.e., 0...0︸︷︷︸
: 0s

) represent the changed bits. We can count each pattern

by calculating b(G4,1 + 1)/2: c − dGB,1/2: e, again in $ (1) time.

Generalizing to 3 dimensions. Recall that a directed edge

can be decomposed into a rise pattern in one dimension and drop

patterns in the remaining 3 − 1 dimensions. We call the set of all

drop patterns in the 3 − 1 dimensions a drop pattern collection.

Definition 6 (Drop Pattern Collection). For a directed edge
in 3-dimensional space, a drop pattern collection D: ′ represents the
bit combination over 3 −1 drop patterns:D

∑3−1
8=1,8≠1

:8 =
⊎3
8=1,8≠1

D:8
8

(:′ =
∑3
8=1,8≠1

:8 = − :), where 1 is the dimension with a rise
pattern. Here, ‘

⊎
’ is a pattern combination operator (like ⊕ above).

We note thatD: ′ andD:
1
are interchangeable if 3 = 2. For simplicity,

we callD: ′ a drop pattern when the context eliminates any ambiguity.

Now, in a 3-dimensional data space, a directed edge can be

formed by combining one rise pattern and 3 − 1 drop patterns, i.e.,

R:
1
⊕ D

∑3
8=1,8≠1

:8 = R:
1
⊕ (⊎3

8=1,8≠1
D:8
8
) where :′ = ∑3

8=1,8≠1
:8 .

Equation 7 is then rewritten as:

Ef (@) =
3∑
9=1

ℓ∑
8=1

N(R89) · N(DA) (8)

Here, the value of parameter A depends on the number of drop

patterns that can be combined with R8
9
.

4.2.2 Pa�ern Tables. Given a set & of = range queries (@8 ∈ &),
their total local cost based on De�nition 3 is:

C;f (&) =
=∑
8=1

C;f (@8) =
=∑
8=1

V(@8) −
=∑
8=1

Ef (@8) (9)

This cost takes $ (=) time to compute. Given < BMCs, comput-

ing their respective total local costs C;f (&) takes $ (< · =) time.

As

∑=
8=1V(@8) is independent of the BMCs, it can be computed

once by performing an $ (=)-time scan over & . The computational

bottleneck for< BMCs is then the computation of

∑=
8=1 Ef (@8).

We eliminate this bottleneck by introducing a look-up table

called a pattern table that stores pre-computed numbers of rise-and-

drop pattern combinations to form the directed edges at di�erent

locations, which are BMC independent. Since each directed edge is

a combination of a rise pattern in some dimension 1 and 3 − 1 drop
patterns, we proceed to show how to pre-compute 3 pattern tables,

each recording the rise patterns of a dimension.

Definition 7 (Pattern Table). The pattern table Table1 for
dimension 1 contains ℓ rows, each for a rise pattern in the dimension,
and ℓ · (3 − 1) + 1 columns, each for a drop pattern in the other 3 − 1
dimensions. The value in row 8 and column 9 is the product of the
numbers of rise pattern R8

1
and drop pattern D 9 .

There is a total of ℓ · (3 − 1) + 1 drop patterns in the 3 − 1

dimensions because there are ℓ · (3 − 1) bits in those dimensions,

i.e., :′ ∈ [0, ℓ · (3 − 1)] for D: ′ . Further, since the rise and drop

patterns correspond to only the bit sequences in each dimension

and not the curve values, the values in the pattern tables can be

computed once given a set of queries & and be reused across local

cost estimation for di�erent BMCs.

x

y

R3
x R1

x

R3
y

R1
y

Nq2(D0y) = 3
Nq2(D1y) = 1

Nq2(D0x) = 3
Nq2(D1x) = 1

R1
x R2

x R1
x R3

x

R2
y

Nq1(D0y) = 2

Nq1(D0x) = 5
Nq1(D1x) = 2
Nq1(D2x) = 1

q1

q2

(a) Six directed edges (f = XYXYXY)

x

y

q1

q2

(b) Nine directed edges (f =YXYXYX)

Figure 7: Example of pattern counting (3 = 2, ℓ = 3).

Example 5. In Figure 7a, we show two queries @1 and @2, and
their corresponding pattern tables TableG and Table~ are shown in
Tables 2 and 3, respectively. In TableG and Table~ , we use ‘+’ to denote
summing up the pattern table cell values (i.e., N(R8

1
) · N (D 9), and

N(D 9) is N(D 9
G) or N(D

9
~)) computed for @1 and @2. For example,

in @1, N(R1G) = 2 (the two R1G are labeled for @1 in Figure 7a) and
N(D0

~) = 2 (the value range of @1 in dimension~ is 2). Meanwhile, in
@2,N(R1G) = 1 (oneR1G is labeled for@2 in Figure 7a) andN(D0

~) = 3

(the value range of @2 in dimension ~ is 3). Thus, in TableG , the cell
TableG [1] [0] (corresponding to R1G ⊕ D0

~) is the sum of N(R1G) ·
N (D0

~) in @1 and @2, i.e., 4 + 3.

Table 2: TableG

D0

~ D1

~ D2

~ D3

~

R1G 4 + 3
:
0
:
+
:
1 0 + 0 0 + 0

R2G 2 + 0 0 + 0
:
0
:
+
:
0 0 + 0

R3G 2 + 3 0 + 1 0 + 0
:
0
:
+
:
0

Table 3: Table~

D0

G D1

G D2

G D3

G

R1~ :
0
:
+
:
3 0 + 1 0 + 0 0 + 0

R2~ 5 + 0
:
2
:
+
:
0 1 + 0 0 + 0

R3~ 0 + 3 0 + 1
:
0
:
+
:
0 0 + 0

4.2.3 Local Cost Estimation with Pa�ern Tables. Next, we describe
how to derive the number of directed edges (and hence compute

the total local cost) given the 3 pattern tables for = queries.

Algorithm 1 summarizes the process. Each dimension 9 is con-

sidered for the rise patterns (Line 2). Then, we consider each rise

pattern in the dimension, i.e., each row 8 in Table 9 (Line 3). We

locate the corresponding drop pattern (i.e., the table column index)

based on 8 and a given BMC f , which is done by the get_col func-

tion. We add the cell value to the number of directed edges Ef (Line

4). Note that all ℓ rise patterns in each dimension are considered

because a BMC has ℓ bits on each dimension, which can all be the

bit that changes from 0 to 1. The total number of cells in & minus

the total number of directed edges yields the total local cost (Line 5).

Example 6. Based on Example 5, given BMC XYXYXY, from
TableG , we read cells (R1

1
, D1

2
), (R2

1
, D2

2
), and (R3

1
, D3

2
), i.e., the

cells with “wavy” lines. Similarly, we read the cells with “wavy” lines
from Table~ . These cells sum up to 6, which is the number of directed
edges (segments with arrows) in Figure 7a. Similarly, the cells relevant
to BMC YXYXYX are underlined, which yields a total of nine directed
edges shown in Figure 7b.

Algorithm 1: Compute local cost with pattern tables

Input: BMC f , pattern tables Table 9 , dimensionality 3 , number of

bits per dimension ℓ , total number of cells in the queries V
Output: Total local cost of = queries

1 Ef ← 0;

2 for 9 ∈ [1, 3] do
3 for 8 ∈ [1, ℓ] do
4 2>; ← get_col(f, 8, 9) , Ef ← Ef + Table 9 [8] [2>;];

5 return V − Ef ;

Algorithm costs. For each rise pattern, the total number of

possible drop pattern combinations is (ℓ + 1)3−1 based on drop

pattern collection. The time complexity to generate the 3 pattern

tables is$ (3 · ℓ · (ℓ + 1)3−1): ℓ is the number of rows per table, and

(ℓ + 1)3−1 is the accumulated number of drop patterns (ℓ + 1 when
3 = 2). After initialization, the retrieval time complexity of pattern

tables is $ (3 · ℓ) = $ (1), i.e., we retrieve ℓ cells from each table.

We generate 3 pattern tables, each with ℓ · (ℓ + 1)3−1 keys. The
space complexity is$ (3 · ℓ · (ℓ + 1)3−1), e.g., when 3 = 3 and ℓ = 32,

the tables take 1.6 MB (1.2 MB for keys and 0.4 MB for values).

Scalability to larger 3 . The value of 3 represents the number

of coordinate dimensions used for data record ordering (e.g., data

columns for data layout), which is typically not too large, e.g., 3 = 2

for the Amazon reviews data storage [2].

As 3 increases, the storage space for our pattern tables could

grow substantially. To use storage space more e�ciently, when 3

becomes large (when 3 ≥ 5 in our experiments), we fall back to

aggregating the local cost of each single query (instead of using

pre-computed look-up tables). Then, for a 3-dimensional query, the

local cost computation time is $ (3 · ℓ), i.e., to go over ℓ bits per

dimension and calculate the combination of 3 patterns (one rise

pattern and 3 − 1 drop patterns). The overall local cost computation

time for = queries is then $ (= · 3 · ℓ), without extra storage space
costs. Compared with the naive local cost computation process,

which takes$ (= ·+) time as described at the start of the paper, the

above approach is still more e�cient since + is proportional to ℓ3 .

5 COST ESTIMATION-BASED BMC LEARNING
Powered by our e�cient cost estimations, we aim to �nd the optimal

BMC f>?C that minimizes the costs of a set of queries& on a dataset

� . While using BMCs reduces the number of curve candidates from

(2ℓ)3 ! to (3 ·ℓ)!(ℓ!)3 , it is still non-trivial to �nd the optimal BMC. We

present an e�cient learning-based algorithm, LBMC, for this search.
Problem transformation. Starting from any random BMC f ,

the process to search for f>?C can be seen as a bit-swapping process,

until every bit falls into its optimal position.

To reduce the search space, we impose two constraints: (a) we

only swap two adjacent bits each time, and (b) two bits from the

same dimension cannot be swapped (to obey the BMC de�nition).

Any bit then takes at most (3 − 1) · ℓ swaps to reach its optimal

position if this position is known. Given3 ·ℓ bits, at most3 · (3−1) ·ℓ2
swaps are needed to achieve the optimal BMC guided by an oracle.

In practice, an ideal oracle is unavailable. Now the problem

becomes how to run the bit swaps without an ideal oracle. There

are two approaches: (a) run a random swap (i.e., exploration) each
time and keep the result if it reduces the query cost, and (b) select

Algorithm 2: Learn BMC (LBMC)

Input: Initial BMC f1
Output: A query-e�cient BMC f∗>?C

1 Initialize replay memory"& with capacity #"& ;

2 for 4?8B>34 ∈ [1, "] do
3 for C ∈ [1,)] do
4 With probability n select a random position 0C , or

0C ← max0 Q∗ (q (fC), 0;\) ;
5 fC+1 ← E(fC , 0C) , Compute reward AC ;

6 Store transition (q (fC), 0C , AC , q (fC+1)) in"& ;

7 Train model \ with sampled transitions from"& ;

8 f∗>?C ← fC+1;

9 return f∗>?C ;

a position that leads to the largest query cost reduction each time

(i.e., exploitation). We integrate both approaches by leveraging deep
reinforcement learning (DRL), since DRL aims to maximize a long-

term objective [15] and balance exploration and exploitation.

BMC learning formulation. We formulate BMC learning as a

DRL problem: (1) State space S, where a state (i.e., a BMC) fC ∈ S
at time step C is a vector 〈fC [3 · ℓ], fC [3 · ℓ − 1], . . . , fC [1]〉, and
fC [8] is the 8th bit. For example, if fC =XYZ, fC [3]=X, fC [2]=Y, and
fC [1]=Z. (2) Encoding function q (·), which encodes a BMC to �t

the model input. We use one-hot encoding. For example, X, Y, and Z

can be encoded into [0, 0, 1], [0, 1, 0], and [1, 0, 0], respectively, and
XYZ by [0, 0, 1, 0, 1, 0, 1, 0, 0]. (3) Action space A, where an action

0 ∈ A is the position of a bit to swap.When the 0th bit is chosen, we

swap it with the (0 + 1)st bit. Thus,A = {0 ∈ Z : 1 ≤ 0 ≤ 3 · ℓ − 1}.
(4) Reward A : S × A × S → A , which is the query cost reduction

when reaching a new BMC fC+1 from fC . The reward AC at step C is

calculated as AC = (CfC −CfC+1)/Cf1 , where CfC = C6fC (&) · C
;
fC
(&)

is the cost of fC estimated by Equation 5 and Algorithm 1. Following

QUILTS [19], we also use the product of global and local costs, but

we di�er in these two cost de�nitions. (5) Parameter n , which
balances exploration and exploitation to avoid local optima.

The LBMC algorithm.We summarize LBMC in Algorithm 2

where the input f1 can be any initial BMC, e.g., a ZC. The key idea

is to learn a policy c : S → A that guides the position selection for

a bit swap given a status, to maximize a value function Q∗ (q (fC), 0)
(i.e., the reward) at each step C . Such a policy c can be learned by

training a model (a deep Q-network, DQN [17]) with parameters \

over existing “experience” (previously observed state transitions and
their rewards), which is used to predict the position 0 to maximize

the value function (i.e., max0 Q
∗ (q (fC), 0;\)). After a number of

iterations, the learned BMC f∗>?C is expected to approach f>?C ,

which is returned as the algorithm output.

We use"& to store the latest #"& swapping records (the expe-

rience, Line 1). We learn to approach f>?C with" episodes and)

steps per episode (Lines 2 and 3). In each episode, we start with f1
encoded by q (·). To select a swap position 0C at step C , we generate

a random number in [0, 1], if it is greater than n , we randomly select

a position 0C , otherwise, we set 0C as the position with the high-

est probability to maximize the reward, i.e., max0 Q
∗ (q (fC), 0;\)

(Line 4). The prediction is based on the current state fC and model

weights \ . We execute 0C (E(fC , 0C)) and compute reward AC using

our cost model (Line 5). We record the new transition in "& and

train the DQN (update \) over sampled data in "& (Lines 6 and 7).

The training uses gradient descent to minimize a loss function

!C (\C) = Eq (f),0∼d (·)
[
(~C −& (q (f), 0;\C))2

]
where ~C is the tar-

get from iteration C and d (·) is the action distribution [17]. We store

the updated BMC as f∗>?C (Line8) and return it at the end (Line9).

x

y

Cg(q2)=7
Cl(q2)=2

Cg(q1)=8
Cl(q1)=1

Cg(q3)=3
Cl(q3)=2

q1

q2

q3

(a) YXXYYX, C1 = 182

x

y

Cg(q2)=7
Cl(q2)=2

Cg(q1)=8
Cl(q1)=1

Cg(q3)=3
Cl(q3)=2

q1

q2

q3

(b) YXYXYX, C2 = 90

x

y

Cg(q2)=6
Cl(q2)=1

Cg(q1)=8
Cl(q1)=1

Cg(q3)=2
Cl(q3)=1

q1

q2

q3

(c) YXYXXY, C3 = 48

YXYXYX YXYXXY1 0.24

...

YXXYYX YXYXYX3 0.49

Learn DQN model

YXYXXYnext:

position:1

exchange

Add to memory

reward:0.24

...

YXYXYXcurrent:

new

old

(d) Learning through LBMC

0 50 100 150 200
t

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 C
os

t

LBMC
Swap any two bits
Optimal

(e) Normalized costs vs. # steps

Figure 8: A BMC learning example.

Example 7. Figure 8 illustrates LBMC with ℓ = 3 and three queries
@1,@2, and@3. The initial BMCf1 = YX

:
XYYX has an (estimated) query

cost of C1 = 182 = (12 + 11 + 3) × (2 + 3 + 2) (Figure 8a). We select
position 01 = 3 and swap the 3rd and 4th bits to get f2 = YXY

:
XYX

with cost C2 = 90 (Figure 8b). Next, we select position 02 = 1 and
swap the 1st and 2nd bits to get f3 = YXYXXY with cost C3 = 48

(Figure 8c). We store the intermediate results in "& for learning the
DQN (Figure 8d, the BMCs are shown without encoding). Figure 8e
shows the normalized costs, CC/C1, which decrease as C increases
(Figures 8a to 8c are three of the steps) to approach the optimum.

We note that swapping adjacent bits rather than random pairs of

bits can enhance the stability of the learning process, as the result-

ing curve patterns (and query costs) change gradually. Swapping

random pairs of bits can lead to drastic changes in the curve pat-

terns disrupting the locality structure, thereby hindering the model

convergence. This is con�rmed by Figure 8e that plots the esti-

mated costs of the resulting curves learned with these two di�erent

strategies. The costs of LBMC decrease much more steadily.

Algorithm cost. LBMC has) ·" iterations that each involves

three steps: bit-swap position prediction, reward calculation, and

model training. Their costs are $ (1), $ (CC), and $ (T\), respec-
tively. The total time cost is then $ () · " · (1 + CC + T\)). Here,
) ·" is a constant, while $ (T\) is determined by the model. Our

cost estimation leads to$ (CC) = $ (1) and an e�cient BMC search.

6 EXPERIMENTS
We evaluate cost estimation e�ciency and e�ectiveness in Experi-

ment 1 (Section 6.2) and Experiment 2 (Section 6.3), respectively,

and the query e�ciency achieved with the curves learned by LBMC

in Experiment 3 (Section 6.4).

6.1 Experimental Settings
Our cost estimation algorithms (i.e., GC and LC) and BMC learning

algorithm (i.e., LBMC) are implemented in Python, with TensorFlow

facilitating the BMC learning. Additionally, we integrate BMC into

Apache Hudi v0.14.0 using Java. We run experiments on a desktop

computer equipped with 64-bit Ubuntu 20.04 with a 3.60 GHz Intel

i9 CPU, 64 GB RAM, and a 500 GB SSD.

Datasets.We use three real datasets: OSM [20], NYC [29] and

TPC-H [30], and one synthetic dataset SKEW [13]. OSM contains

100 million 2D location points (2.2 GB). NYC contains 150 million

yellow taxi transactions (10.5 GB). TPC-H is generated by dbgen.
We use the lineitem table (0.74 ~ 12.5 GB). SKEW contains 100

million points in skewed distribution (skewness 4, 1.7 GB) [26].

Experiment 2 (E2) leverages OSM and SKEW to replicate the

conditions of the BMtree [13], assessing performance under skewed

data distributions. Experiment 3 (E3) uses NYC and TPC-H to pro-

cess real-world queries, facilitating an assessment in practical appli-

cation contexts. Notably, Experiment 1 (E1) focuses on the e�ciency

of cost estimation, without the direct need for a dataset.

Queries. In E1, we evaluate performance using synthetic queries,

varying both their number and ranges to simulate di�erent work-

load scenarios. E2 extends this approach, employing 1,000 synthetic

range queries for SFC learning and an additional 2,000 for testing

purposes. The queries are of uniform size and follow the distribu-

tions of their respective datasets. E3 uses real query evaluation to

assess the performance under practical queries. For TPC-H, queries

are automatically generated alongside data tables. For NYC, we gen-

erate �ve query workloads (QW): large queries (QW1) spanning

1/6 (of the data range, same below) in each dimension; thin queries

(QW2 and QW3) spanning 1/3 and 1/30 in the two dimensions,

respectively, small queries (QW4) spanning 1/15 in each dimension,

and skewed queries (QW5) with bottom left corners at that of the

data space and random upper right corners.

Parameter settings. Table 4 summarizes the parameter values

used, with default values in bold. In the table, = denotes the number

of queries; X denotes the edge length of a query; 3 denotes the

data dimensionality; # denotes the dataset cardinality – we use

sampling to obtain datasets of di�erent cardinalities; and B indicates

the dbgen scale factor, a�ecting the size of TPC-H (i.e., 6 million

records for B = 1, and 96 million for B = 16).

A key parameter is the number of bits ℓ , which impacts the curve

value mapping e�ciency substantially. In E1, we restrict ℓ to 18

to suit a naive local cost baseline. In E2, we set default ℓ = 20

following the BMTree to balance the computational costs of curve

value mapping and cost estimation.

6.2 E1: E�ciency of Cost Estimation
We �rst evaluate the e�ciency of our algorithms (excluding ini-

tialization) to compute the global cost GC and the local cost LC
(Algorithm 1), which are based on Equations 5 and 8. We use IGC
and ILC to denote the initialization steps of the two costs. As there

are no existing e�cient algorithms, we compare with baseline al-

gorithms based on Equations 4 and 9, denoted by NGC and NLC.
We vary the number of queries =, the query size (via X), and the

number of bits ℓ . We run experiments for 2- to 6-dimensional spaces.

Due to page limits, we focus on the 2-dimensional space. As the

Table 4: Parameter settings.

Experiments Parameter Values

= 2
0
, 2

1
, 2

2
, 2

3
, 2

4
2
4
2
4
, 2

5
, 2

6
, 2

7
, 2

8
, 2

9
, 2

10

E1 X (×24) 1, 2, 4, 8, 16
ℓ 10, 12, 14, 16, 18
3 2, 3, 4, 5, 6

E2 # 10
4
, 10

5
, 10

6
, 10

7
10

7
10

7
, 10

8

= 1, 5, 10, 50, 100, 500, 1000, 1500, 2000
B 1, 2, 4, 8, 16

E3 ℓ 16, 20, 24, 28, 32, 64
3 2, 3, 4, 5, 6

cost estimation is data independent, a dataset is not needed to study

their e�ciency. The queries are generated at random locations.

20 21 22 23 24 25 26 27 28 29 210

n

10¡3

10¡1

101
102

Ti
m

e
(m

s) NGC
GC

(a) Varying =

1 2 4 8 16
± (£24)

10−2

10−1

Ti
m

e
(m

s) GC
NGC

(b) Varying X

10 12 14 16 18
`

10−2

10−1

Ti
m

e
(m

s) GC
NGC

(c) Varying ℓ

2 3 4 5 6
d

10−5

10−3

10−1

101

Ti
m

e
(m

s) GC NGC

(d) Varying 3

Figure 9: Running times of global cost estimation.

6.2.1 E�iciency of GC. Figures 9a and 9b show the impact of =

and X , respectively. Since GC takes $ (3 · ℓ) time to compute (after

the initialization step), its running time is una�ected by = and X .

NGC takes $ (= · 3 · ℓ) time. Its running time grows linearly with =

and is una�ected by X . Figure 9c shows that the running times of

GC and NGC both increase with ℓ , which is consistent with their

time complexities. Since the relative performance of our algorithm

and the baseline is stable when ℓ is varied, we use a default value

of 10 instead of the maximum value 18, to streamline this set of

experiments. Figure 9d shows the impact of 3 . The running times

of both GC and NGC increase with 3 , which is also expected.

Overall, GC is consistently faster than NGC, with up to more

than an order of magnitude performance gain.

6.2.2 E�iciency of LC. Figure 10 shows the running times of com-

puting local costs. The performance patterns of LC and NLC are

consistent with the cost analysis in Section 4.2. The performance

gains of LC are even larger, as its pre-computed pattern tables enable

extremely fast computation. As Figure 10d shows, LC outperforms

NLC by more than four orders of magnitude for all 3 ∈ [2, 6]. When

3 ≥ 5, we aggregate the local cost of each query instead of using

look-up tables to save space, which is still much faster than NLC.

6.2.3 Initialization Costs of GC and LC. Table 5 shows the running
times of IGC and ILC, which increase with =, as the initialization

steps need to visit all = queries to compute a partial global cost

20 21 22 23 24 25 26 27 28 29 210

n

10¡5

10¡2

101
102

Ti
m

e
(s

)

LC
NLC

(a) Varying =

1 2 4 8 16
± (£24)

10¡5

10¡2

101

Ti
m

e
(s

) LC
NLC

(b) Varying X

10 12 14 16 18
`

10¡5

100

104

Ti
m

e
(s

) LC NLC

(c) Varying ℓ

2 3 4 5 6
d

10−5
10−3

100

103

Ti
m

e
(s

) LC NLC

(d) Varying 3

Figure 10: Running times of local cost estimation.

and prepare the pattern tables, respectively. These running times

are smaller than those of NGC and NLC, con�rming the e�ciency

of the proposed cost estimation algorithms. Similar patterns are

observed when varying X , ℓ , and 3 , which are omitted for brevity.

Table 5: ICs of GC and LC (Varying =).

= 2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

IGC (ms) 0.03 0.05 0.08 0.15 0.27 0.52 1.06 1.93 4.07 7.79
NGC (ms) 0.03 0.05 0.10 0.18 0.36 0.70 1.50 2.96 5.37 10.86

ILC (s) 0.01 0.01 0.02 0.06 0.12 0.23 0.48 0.95 1.83 3.63
NLC (s) 0.01 0.06 0.18 0.93 1.93 3.03 6.31 9.21 20.98 48.22

6.3 E2: E�ectiveness of Cost Estimation
We next explore the e�ectiveness of GC and LC within a live data-

base, PostgreSQL, by comparing with the state-of-the-art SFC learn-

ing algorithm, the BMTree [13]. We denote the original BMTree

algorithm by BMTree-SP. We replace its data sampling-based cost

estimation by GC and LC, and denote the resulting variants by

BMTree-GC and BMTree-LC, respectively. We note that, the

BMTree has reported [13] superior query performance over tradi-

tional indices including ZC, HC, R-trees, R
∗
-trees, STR-trees, Grid-

�les, quadtrees, and QUILTS [19] as well as learned indices ZM [32]

and RSMI [25]. We observed that BMTree-GC and BMTree-LC also

outperform these indices, which are omitted for brevity.

We report the reward calculation time at learning, as the other

steps of the three variants are the same. For query execution, we re-

port the average number of block accesses recorded by PostgreSQL.

6.3.1 Varying the Dataset Cardinality. We start by varying the

dataset cardinality# from 10
4
to 10

8
. Figure 11 shows the results on

OSM (the results on the other datasets show similar patterns and are

omitted; same below). BMTree-GC and BMTree-LC have constant

reward calculation times, since GC and LC are data independent. In

comparison, the reward calculation times of BMTree-SP increase

linearly with # , as BMTree-SP builds intermediate index structures

based on sampled data for cost estimation. When # increases, the

number of sampled data points also increases. At # = 10
8
(d =

0.001, i.e., BMTree-SP runs on a sampled set of 10
5
points), the

reward calculation time of BMTree-SP (> 7 hours) is 36x and 474x

higher than those of BMTree-LC (737 s) and BMTree-GC (57 s).

104 105 106 107 108

N

101

102

103

104

105

R
ew

ar
d

ca
lc

ul
at

io
n

tim
e

(s
)

BMTree-GC
BMTree-LC
BMTree-SP

(a) Reward calculation time

104 105 106 107 108

N

101

102

103

104

105

B

lo
ck

 a
cc

es
se

s

BMTree-GC
BMTree-LC
BMTree-SP

(b) Query processing cost

Figure 11: Varying the dataset cardinality (OSM).

The query costs (number of data block accesses) increase as

increases, which is expected. Importantly, all three algorithms

incur similar numbers of block accesses given the same # value.

This suggests that GC and LC can be applied to improve the curve

learning e�ciency of the BMTree without adverse e�ects on the

query e�ciency. In general, BMTree-LC o�ers lower query costs

than BMTree-GC. Thus, applications that are more sensitive to

query costs may use BMTree-LC, while those that aremore sensitive

to learning costs may use BMTree-GC.

1 5 10 50 100 500 1000 1500 2000
n

100
101
102
103
104
105

R
ew

ar
d

ca
lc

ul
at

io
n

 ti
m

e
(s

)

BMTree-GC
BMTree-LC

BMTree-SP

(a) Reward calculation time.

1 5 10 50 100 500 1000 1500 2000
n

0

1000

2000
2200

B

lo
ck

 a
cc

es
se

s BMTree-GC
BMTree-LC

BMTree-SP

(b) Query processing cost

Figure 12: Varying the number of training queries (OSM).

6.3.2 Varying the Number of �eries for Curve Learning. Next, we
study the impact of the number of queries used in curve learning

(the “training queries” for short), varying = from 1 to 2,000. To add

diversity to the queries, we now randomly generate the query side

length between 1/16384 and 1/64 of the data range.

Figure 12a shows the reward calculation times. All three algo-

rithms take more time as = grows, because their reward calculations

all need to go through all = queries at least once. BMTree-GC and

BMTree-LC are consistently faster than BMTree-SP. The perfor-

mance gap shrinks with =, because BMTree-SP takes extra time to

build an intermediate index, which gets amortized as = grows.

Figure 12b shows the average number of block accesses over

2,000 test queries (following the distribution of the training queries).

The algorithms show di�erent performance patterns. (1) BMTree-

LC shows a steadily decreasing pattern starting from = = 10, with

its query costs being lower than those of BMTree-SP from = ≥ 50.

This shows that our LC can be highly e�ective to guide learning

query-e�cient curves given just a small =. (2) Both BMTree-GC

and BMTree-SP �uctuate more, with a more substantial drop only

when = reaches 1,500, which is less desirable.

6.3.3 Varying the Distribution of the Test �eries. In Figure 13,

we show the query costs when the test queries follow a di�erent

distribution from that of the training queries. The centroids of the

training queries are sampled from the dataset, while those of the

test queries are sampled from a normal distributions for 50% and all

of the test queries in Figures 13a and 13b, respectively. We see that

the query costs increase as the test queries become more di�erent

from the training queries. For example, at = = 2, 000, the number

of block accesses for BMTree-LC are 1,013 and 1,179 in the two

sub-�gures, respectively. This is expected, as the curves learned suit

the test queries less and less. Importantly, the relative performance

among the three algorithms is stable across the sub-�gures, i.e.,

LC is consistently at least as e�ective as the sampling-based cost

estimator proposed by the BMTree.

1 5 10 50 100 500 1000 1500 2000
n

0

1000

2000
2200

B

lo
ck

 a
cc

es
se

s BMTree-GC
BMTree-LC

BMTree-SP

(a) 50% test queries from training dis-
tribution.

1 5 10 50 100 500 100015002000
n

0

1000

2000

B

lo
ck

 a
cc

es
se

s

(b) No test queries from training distri-
bution.

Figure 13: Varying the distribution of the test queries (OSM).

6.4 E3: Improvement on Query E�ciency
We investigate the query e�ciency of using the BMCs learned

by LBMC to order data points, comparing with other ordering

techniques within Hudi [2]. Using Hudi is motivated by its inherent

support for a variety of data ordering techniques to compute the

data layout: ZC [21], HC [10], and CC [13, 19]. In Hudi, values in

data columns chosen to compute the data layout are each converted

into an 8-byte integer (with truncation if needed). The converted

values of each data record are mapped to a one-dimensional value

using an SFC, which is then used for data ordering and layout.

We introduce BMC (i.e., the output of LBMC or a baseline al-

gorithm QUILTS [19]) into Hudi by adding a BMC-based ordering

to Hudi. The BMTree is excludes because it cannot be easily inte-

grated into Hudi due to its complex structure with multiple BMCs.

Performance comparison between LBMC and the BMTree outside

Hudi can be found in our technical report [14]. We cannot compare

with the recent learned SFC, LMSFC [7], because its source code

and some implementation details are unavailable

Our evaluation involves �ve distinct query workloads on TPC-H

and NYC datasets, comprising 1,000 queries each. These queries,

while uniform in SQL structure, vary in their query ranges and

conditions speci�ed within the WHERE clause.

We use Spark WebUI APIs [28] to measure the average size of
data �les scanned per query that indicates the direct bene�ts of data

ordering and the average CPU time per query.

6.4.1 Results on TPC-H. We sort the records using the commitdate
and receiptdate columns of the lineitem table in TPC-H. This

boosts the e�ciency of queries that often use these columns.

Overall Results. Figure 14 shows the results. In terms of the

average size of data �les scanned, LBMC outperforms all competi-

tors consistently. It saves at least 17% of the data scans compared

with those of ZC and HC. Compared with QUILTS, LBMC also

improves by at least 11%. CC has the highest data volume scanned,

exceeding that of LBMC by over 21%. This is because the linear

ordering intersects with a broader range than the others.

Regarding the average CPU time, LBMC is also consistently the

lowest. It saves more than 21% time comparing wit ZC and HC.

Compared with QUILTS (8.14 s), LBMC (5.13 s) saves up to 36% of

the CPU time on QW4. Here, the CPU time of CC is no longer the

worst – CC enables more e�cient aggregation (e.g., “ORDER BY”)
after the data scans, as data is already fully sorted in a column.

While ZC and HC may reduce the data scans, they may need more

expensive re-ordering on speci�c column(s) during aggregation.

QW1 QW2 QW3 QW4 QW5
Query workloads

0

1000

2000

3000

4000

5000

Si
ze

 (M
B

)

LBMC
CC
ZC

HC
QUILTS

(a) Average size of data �les scanned

QW1 QW2 QW3 QW4 QW5
Query workloads

0

10

20

30

40

50

Ti
m

e
(s

)

LBMC
CC
ZC

HC
QUILTS

(b) Average CPU time

Figure 14: Querying TPC-H.

Varying dataset cardinality.We vary # by varying the scale

factor B of dbgen. Figure 15 shows the results on QW5 (similar

results are observed on other query workloads, same below). As B

increases, the query costs increase as expected. LBMC again has

the lowest query costs due to its strong clustering capability.

1 2 4 8 16
s

0
200
400
600
800

1000
1200

Si
ze

 (M
B

)

LBMC
CC
ZC

HC
QUILTS

(a) Average size of data �les scanned

1 2 4 8 16
s

0

4

8

12

Ti
m

e
(s

)

LBMC
CC
ZC

HC
QUILTS

(b) Average CPU time

Figure 15: Varying the scale of TPC-H (QW5).

16 20 24 28 32 64
`

0

200

400

600

800

1000

1200

1400

Si
ze

 (M
B

)

LBMC
CC

ZC
HC

QUILTS

(a) Average size of data �les scanned

16 20 24 28 32 64
`

0

4

8

12

16

Ti
m

e
(s

)

LBMC
CC

ZC
HC

QUILTS

(b) Average CPU time

Figure 16: Varying the number of bits on TPC-H (QW5).

Varying the number of bits. We vary the number of bits ℓ

used in LBMC and QUILTS. Next, CC, HC, and ZC use ℓ = 64,

which is built-in and �xed in Hudi. Figure 16 shows the results

(for workload QW5). We observe a query cost reduction for LBMC

and QUILTS when ℓ = 32. This is the point when the use of more

bits substantially reduces duplicates in the curve values, and hence

fewer false positives are retrieved at query time. When ℓ reaches

64, the query costs have not decreased further. This suggests that

ℓ = 32 is su�cient for curve construction on the TPC-H dataset.

Varying data dimensionality. To test the impact of 3 , we use

the lineitem table in TPC-H and workload QW5 like above. We

now use up to six columns: commitdate, receiptdate, shipdate,
linenumber, quantity, and discount, starting from commitdate
and receiptdate (i.e., 3 = 2). As 3 increases by one, we append an

extra random query range to every query in QW5.

Figure 17 shows the query costs of the computed curves. As

3 increases, the average size of data �les scanned, as well as the

performance gap among the algorithms, remains stable. The average

CPU times, on the other hand, grow with 3 due to the increased

time costs of �ltering the data records. LBMC has the lowest query

costs consistently, con�rming its scalability with 3 .

2 3 4 5 6
d

0
200
400
600
800

1000
1200
1400
1600

Si
ze

 (M
B

)

LBMC
CC

ZC
HC

QUILTS

(a) Average size of data �les scanned

2 3 4 5 6
d

0

4

8

12

16

Ti
m

e
(s

)

LBMC
CC

ZC
HC

QUILTS

(b) Average CPU time

Figure 17: Varying the data dimensionality on TPC-H.

BMCoptimization time.Table 6 lists the times taken byQUILTS

and LBMC to compute their optimized curves (ZC, HC, and CC

do not need this time). QUILTS has a varying computation time,

because its local cost is computed based on the query sizes which

vary across the workloads. LBMC has a much lower and constant

time, which is consistent with our $ (1)-time promise.

Table 6: BMC optimization time (seconds).

Query workloads QW1 QW2 QW3 QW4 QW5

QUILTS 1142 266 413 484 257

LBMC 13 13 13 13 13

6.4.2 Results on NYC. Next, we run queries on NYC sorted based

on the pickup_location and dropoff_location columns.

Overall results. As Figure 18 shows, LBMC consistently out-

performs all the other sorting techniques, achieving data scan re-

ductions by more than 10%, 14%, 14%, and 6% over CC, ZC, HC,

and QUILTS, respectively. Here, CC outperforms ZC and HC on

four workloads (except for QW4). This is because queries in the

four workloads each spans quite a large range in at least one di-

mension. Such queries retrieve data in a large consecutive range.

CC-based data layout suits this retrieval pattern nicely and hence

CC performs the best for these workloads. LBMC also reduces the

CPU time by at least 35% (1.63 s for LBMC vs. 2.53 s for QUILTS on

QW3) and up to 61% (0.34 s for LBMC vs. 0.86 s for HC on QW5).

Here, the CPU time of CC is also slightly better since it is more

e�cient for aggregations (e.g., “ORDER BY” a dimension) after the

data scans, while ZC and HC may take extra time to re-order on a

dimension during aggregation.

QW1 QW2 QW3 QW4 QW5
Query workloads

0

100

200

300

400

500

Si
ze

 (M
B

)

LBMC
CC
ZC

HC
QUILTS

(a) Average size of data �les scanned

QW1 QW2 QW3 QW4 QW5
Query workloads

0

1

2

3

4

Ti
m

e
(s

)

LBMC
CC
ZC

HC
QUILTS

(b) Average CPU time

Figure 18: Querying NYC.

7 EXTEND TO OTHER CURVES AND QUERIES
We discuss extensions to other types of curves and queries.

Other types of curves. The idea of counting the number of

times that a curve enters and leaves a query range to derive the

number of curve segments in the query range (i.e., the local cost)

could apply to any SFC. The challenge lies in how to count e�-

ciently. Our LC algorithm exploits the property that the BMC curve

value of a cell is determined by the bits of the coordinates (column

indices) of the cell. This property ensures that curve moving pat-

terns can be derived and counted e�ciently based on the changes

in the bits of the coordinates of the boundary of a query range.

Such a property does not hold for Hilbert curves, which are

formed by a (recursive) combination of pattern ‘u’ and its rotations.
To count the curve segments in a query, we need to count the

number of times that pattern ‘u’ and its di�erent rotations intersect
the query boundary, which is not directly computable from the

cell coordinates. This challenge necessitates another study to �nd

e�cient algorithms to compute the number of intersections.

Other types of queries.We focused on range queries following

the literature [13, 19, 34] and for that they are a basic query type.We

discuss how to extend to : nearest neighbor (:NN). NN queries

are typically processed as a series of range queries with growing

ranges until no new :NN objects can be found. The challenge lies

in estimating the number of range queries needed and the ranges of

such queries, which could be done based on the data density around

the query point (e.g., using the cumulative distribution functions).

8 CONCLUSIONS
We studied e�cient cost estimation for a family of SFCs, i.e., the

BMCs. The proposed algorithms compute the global and the local

query costs of BMCs in constant time given = queries. We extended

these algorithms to the state-of-the-art curve learning algorithm,

the BMTree, which originally measured the e�ectiveness of SFCs.

Experimental results show that our algorithms can reduce the cost

estimation time of the BMTree by over an order of magnitude with

little or no impact on the query e�ciency of the learned curves. We

further proposed a reinforcement learning-based curve learning

algorithm. The resulting learned BMCs are shown to achieve lower

query costs than other baselines in a real data system.

ACKNOWLEDGMENTS
This work is partially supported by the Australian Research Council

(ARC) via Discovery Projects DP230101534 and DP240101006, Dis-

covery Early Career Researcher Award DE230100366, and a LOreal

for Women in Science Fellowship.

REFERENCES
[1] Amazon AWS. 2016. https://aws.amazon.com/blogs/big-data/amazon-redshift-

engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-
keys. Accessed: 2024-07-15.

[2] Apache Hudi. 2021. https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-
hilbert-space-�lling-curves. Accessed: 2024-07-15.

[3] Christian Böhm. 2020. Space-�lling Curves for High-performance Data Mining.

CoRR abs/2008.01684 (2020).

[4] Databricks Engineering Blog. 2018. https://databricks.com/blog/2018/07/31/
processing-petabytes-of-data-in-seconds-with-databricks-delta.html. Accessed:

2024-07-15.

[5] Christos Faloutsos and Shari Roseman. 1989. Fractals for Secondary Key Retrieval.

In PODS. 247–252.
[6] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for

Retrieval on Composite Keys. Acta Informatica 4, 1 (1974), 1–9.
[7] Jian Gao, Xin Cao, Xin Yao, Gong Zhang, and Wei Wang. 2023. LMSFC: A

Novel Multidimensional Index based on Learned Monotonic Space Filling Curves.

PVLDB 16, 10 (2023), 2605–2617.

[8] Claire E. Heaney, Yuling Li, Omar K. Matar, and Christopher C. Pain. 2020.

Applying Convolutional Neural Networks to Data on Unstructured Meshes with

Space-Filling Curves. CoRR abs/2011.14820 (2020).

[9] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential

Model-Based Optimization for General Algorithm Con�guration. In International
Conference on Learning and Intelligent Optimization. 507–523.

[10] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-tree

using Fractals. In VLDB. 500–509.
[11] Tim Kraska, Alex Beutel, Ed H. Chi, Je�rey Dean, and Neoklis Polyzotis. 2018.

The Case for Learned Index Structures. In SIGMOD. 489–504.
[12] Warren M. Lam and Jerome M. Shapiro. 1994. A Class of Fast Algorithms for

the Peano-Hilbert Space-Filling Curve. In International Conference on Image
Processing. 638–641.

[13] Jiangneng Li, Zheng Wang, Gao Cong, Cheng Long, Han Mao Kiah, and Bin Cui.

2023. Towards Designing and Learning Piecewise Space-Filling Curves. PVLDB
16, 9 (2023), 2158–2171.

[14] Guanli Liu, Lars Kulik, Christian S. Jensen, Tianyi Li, Renata Borovica-Gajic, and

Jianzhong Qi. 2024. E�cient Cost Modeling of Space-�lling Curves. Technical
Report. The University of Melbourne. https://anonymous.4open.science/r/

LearnSFC-B6D8/technical_report.pdf

[15] Stephen McAleer, Forest Agostinelli, Alexander Shmakov, and Pierre Baldi. 2019.

Solving the Rubik’s Cube Without Human Knowledge. In ICLR.
[16] Microsoft. 2023. https:// learn.microsoft.com/en-us/ sql/ relational-databases/

indexes/ indexes?view=sql-server-ver16. Accessed: 2024-07-15.

[17] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari

with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013).

[18] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis

of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions
on Knowledge and Data Engineering 13, 1 (2001), 124–141.

[19] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data

Partitioning Framework Based on Query-Aware and Skew-Tolerant Space-Filling

Curves. In SIGMOD. 1525–1537.
[20] OpenStreetMap. 2018. OpenStreetMapNorth America data dump. https://download.

geofabrik.de. Accessed: 2024-07-15.
[21] Jack A. Orenstein. 1986. Spatial Query Processing in an Object-Oriented Database

System. In SIGMOD. 326–336.
[22] Jack A. Orenstein and T. H. Merrett. 1984. A Class of Data Structures for Asso-

ciative Searching. In PODS. 181–190.
[23] Sachith Pai, Michael Mathioudakis, and YanhaoWang. 2022. Towards an Instance-

Optimal Z-Index. In AIDB@VLDB.
[24] PostgreSQL. 2023. https://www.postgresql.org/docs/ current/ indexes-multicolumn.

html. Accessed: 2024-07-15.
[25] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. E�ectively

Learning Spatial Indices. PVLDB 13, 11 (2020), 2341–2354.

[26] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. 2018. Theoretically

Optimal and Empirically E�cient R-trees with Strong Parallelizability. PVLDB
11, 5 (2018), 621–634.

[27] S2 Geometry. 2023. http:// s2geometry.io. Accessed: 2024-07-15.
[28] Spark Web UI. 2024. https:// spark.apache.org/docs/ latest/web-ui.html. Accessed:

2024-07-15.

[29] TLC Trip Record Data. 2022. https://www1.nyc.gov/ site/ tlc/about/ tlc-trip-record-
data.page. Accessed: 2024-07-15.

[30] TPC. 2022. TPC-H. http://www.tpc.org/ tpch/ . Accessed: 2024-07-15.
[31] Panagiotis Tsinganos, Bruno Cornelis, Cornelis Jan, Bart Jansen, and Athanassios

Skodras. 2021. The E�ect of Space-�lling Curves on the E�ciency of Hand

Gesture Recognition Based on sEMG Signals. International Journal of Electrical
and Computer Engineering Systems 12, 1 (2021), 23–31.

[32] Haixin Wang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for

Spatial Queries. In MDM. 569–574.

[33] Pan Xu, Cuong Nguyen, and Srikanta Tirthapura. 2018. Onion Curve: A Space

Filling Curve with Near-Optimal Clustering. In ICDE. 1236–1239.
[34] Pan Xu and Srikanta Tirthapura. 2014. Optimality of Clustering Properties

of Space-Filling Curves. ACM Transactions on Database Systems 39, 2 (2014),

10:1–27.

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys
https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-hilbert-space-filling-curves
https://hudi.apache.org/blog/2021/12/29/hudi-zorder-and-hilbert-space-filling-curves
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://databricks.com/blog/2018/07/31/processing-petabytes-of-data-in-seconds-with-databricks-delta.html
https://anonymous.4open.science/r/LearnSFC-B6D8/technical_report.pdf
https://anonymous.4open.science/r/LearnSFC-B6D8/technical_report.pdf
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/indexes/indexes?view=sql-server-ver16
https://download.geofabrik.de
https://download.geofabrik.de
https://www.postgresql.org/docs/current/indexes-multicolumn.html
https://www.postgresql.org/docs/current/indexes-multicolumn.html
http://s2geometry.io
https://spark.apache.org/docs/latest/web-ui.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 BMC Definition
	3.2 Range Querying Using a BMC

	4 Efficient BMC Cost Estimations
	4.1 Global Cost Estimation for BMC
	4.2 Local Cost Estimation for BMC

	5 Cost Estimation-Based BMC Learning
	6 Experiments
	6.1 Experimental Settings
	6.2 E1: Efficiency of Cost Estimation
	6.3 E2: Effectiveness of Cost Estimation
	6.4 E3: Improvement on Query Efficiency

	7 Extend to Other Curves and Queries
	8 Conclusions
	References

