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ABSTRACT
In this paper, we study the problem of cardinality estimation for

similarity search on high-dimensional data (CE4HD). We aim to

perform CE4HD with high data robustness (i.e., robust to different

datasets), query robustness (i.e., robust to large cardinality variance

and scale) and efficiency. We propose to leverage the cardinality es-

timation of selected objects (called reference objects) in the database

to achieve the above. Specifically, we propose two techniques that

adopt different strategies to select and leverage reference objects,

as well as strategies to support efficient computation in dynamic

databases. Extensive experiments on datasets from diverse domains

show that our methods achieve up to ∼10x speed-up and up to

∼136x smaller mean Q-error compared to existing studies.

1 INTRODUCTION
We study the problem of cardinality estimation for similarity search

on high-dimensional data (CE4HD): given a dataset of high-dimensional

data objects, a distance function, a query object and a query dis-

tance threshold, it aims to estimate the number of objects in the

dataset whose distance to the query object does not exceed the

threshold. CE4HD finds use cases in many real-life applications,

e.g., outlier detection [10], popularity estimation of interesting pat-

terns [50], and query optimization for cross-modal search where

unstructured data like images and text are typically converted into

high-dimensional embeddings [16, 23, 29, 31, 37, 43].

Identified Research Gaps. Upon reviewing the existing solutions

for CE4HD [41, 46, 48], we observe considerable space for improve-

ments in three critical aspects: (1) Comprehensive Efficiency – the

proposed method must exhibit efficiency not only in online esti-

mation but also throughout offline processing, encompassing tasks

such as data preprocessing and training. (2) Query Robustness [48]
– consistently accurate estimation on queries whose cardinalities

vary greatly, spanning several orders of magnitude (Large Cardinal-

ity Scale and Variance). (3) Data Robustness – consistently accurate

estimation over datasets with varying distributions.

To fill these gaps, we propose two novel methods, making notable

improvements in nearly all aspects compared to state-of-the-art

methods, SelNet [48] and SimCard [41], as highlighted in Table 1.

Specifically, our methods are up to 2x faster in the Offline Process
(data preparation and training), and meanwhile, achieve fast online

estimation. In terms of accuracy, our methods achieve up to ∼136x
and ∼3.2x smaller mean Q-error compared to SimCard [41] and

SelNet [48], respectively, as detailed in Section 2.2.

Core Idea. With a given dataset and distance function, the car-

dinality of a query object under various distance thresholds can

be represented by a function of the threshold. We simply name

it as the cardinality function of that query object. After profiling

Table 1: Comparison with SOTA (SimCard [41] & SelNet [48])
Criteria Comparison Improvement

Efficiency

Offline Processing Ours > SimCard> SelNet Up to ∼ 2x faster

Online Estimation Ours ≈ SelNet > SimCard Up to ∼ 10x faster

Query Robustness

Large Cardinality Variance

Ours ≈ SelNet > SimCard

Large Cardinality Scale Up to ∼136x
Data Robustness Various Distribution Ours > SelNet > SimCard smaller Q-error

numerous high-dimensional datasets across diverse domains, a key

observation arises: we can identify another object whose cardinality

function’s curve is close to that of a target object, either by shifting

one of the cardinality functions within a certain distance along the

x-axis or without any movement at all. This observation forms the

basis of our core idea–leveraging cardinality functions of existing
data objects to infer the cardinality of a query object under a given
threshold. In this paper, we refer to the data object used for inferring
the query object’s cardinality as the reference object.

Our Methods. Realizing this core idea poses three challenges: (1)
how do we select reasonable reference objects for a query object?

(2) How do we infer the cardinality of a query object based on the

selected reference object to achieve high accuracy? (3) How do we

address the previous questions in a highly efficient manner?

To tackle them, we propose two reference-based cardinality esti-

mation methods. The first method is called Single-Reference-based

Cardinality Estimation (SRCE), which employs only one reference
object to estimate the cardinality of a query object. SRCE first gen-

erates a pool of reference object candidates with a greedy search

algorithm to include diverse distribution patterns. To select the

one whose cardinality function is most similar to that of a query

object, we utilize a high-dimensional data index [32] for testing

query generation and propose a simple yet effective strategy in

verifying each reference candidate. We then choose the candidate

that best fits these testing queries.

While SRCE exhibits commendable accuracy, it suffers from

two limitations: its accuracy highly depends on the precision of

the high-dimensional index; it demands excessive memory usage

when constructing an index for the entire dataset. To mitigate the

dependency on the index, we propose our second method, Multi-

Reference-based Cardinality Estimation (MRCE). For a given query

object, we first identify a set of reference objects. Then, the cardinal-

ity of the query object under a distance threshold is estimated as a

weighted sum of the cardinalities of selected reference objects under

the same threshold. Here, the weight refers to the contribution of

each reference object to the query object, and we propose a learning

model to predict the weights. To select the reference objects for

a given query object, we propose a set of selection strategies that

balance between efficiency and effectiveness. To accommodate data

updates, we further introduce an efficient yet effective method –

only updating the reference object information.
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Superiority of Our Methods. i) Each dataset is unique and we

select a dataset-specific candidate pool that can well capture di-

verse cardinality functions (Data Robustness). ii) Since the cardi-
nality functions of the reference object candidates are diverse and

representative, we can easily find the reference objects from the

candidate pool whose cardinality functions are similar to that of the

query object and unveil the potential cardinality range of the query

object under a threshold (Query Robustness). iii) We propose several

optimizations in SRCE and MRCE to speed up the estimation time

(Efficiency).
In summary, the main contributions of this paper are as follows:

(1) Drawing from our empirical study (cf. Section 3), we derive two

compelling observations and introduce a new concept called

reference object. We make the first attempt to leverage reference
objects to estimate cardinality with two novel methods (i.e.,

SRCE andMRCE), which achieve high efficiency and demon-

strate robustness in handling both data and query variations.

(2) We propose SRCE that selects a single reference object for car-
dinality estimation. We propose novel strategies for candidate

generation and reference object selection (cf. Section 4).

(3) To eliminate the reliance on the index in SRCE, we propose
MRCE, which estimates cardinality using a weighted sum for-

mula over the cardinalities of multiple reference objects. We

design a simple yet effective model to predict the weight of each

reference object (cf. Section 5.1) and present a set of reference

object selection strategies (cf. Section 5.2).

(4) We discuss and introduce optimizations for SRCE andMRCE
to support data updates (cf. Section 6).

(5) We conduct comprehensive experiments on a variety of high-

dimensional datasets and present the recommendation of our

proposed methods. Compared to existing studies, SRCE and

MRCE can be up to ∼10x faster in estimation and achieve up

to ∼136x smaller mean Q-error (cf. Section 7).

2 PRELIMINARIES
2.1 Problem Formulation
Ahigh-dimensional data object 𝑆 is a𝑑-dimensional value, (𝑣1, 𝑣2, ..., 𝑣𝑑 ),
where 𝑣𝑖 is of numeric type. We call a high-dimensional data object

as a data object for short. A distance function upon data objects,

𝑑𝑖𝑠𝑡 (𝑆𝑖 , 𝑆 𝑗 ), is a function that measures the dissimilarity between

two data object 𝑆𝑖 and 𝑆 𝑗 . The widely used distance functions in-

clude Euclidean distance and Cosine distance. A query, denoted as

(𝑄, 𝜏), comprises a query object 𝑄 , and a distance threshold 𝜏 .

Definition 1 (cardinality estimation for data object simi-

larity search (CE4HD)). Given a data object dataset S, a query
(𝑄, 𝜏), and a distance function 𝑑𝑖𝑠𝑡 , cardinality estimation for
data object similarity search aims to estimate the number of
data objects in S whose distances to 𝑄 are not greater than 𝜏 , i.e.,
|{𝑆 |𝑑𝑖𝑠𝑡 (𝑆,𝑄) ≤ 𝜏, 𝑆 ∈ S}|.

2.2 Related Work
Numerous methods have been proposed for cardinality estimation

in the context of relational databases [13, 19, 20, 22, 26, 27, 30, 36,

40, 45, 52, 53] and spatial databases [14, 33, 42, 51]. These methods,

however, only work on low-dimensional data [41] and are hence

insufficient for the problem at hand. In the following, we focus on

the studies on CE4HD (i.e., for high-dimensional data).

Rationale of Existing Solutions. CE4HD has been studied re-

cently [34, 41, 46, 48]. Due to poor estimation accuracy of a big
model for CE4HD, SimCard [41] designs a set of small models, each
dedicated to capturing a specific facet of data knowledge. To achieve

this, it introduces the techniques of Data Segmentation and Query
Segmentation. Data segmentation segments the dataset into a set of

partitions through K-means clustering. For each partition, a local

model, which is a small model, is trained to predict the query’s

cardinality within that partition. Simultaneously, a global model is

trained to integrate outcomes from various local models for a query.

In contrast to simple multi-layer perceptrons (MLP), Query Segmen-
tation employs a CNNmodel to extract query features. CardNet [46]

first transforms the original vector space into the Hamming space.

The query threshold in the original space, 𝜏𝑜 , undergoes transfor-

mation, yielding a new threshold in the Hamming space, denoted

by 𝜏ℎ . Then, it predicts the query’s cardinality by aggregating the

outcomes of (𝜏ℎ + 1) models (from 0 to 𝜏ℎ), each responsible for

predicting the cardinality under a distinct threshold. However, mul-

tiple thresholds in the original space might be mapped to the same

threshold in the Hamming space, hence affecting the estimation

accuracy. Different from CardNet [46], SelNet [48] selects a set of

thresholds, namely control points, for a given query in the original

space. The selectivity between two adjacent control points is esti-

mated by a model, and such selectivities are aggregated to yield a

given query’s cardinality. SelNet also partitions the data into differ-

ent clusters using the cover tree algorithm. Cardinality estimation

is a module of HAP [34]. Focusing on the Hamming space only,

HAP designs a simple model, which has a similar architecture to

the local model in SimCard, but uses an MLP to encode the query

vector as opposed to a CNN model in SimCard.

Performance of Existing Solutions. How do existing methods

perform on three crucial aspects, Efficiency, Data Robustness, and
Query Robustness, as defined in Section 1? Given the superior accu-

racy of SimCard and SelNet compared to CardNet and the resem-

blance in design between HAP and SimCard, our primary focus

centers on SimCard and SelNet. SimCard needs a substantial amount

of time for fine-tuning the CNN model parameters and engages

in triggering 100 models during the online cardinality estimation

process, suffering from low Efficiency. Based on our experimental re-

sults, SimCard exhibits a larger estimation error compared to other

methods and its accuracy is inconsistent across different datasets.

Thus, it cannot well achieve Data and Query Robustness. SelNet
employs the cover tree for data clustering, resulting in processing

times exceeding 24 hours for a dataset comprising 2 million objects

based on our testing. This substantial duration surpasses the model

training time for all learning-based approaches, i.e., exhibits low

Efficiency. Furthermore, SelNet’s performance falls short on testing

datasets, which feature sharp cardinality changes – sudden shifts in

cardinality within a specific threshold range. This presents a Data
Robustness issue.

Other Related Work. There are several related areas on high-

dimensional data processing: (1) many methods propose specific

data structures, e.g., the graph-based index, to support the top-𝑘

search on the high-dimensional data including the vectors [32, 44]
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and time series [15, 49]; (2) with the rise of large language mod-

els [11] and their applications, many vector database systems [37,

43] have been developed to facilitate the storage and querying of

vectors.; (3) recently, several papers have explored the support for

queries over vector data and structural data simultaneously [38, 54].

3 CORE IDEA: REFERENCE-BASED
CARDINALITY ESTIMATION

As presented in Section 2.2, existing studies still suffer from at

least one of the issues, i.e., Efficiency, Query Robustness, and Data
Robustness. To mitigate these issues, our core idea is to leverage

the knowledge of existing data objects – the relationship between

cardinality and threshold – to estimate the cardinality of the query

object. In what follows, we will describe some notations and con-

cepts, the mathematical formulation of our estimation idea, and

two concrete variants to realize this idea.

Notations and Concepts. Given a dataset and distance function,

the cardinality of a data object under different thresholds can be

viewed as a function of the threshold, and we name it as a car-
dinality function. For a data object 𝑄 , we denote its cardinality
function as 𝑓𝑄 . To this end, CE4HD aims to compute an approxi-

mate
ˆ𝑓𝑄 such that for a distance threshold 𝜏 , the absolute difference

between
ˆ𝑓𝑄 (𝜏) and 𝑓𝑄 (𝜏), | ˆ𝑓𝑄 (𝜏) − 𝑓𝑄 (𝜏) |, is minimized. The data

object used to estimate one query object’s cardinality is defined

as a reference object. Note that, to facilitate the illustration of the

estimation idea, we assume the reference objects have been already

selected, and will elaborate the selection process in later sections.

Our Estimation Idea. For a query (𝑄, 𝜏), let R𝑄 denote the refer-

ence objects for the query object 𝑄 . We define 𝑔𝑄 , the estimation
function of 𝑄 which includes 𝜏 and R𝑄 as the input and returns

the estimated cardinality of 𝑄 under 𝜏 :

ˆ𝑓𝑄 (𝜏) = 𝑔𝑄 (𝜏,R𝑄 ) (1)

Leveraging the cardinality function of the reference objects to

estimate the cardinality of the query object can enhance estima-

tion accuracy in both Data Robustness and Query Robustness. This
approach is effective because (1) the reference objects’ cardinality

functions can reveal the potential cardinality range of the query

object under a threshold, addressing Query Robustness; (2) we metic-

ulously select reference object candidates for each dataset and care-

fully selected reference objects can reflect the potential cardinality

function patterns of one dataset, enhancing Data Robustness.
We propose two novel variants of 𝑔. The first one utilizes one

reference object while the second utilizes multiple reference objects.

Variant 1: Cardinality Estimation with Single Reference Ob-
ject. |R𝑄 | = 1 and let 𝑅𝑄 denote the reference object. We define:

𝑔𝑄 (𝜏,R𝑄 ) = 𝑓𝑅𝑄 (𝜏 + 𝛿) (2)

where 𝛿 is the shifting value between 𝑄 and 𝑅𝑄 when using the

cardinality function of 𝑅𝑄 to estimate the cardinality of 𝑄 .

Our empirical studymade on a diverse range of high-dimensional

datasets confirms the feasibility of the above estimation function.

Figure 1(a)-(d) plot the cardinality of 100 randomly selected query

objects under varying thresholds on FACE [39], an embedding

dataset, and ECG [24], a timeseries dataset, with two different

sampling seeds. Each plotted line in Figure 1 represents the curve of

a data object’s cardinality function 𝑓 . We employ Cosine on FACE

and Euclidean on ECG. Figure 1(e) plots the five leftmost curves in

Figure 1(c). The dashed line in Figure 1(e) is obtained by shifting the

leftmost curve by a certain distance. From Figure 1, we can make

the following key observations:

Observation 1. On each dataset, it is possible to identify another
object whose cardinality function 𝑓 closely resembles that of a target
object by either directly using 𝑓 or moving 𝑓 along the x-axis within
a certain distance.

Observation 2. On each dataset, the cardinality function 𝑓 of
most data objects tends to be located within a specific region, i.e., be
clustered such that the thresholds for achieving the same cardinality
are pretty similar.

Observation 1 indicates that we can use Equation 2 to estimate

the cardinality of 𝑄 under 𝜏 if we find an 𝑅𝑄 whose cardinality

function is similar to that of𝑄 . Observation 2 indicates that we can

find such an 𝑅𝑄 by checking only a limited number of reference

object candidates with high probability. This is because the cardi-

nality functions of most data objects are located in a specific region

and we only need to check the representative ones. We also present

additional experiments to verify that this is a common phenomenon

in high-dimensional data in our technical report [7].

Example 3.1. In Figure 1(a), we can observe that most of these

curves are ‘clustered’ in a specific region; same observation can be

made in Figure 1(b)-(d) (Observation 2). Such clustered curves also

indicate that for one curve in the figure, it is highly likely to find

another one that exhibits a similar pattern of growing trend. For

example, in Figure 1(e), the first and second curves have nearly the

same curve trend, which is also observed in the third and fourth

ones. After being shifted at a certain distance, the first one also has

nearly the same curve trend as the fifth curve (Observation 1).

Details of Variant 1. The success of this variant depends on the se-

lection of𝑅𝑄 , which will be elaborated in Section 4.1 and Section 4.2,

and the computation of 𝛿 , which will be presented in Section 4.1.1.

Variant 2: Cardinality Estimation with Multiple Reference
Objects. To achieve high accuracy, Variant 1 needs a sophisticated

data structure in the reference object selection process and hence

incurs a large memory consumption. To overcome this limitation,

we propose our second estimation function, which estimates the

cardinality of the query object under a threshold as a weighted sum

of reference objects under the same threshold:

𝑔𝑄 (𝜏,R𝑄 ) =
∑︁

𝑅𝑖 ∈R𝑄

𝑤𝑖 ∗ 𝑓𝑅𝑖 (𝜏) (3)

We design a separate learning module to compute the contribution

𝑤𝑖 of each reference object 𝑅𝑖 to the query object𝑄 . This estimation

function is feasible if some reference objects in 𝑅𝑄 can have similar

cardinality functions to 𝑄’s cardinality function. Observation 2

confirms the feasibility of the condition above considering we can

select the data objects with the representative cardinality functions

as the reference objects.

Details of Variant 2. The details of weight estimation model and the

selection of R𝑄 will be presented in Section 5.1 and Section 5.2

respectively.
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(a) ECG with Seed 0 (b) ECG with Seed 1 (c) FACE with Seed 0 (d) FACE with Seed 1 (e) 5 Leftmost Curves in (c)

Figure 1: Cardinality Distribution in Terms of Threshold on FACE and ECG

Reference Candidate
Pool Generation
(Section 4.1)

High-Dimensional Index

Testing Queries

Reference Object
Selection

(Section 4.2)

Reference Object 
and shifting value

Estimation function

Figure 2: Solution Overview of SRCE

4 CARDINALITY ESTIMATIONWITH SINGLE
REFERENCE OBJECT

In this section, we introduce our Single-Reference-based Cardinality

Estimation (SRCE) method. SRCE employs only one reference ob-
ject to estimate the cardinality of a query object. Figure 2 shows an

overview of SRCE. Before processing incoming queries, SRCE gen-

erates a reference object candidate pool from which the reference

object of any query object is selected. When handling a query (𝑄, 𝜏),
SRCE carefully verifies the candidates and selects only one candi-

date whose cardinality function is most similar to the estimated

that of 𝑄 (cf. Section 4.2). At last, we use the selected reference

object to estimate the cardinality of (𝑄, 𝜏) by following Equation 2,

where the computation of 𝛿 is presented in Section 4.1.1.

4.1 The Candidate Pool Generation
We need to consider two important properties when generating

the candidate pool – ‘pool diversity’ and ‘pool size’. The ‘diversity’

means that many different cardinality functions should be included

in the pool, to cater to different queries. The pool size is important

since it affects the efficiency of the estimation process. With a larger

pool size, more reference object candidates have to be checked,

which in turn leads to a longer estimation time.

The high-level idea of pool diversification. To generate a candi-
date pool of size 𝑠2, we first randomly sample 𝑠1 (𝑠1 > 𝑠2) number

of data objects from the entire dataset. Then, we add the objects

with a unique cardinality function pattern in each iteration until

finding 𝑠2 reference object candidates. When verifying whether

two cardinality functions are similar to each other, we consider

the shifting operation – a data object’s cardinality function can be

similar to another object’s distribution after moving one of them

along the x-axis. Such an approach helps identify duplicated cases.

In Section 4.1.1, we first discuss how to compute the similarity of

two cardinality functions, and then we present an algorithm for

generating the candidate pool in Section 4.1.2.

4.1.1 Similarity Computation Between Two Cardinality Functions.
Shifting Cardinality Function via Turning Point Identifica-
tion. For two objects 𝑆1 and 𝑆2, two cases would indicate that 𝑓𝑆1
exhibits a similar pattern to 𝑓𝑆2 . The first case is when, for a given

threshold 𝜏 , the value of 𝑓𝑆1 (𝜏) is close to the value of 𝑓𝑆2 (𝜏). The
second case is when, for a given threshold 𝜏 , the value of 𝑓𝑆1 (𝜏) is
close to 𝑓𝑆2 (𝜏 +𝛿), where 𝛿 represents the shift value – the distance

by which 𝑓𝑆2 is moved along the x-axis. Note that the first case can

be viewed as a special case of the second where 𝛿 = 0.

Utilizing the shift value in computing cardinality offers an advan-

tage that, under the same number of reference object candidates,

more patterns can be stored. In other words, similar accuracy can

be achieved with fewer reference object candidates compared to

the method without shifting the cardinality function.

Example 4.1. Suppose that we can only select two reference

object candidates from the five objects in Figure 1(e) to support any

queries from the five objects. Without the shift, we can support at

most four query objects well. In contrast, all queries on these five

objects can be well supported when considering the shift.

An essential question arises: how to compute the shift value 𝛿
between two cardinality functions? For each data object, the number

of other data objects surrounding it can vary in a local region (i.e.,

with a small threshold). However, when the threshold is larger than

a specific value, different objects could have a similar slope of the

cardinality function. We refer to this specific threshold value as the

turning point. We select the tuning point for a data object based on

the distance between that data object and its 𝑖-th nearest neighbor.

𝑖 is a preset fixed heuristic value for all datasets. While 𝑖 is fixed,

the tuning point value varies for each individual data object. We

conduct extensive experiments (cf. Section 7.7.1) to determine the

value of 𝑖 . Then, the difference between the turning points serves

as the shift value. That is, we align these two cardinality functions

starting from their turning points.

Similarity Computation Process. Whenmeasuring the similarity

of the cardinality function of data object 𝑆1 to that of 𝑆2, we follow

three steps: we (1) generate a set of testing queries for 𝑆1 and

their ground-truth cardinality; (2) for each testing query (𝑆1, 𝜏), use
𝑓𝑆2 (𝜏 + 𝛿) as the estimation, where 𝛿 is the shift value between 𝑆1
and 𝑆2; and (3) use the mean Q-error of the testing queries as the

metric to measure the similarity of 𝑆1’s cardinality function to 𝑆2.

4.1.2 Candidate Pool Generation Algorithm. Wepropose a two-step

algorithm (the pseudocode is available in our technical report [7]):

1) Sampling Given the sample size 𝑠1, we uniformly sample 𝑠1

objects from S and denote it as D′
.

2) Preprocessing We obtain cardinality functions 𝐹D′ and the

turning points 𝑇D′ of all objects in D′
. For 𝑖-th object D′ [𝑖], we

compute the similarity between D′ [𝑖] and another object D′ [ 𝑗]
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(𝑖 ≠ 𝑗 ) by the process presented in Section 4.1.1. The results are

stored in a two-dimensional array,𝑄𝐸, whose size is 𝑠1∗𝑠1.𝑄𝐸 [𝑖, 𝑗]
stores the mean Q-error of the 𝑖-th object estimated with the 𝑗-th

object’s cardinality function 𝑓 .

3) Generation At the beginning, we add the 𝑖∗-th object in D,

where 𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑖≤𝑠1𝑚𝑖𝑛(𝑄𝐸 [𝑖, ∗]).𝑚𝑖𝑛(𝑄𝐸 [𝑖, ∗]) is the mini-

mal value of the 𝑖-th row of 𝑄𝐸. We use 𝐹D to store its function 𝑓 ,

𝐼𝑑𝑥D to store 𝑖∗, and𝑇D to store turning points. Then, we continu-

ously add objects toD until |D| = 𝑠2. For each iteration, we add the
𝑖∗-th object to D, 𝑖∗ to 𝐼𝑑𝑥D , the 𝑖∗-th object’s function 𝑓 to 𝐹D ,

and the corresponding turning point of 𝑖∗-th object to 𝑇D , where

𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑠1∩𝑖∉𝐼𝑑𝑥D𝑚𝑖𝑛(𝑄𝐸 [𝑖, 𝐼𝑑𝑥D ]), and 𝑄𝐸 [𝑖, 𝐼𝑑𝑥D ] in-

dicates the mean Q-error of the 𝑖-th object estimated by cardinality

functions of objects in D.

This two-step approach is more effective than directly using

the sampled data objects, as it helps remove redundant cardinality

function patterns. The impact of the settings for 𝑠1 and 𝑠2 is further

explored in Section 7.7.2.

4.2 Reference Object Selection from the Pool
To achieve a high estimation accuracy, we need to select the refer-

ence object candidate from the pool whose cardinality function has

the highest similarity with the query object’s cardinality function.

However, directly adopting the method in Section 4.1.1 is inefficient.

In what follows, we describe how to compute the above similarity

and highlight the necessity of its efficiency in Section 4.2.1, and

then present how we select the reference object in Section 4.2.2.

4.2.1 Efficiently Computing the Similarity of Cardinality Functions
BetweenQuery Object and One Reference Object Candidate.

Similarity Between Cardinality Functions of Query Object
and Reference Object Candidate. The cardinality function of a

query object𝑄 could be in any shape. Although we can evaluate the

similarity between𝑄 and one candidate with the process presented

in Section 4.1.1, getting the ground-truth cardinality is infeasible

here since reference object selection is an online process, and the

overhead of computing the true cardinality for a query is already

too high to compute the true cardinality of (𝑄, 𝜏).
To address this, we employ an indexing technique for approxi-

mate search on high-dimensional data, to generate testing queries [32,

44]. It enables us to fetch the approximate top-𝑘 nearest neighbors

of𝑄 . The distance between𝑄 and the 𝑖-th result can be treated as the

threshold, and 𝑖 represents the cardinality of𝑄 under that threshold.

Then, we compute the mean Q-error of the testing queries by using

the cardinality function of one candidate in D to do the cardinality

estimation. The mean Q-error indicates how well that candidate

fits 𝑄 , where a lower value indicates a better fit.

Efficient Computation of 𝑓𝑅 (𝜏) for a Reference Object Candi-
date 𝑅. When computing the similarity, we need to compute the

cardinality of a reference object candidate, 𝑅, under a threshold, 𝜏 ,

multiple times. A naive method is to compute the distances between

𝑅’s corresponding object and all data objects in S for an incoming

query. Subsequently, the count is tallied for the objects whose dis-

tance to the corresponding object is not larger than 𝜏 . However,

this is very time-consuming, and, for the same computation cost,

the value of 𝑓𝑄 (𝜏) could have already been computed. One solution

is to compute the distances in a single pass, store them in memory,

and process incoming queries through a linear scan to obtain 𝑓𝑅 (𝜏).
However, this demands significant memory to store all computed

distances, and the running time is proportional to the dataset’s size.

Actually, the cardinality under a given threshold 𝜏 is equal to the

rank of 𝜏 in the sorted array of distances between 𝑅 and all objects

in S. Here, we adopt the idea from the learned indexes [17, 18, 28]

wherein we use a set of linear functions to fit the function 𝑓 (the

pseudocode is available in our technical report [7]).

Briefly, for a reference object candidate, we first calculate the

distances between it and all data objects in S and sort the distances

in ascending order. Let 𝐴𝑜 = (𝑎1, 𝑎2, ..., 𝑎 |S | ) denote the result,

where 𝑎𝑖 ≤ 𝑎𝑖+1 for 𝑖 ∈ [1, |S| − 1]. Taking 𝐴𝑜 and an error bound

𝜖 as input, we use a linear time to find a subset of 𝐴𝑜 , 𝐴𝑙𝑖𝑠𝑡 =

(𝑎𝑟1 , 𝑎𝑟2 , ..., 𝑎𝑟𝑘 ) where 𝑎𝑟𝑖 ∈ 𝐴𝑜 , 𝑎𝑟𝑖 ≤ 𝑎𝑟𝑖+1 , and 𝑟𝑖 is the rank of

𝑎𝑟𝑖 in 𝐴𝑜 , such that for a distance value 𝑎, the estimated rank of 𝑎

in 𝐴𝑜 is 𝑟𝑖 +
𝑎−𝑎𝑟𝑖

𝑎𝑟𝑖+1−𝑎𝑟𝑖
(𝑟𝑖+1 − 𝑟𝑖 ), where 𝑎𝑟𝑖 ≤ 𝑎 ≤ 𝑎𝑟𝑖+1 , and at most

a difference of 𝜖 from its actual rank in 𝐴𝑜 . The time complexity of

computing𝐴𝑙𝑖𝑠𝑡 for one candidate is𝑂 ( |S| ∗𝑑 + |S| log( |S|) + |S|).
We use 𝐴𝑙𝑖𝑠𝑡 and 𝑅𝑙𝑖𝑠𝑡 to store 𝑎𝑟 and the rank 𝑟 for each refer-

ence object candidate. This leads to a much smaller size of data to

store and a lower cost in computing 𝑓𝑅 (𝜏)1. Although the inher-

ent estimation error is associated with the linear model, a rough

estimation is sufficient to reflect the information of 𝑓𝑅 (𝜏) without
compromising the estimation accuracy.

4.2.2 Efficient Reference Object Selection By Grouping-like Candi-
date Organization. Following the generation of testing queries, we

select the reference object from the candidates with the smallest

mean Q-error. A naive method in selecting the reference object is to

compute the mean Q-error under each reference object candidate

one by one. However, this approach is inefficient.

To boost the efficiency, one potential idea is as follows: (1) cluster

the candidates based on their cardinality functions; (2) select the

cluster whose cluster center is most similar to 𝑄 ; (3) verify the can-

didates in the selected cluster and select the one with the smallest

mean Q-error. However, applying the existing clustering algorithms

in our case meets two challenges: (1) an effective method to specify

the cluster center is needed; (2) each cluster should have a similar

size. Otherwise, efficiency improvement cannot be guaranteed.

Instead of using the clustering idea, we propose a simple yet

elegant idea by sorting the reference object candidates: (1) given a

specified value 𝑣 , for each reference object candidate, we estimate

the threshold, under which the cardinality is equal to 𝑣 ; (2) sort the

reference object candidates based on thresholds in ascending order;

(3) for every𝑇 object candidate, we select one object candidate as a

first-checking object. The intuition is that if two objects have the

same cardinality under similar thresholds, these two objects are

likely to have similar cardinality functions with some probability.

To select the reference object, we initially compute the mean

Q-errors under the selected first-checking reference object candi-

dates and select the reference object candidate with the smallest

mean Q-error. Subsequently, we check the other 2𝑇 reference ob-

ject candidates around the selected reference object candidate and

select the reference object candidate with the smallest Q-error as

our reference object. Under this approach, we need to verify at most

1
Although it is an approximate result, we continue to use 𝑓 to denote it in this paper.
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Figure 3: An Overview of MRCE

( |D |
𝑇

+ 2𝑇 ) reference object candidates. When we set 𝑇 as

√︃
|D |
2
,

we can achieve the smallest number of reference object candidates

being verified, i.e., 2

√︁
2|D| objects.

Remark. Given that we leverage a high-dimensional index to gen-

erate the testing queries in reference object selection, an inherent

question is: for a given query object, can we directly use the results
of a search on a high-dimensional index to do estimation? The first
issue is that we do not know the size of 𝑘 that we should set to meet

the requirement of a query, i.e., the obtained maximum distance to

the query object in the 𝑘 results should be no less than the query

threshold. Otherwise, we can only use 𝑘 as our estimation. How-

ever, such an approach cannot achieve a good estimation accuracy

as SRCE under the same high-dimensional index setting. Based on

our experimental study, directly using the top-𝑘 results yields ∼2x
larger mean Q-error compared to SRCE.

5 CARDINALITY ESTIMATIONWITH
MULTIPLE REFERENCE OBJECTS

While SRCE achieves good estimation accuracy, it suffers from two

shortcomings. Firstly, its accuracy is heavily reliant on the precision

of the high-dimensional index. Secondly, the construction of an in-

dex on the entire dataset demands considerable memory resources.

To reduce the memory consumption by eliminating dependency

on the high-dimensional index, we design Multi-Reference-based

Cardinality Estimation (MRCE).
MRCE estimates the cardinality for a data object 𝑄 based on a

set of reference objects, R𝑄 , instead of a single reference object. It

estimates the cardinality of a query object 𝑄 with the threshold 𝜏

via a weighted sum of reference objects’ cardinality with the same

threshold (cf. Equation 3).

Why such a design can break free from the high-dimensional in-
dex? In SRCE a high-dimensional index is constructed for the entire

dataset to generate testing queries and calculate the shift value for

a query object. However,MRCE operates differently, eliminating

the need for testing queries. Specifically, MRCE selects a set of

reference objects and employs a model to learn the contribution

of each reference object to the query object. That is,MRCE lever-

ages the model to capture the relationship between the cardinality

function of the query object and the cardinality functions of the

reference objects. Moreover, by considering the cardinality of the

reference object under the same threshold,MRCE also eliminates

the necessity of calculating the shift value.

Figure 3 presents an overview of MRCE. For a query (𝑄, 𝜏),
MRCE first selects multiple reference objects for 𝑄 (cf. Section 5.2).

Then, MRCE follows Equation 3 and estimates the cardinality of

(𝑄, 𝜏) by using a tailored weight estimation model (cf. Section 5.1).
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Figure 4: The Weight Estimation Model

Since we will explore the effectiveness and efficiency of different

reference selection strategies built upon the weight estimation

model, we present the design of the weight estimation model first.

5.1 Weight Estimation Model Design
For a query (𝑄, 𝜏) and the reference objects R𝑄 for the query ob-

ject 𝑄 , the weight estimation model assigns the weight𝑤𝑖 for the

reference object 𝑅𝑖 ∈ R𝑄 . This model needs to effectively capture

the relationship between𝑄 and 𝑅𝑖 to assign suitable weights, while

also maintaining efficiency to ensure low estimation time.

Features Used. For a query (𝑄, 𝜏), we use four related features:

the query object 𝑄 , the selected reference object 𝑅𝑖 , the distance

between 𝑄 and 𝑅𝑖 (𝑑𝑖𝑠𝑡 (𝑄, 𝑅𝑖 )), and the query threshold 𝜏 .

Model Architecture. The estimation process must be efficient.

Therefore, we design a simple model to utilize these four features.

Figure 4 depicts the architecture of the weight estimation model,

comprising three main modules: the data object encoder module,

the distance encoding module, and the weight estimation module.

Instead of directly feeding raw features into a neural network, we

first learn embeddings for the query object 𝑄 , reference object

𝑅𝑖 , query threshold 𝜏 , and the distance between 𝑄 and 𝑅𝑖 . These

embeddings are then concatenated and input into a multi-layer

perceptron (MLP) for estimating𝑤𝑖 . The data objects are embedded

using the same autoencoder as 𝑄 . Given the identical meanings of

𝑑𝑖𝑠𝑡 (𝑄, 𝑅𝑖 ) and 𝜏 , we use the same MLP module to embed both.

Model Training & Loss Function. The data object encoder is

initially trained individually before being jointly trained with the

distance encoder and weight estimation module. This joint training

results in two losses: the loss from the data object autoencoder,

denoted as L𝑒 , and the loss from cardinality estimation, denoted

as L𝑔 . Throughout the training of all modules, the final loss L is a

weighted sum of L𝑒 and L𝑔 :

L = L𝑔 + 𝜆 ∗ L𝑒 (4)

Given that the cardinality can significantly differ among vari-

ous query objects or even the same query object under different

thresholds, using Mean Squared Error (MSE) might cause the model

to disproportionately focus on queries with large cardinality. Con-

versely, utilizing the Q-error helps the model better accommodate

queries with small cardinality. Therefore, similar to SelNet [48], we

adopt a modified version of the Huber loss [21] on the logarithmic

values of 𝑓𝑄 (𝜏) and ˆ𝑓𝑄 (𝜏).
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5.2 Strategies for Reference Objects Selection
For a given query object 𝑄 , selecting a proper set of reference ob-

jects, denoted as R𝑄 , involves two primary considerations. First,

the size of R𝑄 , denoted as 𝑘 , significantly impacts the estimation

efficiency. A larger 𝑘 leads to additional overheads in computing

𝑓𝑅𝑖 (𝜏) and invoking the weight estimation model. Second, the com-

position of data objects in R𝑄 is crucial for the estimation accuracy.

Ideally, having more reference objects that have a similar distribu-

tion of cardinality concerning the query object threshold would lead

to better accuracy. In this section, we design a range of strategies

for selecting reference objects, taking into account both efficiency

and accuracy in estimation. Figure 5 presents an illustrative per-

formance comparison of the proposed selection strategies. We first

introduce method MRCE-S1 followed by method MRCE-S2, which
improves the accuracy. Afterward, we propose methodMRCE-S3
to further improve the efficiency of the approach.

Ef
fic
ie
nc
y

Effectiveness

Query object
Reference object candidates
Reference object
Data object

MRCE-S1

Improve accuracy

Improve efficiency

index

MRCE-S3

MRCE-S2

Figure 5: Illustrative Performance of Our Selection Strategies.

5.2.1 Strategy 1 (MRCE-S1): 𝑘 Fixed Reference Objects. Without

knowing the query object𝑄 ahead of time, it is infeasible to assume

the curve of the cardinality function 𝑓 for each 𝑄 . However, due

to the dataset-specific range and the similar cardinality cardinality

function patterns as depicted in Figure 1, the first selection strategy

we explore is to sample a fixed number of representative objects for

all query objects and let the model learn which object contributes

most to the query object. “Representative" objects imply that the car-

dinality functions of the selected reference objects must encompass

a sufficiently diverse range of potential patterns of the cardinality

functions. Specifically, MRCE-S1 uniformly samples 𝑘 reference

objects, denoted as R, from the entire dataset S.
A natural question arises: Can such a simple strategy provide

a sufficiently accurate cardinality estimation? To answer that, we

have conducted an empirical study on the ECG dataset (see Sec-

tion 7.1 for dataset description) and test 𝑘 with 10, 20, 30, 40
2
. We

compare this approach against the sampling-based method (non-

learning) and SelNet (learning-based). For accuracy, we use Q-error

(

𝑚𝑎𝑥 { ˆ𝑓𝑄 (𝜏 ),𝑓𝑄 (𝜏 ) }
𝑚𝑖𝑛{ ˆ𝑓𝑄 (𝜏 ),𝑓𝑄 (𝜏 ) }

) as evaluation metric and report mean, 90%, 95%,

99%, maximum Q-error. For efficiency, we run 100 (𝑄, 𝜏) pairs indi-

vidually and report their average runtime.

Results are presented in Table 2. We make several observations:

(1) increasing 𝑘 cannot boost the estimation accuracy of MRCE-S1
on ECG; (2) compared to the sampling-based method, MRCE-S1 is
more efficient and has a much smaller 95th Q-error, which means

2
Based on our observation, the cardinality functions of 20 random data objects can

sufficiently cover the region of cardinality functions on ECG.

Table 2: Q-error and Estimation Time of MRCE-S1, Sampling-
based Method, SelNet, and SRCE on the ECG Dataset

Method Mean 90th 95th 99th Max Time (ms)
MRCE-S1-10 3.01 4.73 8.31 26.78 2108.56 4.2

MRCE-S1-20 2.97 4.63 8.18 26.92 700.18 4.2

MRCE-S1-30 3.01 4.65 8.28 26.97 4373.62 4.4

MRCE-S1-40 2.97 4.64 8.34 26.99 526.40 4.4

Sampling-10% 3.20 7.67 14.33 27.67 146.00 257.8

SelNet 2.04 3.13 4.55 12.26 334.48 4.1

SRCE 1.83 2.57 4.12 10.61 43.76 5.95

Figure 6: Cardinality Distribution of 𝑘-NN on FACE and ECG.
The query series is shown in a bold, bright green line.
MRCE-S1 performs better in most testing queries. However, with

the slight differences in mean and 99th Q-error but a much larger

max Q-error, MRCE-S1 does indeed perform poorly in some cases;

(3) SRCE and SelNet outperformMRCE-S1 in terms of accuracy.

While it is possible to find several reference objects whose cardi-

nality functions closely resemble that of a query object, the weight

estimation model struggles to assign appropriate weights to these

objects. This is because it is hard to learn the weight when one

reference object set encompasses a vast region within the space.

5.2.2 Strategy 2 (MRCE-S2): Query-aware 𝑘 Nearest Reference Ob-
jects. In contrast to employing a fixed set of reference objects for all

query objects,MRCE-S2 adopts a query-aware approach to select

the reference object set. Specifically, it selects 𝑘 nearest objects

to 𝑄 from the entire dataset S, forming the reference object set

R𝑄 . Thus, each prospective reference object set only caters to a

distinct region within the whole space, making it easier for the

weight estimation model to learn the weight𝑤𝑖 effectively.

One question arises: Can similar cardinality functions to the query
object be found from the 𝑘 nearest neighbors of the query?

The answer is ‘yes’ for two reasons. First, as depicted in Figure 1,

the cardinality functions for each dataset adhere to a specific region.

Second, two closely located objects usually have similar object

distribution. To substantiate this, we have conducted an empirical

study on the ECG and FACE datasets, where we randomly sample

two different objects and plot their cardinality function as well as

the cardinality functions of their 30 nearest objects in Figure 6. It

can be observed that the cardinality function closely resembling

that of the query object can always be found.

How well does MRCE-S2 perform? Here, we conduct an exper-

iment using MRCE-S2 on a subset of the ECG dataset with the

size 60𝐾 and compare MRCE-S2 against MRCE-S1. We use a small

dataset here due to the efficiency bottleneck of MRCE-S2: all objects
in S can be a reference object, and hence we need to precompute

the linear functions for all objects in S, which is time-consuming.

The results are presented in Table 3. We make two observations:

(1) MRCE-S2 outperforms MRCE-S1 in terms of accuracy, but it

suffers from poor efficiency. This is because of the necessity to

calculate the distances between𝑄 and all objects in S to obtain R𝑄

for MRCE-S2. (2) Similar toMRCE-S1, a larger 𝑘 does not enhance

MRCE-S2’s accuracy on ECG.
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Table 3: Q-error and Efficiency of MRCE-S1 and MRCE-S2
on the ECG (small) Dataset

Method Mean 90th 95th 99th Max Time (ms)
MRCE-S1-10 2.05 3.15 3.95 6.46 23.86 4.2

MRCE-S1-20 1.95 3.05 3.79 5.71 14.39 4.2

MRCE-S1-30 2.05 3.25 4.11 6.31 14.63 4.4

MRCE-S1-40 1.99 3.07 3.93 6.59 19.04 4.4

MRCE-S2-10 1.41 2.19 2.67 2.67 7.17 414.4

MRCE-S2-20 1.43 2.21 2.67 2.68 7.17 423.1

MRCE-S2-30 1.44 2.16 2.67 2.67 5.26 424.5

MRCE-S2-40 1.43 2.16 2.67 2.67 9.13 417.1

Time Complexity. In MRCE, the data preprocessing overhead in-

volves computing the linear functions for each reference object

candidate (cf. Section 4.2.1). In MRCE-S2, the time complexity

is Θ( |S|2 (𝑑 + log( |S|) + 1)) while in MRCE-S1, it is Θ(𝑘 |S|(𝑑 +
log( |S|) + 1). To get the exact 𝑘 nearest neighbors for one query ob-

ject𝑄 ,MRCE-S2 does a linear scan on S3
, and the time complexity

is Θ( |S|𝑑). MRCE-S1 does not need to compute nearest neighbors.

5.2.3 Strategy 3 (MRCE-S3): Optimized Query-aware 𝑘 Nearest Ref-
erence Objects. Selecting the reference objects in a query-aware

manner, likeMRCE-S2, achieves good estimation accuracy. How-

ever, MRCE-S2 encounters efficiency issues in two parts: data pre-

processing and obtaining R𝑄 for each 𝑄 . These efficiency issues

would be exacerbated when dealing with a large dataset, e.g., one

containing 1 million data objects.

To reduce the preprocessing time, it is essential to limit the

size of the set from which reference objects are chosen for each

query object, and we call such a set as reference object candidates

and denote it by D. Particularly, our intention is to keep the size

of D as small as possible while maintaining estimation accuracy

comparable to MRCE-S2. To achieve this, two sub-problems worth

a careful investigation arise:

(1) how to determine an appropriate size of D, and

(2) how to select D from the (much) larger set S.
The Generation of D. To maintain a comparable accuracy to

that of MRCE-S2, D should satisfy two crucial criteria. First, given

the absence of prior knowledge about the distribution of query

objects, we assume query objects can originate from any region

within the data objects space. Thus, the data objects in D should

be distributed across the entire space. In our implementation, we

achieve this by uniformly samplingD fromS. Second, it is essential
to locate a closely related reference object set fromD for any query

𝑄 within the data objects space. That is, each potential reference

object set should only focus on a specific region of the entire space.

Adding more objects to D usually leads to narrowing down the

region covered by each potential reference object set. In return, an

enhanced estimation accuracy can be achieved.

Table 4 presents our empirical study on the impact of D. We

uniformly sample a set of D with different sizes (𝑘 is set as 30),

on the ECG dataset (small), and test their efficiency and accuracy.

In accordance with the concept of D as described above, |D| is
equal to |S| in the case of MRCE-S2 and equal to 𝑘 in the case of

MRCE-S1. From Table 4, we can see that a larger D indeed leads to

3
Notably, no established algorithms surpass a linear scan in efficiency for acquiring

the exact 𝑘 nearest neighbors within high-dimensional data [32].

better accuracy but also entails a longer estimation time. Compared

to SRCE,MRCE-S3 with a suitable |D| has a much lower storage

consumption and achieves a competitive accuracy.

Table 4: Q-error, Efficiency, and Storage of MRCE-S1, MRCE-
S2, and D with Different Sizes on the ECG (small) dataset

Method Mean 90th 95th 99th Max Time (ms) Storage (MB)
MRCE-S1-30 2.05 3.25 4.11 6.31 14.63 4.4 5.68

|D |=5% |S | 1.76 2.67 3.00 4.97 13.62 11.2 13.51

|D |=10% |S | 1.66 2.67 2.73 4.24 10.42 19.6 22.33

|D |=15% |S | 1.57 2.67 2.67 3.65 7.27 30.1 30.76

|D |=20% |S | 1.52 2.42 2.67 3.05 5.45 40.7 39.78

|D |=25% |S | 1.51 2.44 2.67 3.11 5.63 53.3 47.91

MRCE-S2-30 1.44 2.16 2.67 2.67 5.26 424.5 175.67

SRCE 1.37 1.83 2.54 2.54 3.69 4.7 92.2

Notably, it is hard to set a fixed sampling ratio for all datasets

since it affects the trade-off between accuracy and efficiency in a

non-straightforward manner. One potential way is to select the

minimal sampling ratio required to achieve an expected accuracy

level, such as themeanQ-error. However, such an expected accuracy

is often unforeseen and difficult to define for a given dataset; even

worse, it tends to vary across queries and datasets. If an unrealistic

expected accuracy value is set, it would be infeasible to achieve it

even with sampling the entire dataset. Moreover, without knowing

the correlation between sampling ratio and accuracy, we have to

experiment with various Ds, which is time-consuming.

Another approach is to determine the sampling ratio based on

a predefined estimation time budget. Within this time budget, we

maximize the sampling ratio to achieve higher accuracy. This ap-

proach is feasible. The estimation time of a query (𝑄, 𝜏) is the sum

of time spent in computing the reference object’s cardinality (𝑡1),

cardinality estimation (𝑡2), and reference objects selection (𝑡R𝑄
):

𝑡 (𝑄,𝜏 ) = 𝑡1 + 𝑡2 + 𝑡R𝑄
(5)

𝑡1 is typically small and can be safely disregarded. For a given

datasetS, 𝑡2 approximates a fixed value, while 𝑡R𝑄
is determined by

𝑘 and |D|. Thus, with a given estimation time budget, a fixed dataset

S, and a fixed 𝑘 , we can infer the maximum value of |D|. After
knowing the time complexity of the used top-𝑘 search algorithm, we

can infer 𝑡R𝑄
on specific hardware under different |D|s by testing

a set of |D|. In turn, we can infer |D| under a given 𝑡R𝑄
. Note that

a larger D also incurs a large memory consumption, which can be

another constraint when deciding the size of D.

Efficient Computation of R𝑄 . To improve the efficiency of get-

ting R𝑄 , we can construct a high-dimensional index on D and

conduct an approximate top-𝑘 search process to obtain R𝑄 . Despite

obtaining only an approximation of the 𝑘 nearest reference objects,

our model’s accuracy only slightly deteriorates. Although we also

build an index, different from SRCE, we only consider D instead of

S. Moreover, we do not require a high accuracy on the top-𝑘 result

over the index, which can lead to a small index size and search time.

6 SUPPORTING DATA UPDATES
Data Updates in SRCE. When updating the data in S, the cardi-
nality function 𝑓 of each reference object candidate and the built

high-dimensional index for generating testing queries become out-

of-date. Two strategies can be employed: (1) directly using the old

reference object candidates and the index; (2) re-generating the

reference object candidates and re-building the index.
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Data Updates inMRCE. The two naive methods MRCE can em-

ploy are: (1) directly using the old weight estimation model and the

reference object candidates; (2) obtaining the new reference object

candidates and retraining the model from scratch or incrementally.

However, the former suffers from poor accuracy after many updates

and the latter incurs a large processing time.

UnderMRCE, we can only update the linear functions of each

reference object candidate in D to avoid re-computing the linear

functions for each object from scratch. The intuition is that updat-

ing data objects in a region can influence all objects’ cardinality

functions in that region. The curve of the cardinality function 𝑓 will

simultaneously rise/fall while the contribution,𝑤𝑖 , of each reference

object to the query object does not change significantly. Specifically,

for 𝐴𝑙𝑖𝑠𝑡 = (𝑎𝑟1 , 𝑎𝑟2 , ..., 𝑎𝑟𝑘 ) of one reference object candidate (cf.
Section 4.2.1), we increase/decrease the rank 𝑟𝑖 of 𝑎𝑟𝑖 by one if the

distance between an inserted/deleted object to the reference object

candidate is no larger than 𝑎𝑟𝑖 . The time complexity of updating the

reference object candidates is Θ( |D| ∗ |ΔS| ∗ (|𝐴𝑙𝑖𝑠𝑡 | + 𝑑)), where
ΔS is the updated object set.

For a largeD, updating the entireD leads to a large overhead. To

improve the efficiency, an optimization we employ is to only update

the top-𝑘 reference object candidates for inserted/deleted objects.

The intuition is that each inserted/deleted object only affects a small

region. In detail, we leverage an index built on D and update linear

functions of the top-𝑘 reference object candidates.

7 EXPERIMENTAL STUDY
We conduct a series of comprehensive experiments to showcase the

superiority of our solution in efficiency and accuracy. We begin by

introducing our experimental setup in Section 7.1. We then delve

into the evaluation of estimation accuracy in Section 7.2, assess effi-

ciency in Section 7.3, and present the memory usage in Section 7.4.

Section 7.5 is dedicated to exploring the practicality of our pro-

posed data update method. We verify the scalability of our methods

in Section 7.6. In Section 7.7, we investigate different parameter

settings and the impact of our proposed optimizations. Lastly, we

present our recommendation of the methods in Section 7.8.

7.1 Experimental Setup
Datasets.We conduct experiments on five vector datasets and two

time series datasets. Their detailed statistics are shown in Table 5.

These datasets are also used in previous studies on similarity search

over vectors [41, 45, 48] and time series [12, 15, 25, 49]. Upon acquir-

ing the data from their respective source websites, no preprocessing

of the data was performed. The distance functions employed adhere

to the conventions established in previous studies [12, 48, 49].

Table 5: Statistics of Datasets
Dataset Domain Data Type #Objects Dimension Distance Function
FACE [39] image vector 2M 128 Cosine
Glove [3] text vector 1.9M 300 Euclidean
Fasttext [2] text vector 1𝑀 300 Euclidean
Youtube [8] video vector 0.34M 1770 Cosine
ECG [24] health time series 2M 320 Euclidean
Seismic [4] seismic time series 1M 256 Euclidean
DEEP [9] image vector 10/25/50/75/100M 96 Cosine

Methods for Comparison.We compare the following approaches:

• SRCE: our proposed methods that select a single reference object

to estimate the cardinality of a query object. For each dataset,

we build a high-dimensional index using HNSW [1, 35]. We set

M, efConstruction, and efSearch as 32, 256, and 128, respectively.

In generating the reference candidate pool, we set 𝑠1 to 120 and

𝑠2 to 30. In the reference object selection process, we set 𝑣 to 250

and fetch 250 neighbors for testing query generation for a query

object. The parameter studies are presented in Section 7.7.

• MRCE variants: our proposed methods that select multiple ref-

erence objects to estimate the cardinality of a query object. We

report MRCE-S3 since it is the best strategy for balancing the

effectiveness and efficiency (cf. Section 5.2) and name itMRCE
directly.MRCE-Approx uses HNSW index with the default set-

ting to get the reference objects in online estimation. For each

dataset, we set 𝑘 to 30 and |D| is𝑚𝑖𝑛(100𝐾, 10%|S|). We adopt

the same model architecture for all datasets, and make the source

code available at [7]. We set the learning ratio to 0.01 and the

batch size to 256.

• SimCard [41]: We adopt the authors’ source code [6] and the

default settings.

• SelNet [48]: We adopt the authors’ source code [5] and their

recommended parameter settings [47]. Due to the long time in

the cover tree clustering algorithm (cf. Section 2.2), we opt for the

random partitioning strategy. This strategy is significantly faster

and exhibits competitive accuracy to the cover tree clustering

algorithm (cf. Table 8 of [48]).

• Sampling-10%/1%: two uniform sampling approaches with the

sampling ratios of 10% and 1%, respectively.

EvaluationMetrics. For accuracy, we adopt twometrics, Q-error [19,

26, 41] and Mean Absolute Percentage Error (MAPE)
4
. We report

the mean Q-error and Q-error distribution (90%, 95%, 99%, 100%

quantile). For efficiency, we report the training data preparation

time, training time, and estimation time.

Query Selection. We randomly sample𝑚𝑖𝑛(10𝐾, 10%|S|) train-
ing objects, T , for each dataset. The validation and testing query

objects are another 12.5%|T | randomly sampled data objects. (1)

Training and Validation Threshold Generation: for SelNet and our

methods, we sample a geometric sequence of 40 values in the range

[1,𝑚𝑖𝑛(20𝐾, 1%|S|)] as the true cardinalities. For each cardinality

𝑦, we use the minimum threshold that yields 𝑦 results. For SimCard,

we follow the original paper and uniformly generate 10 thresholds

from the same range under the cardinality constraint, i.e., true cardi-

nality is in [1,𝑚𝑖𝑛(20𝐾, 1%|S|)]. (2) Testing Threshold Generation:

for all methods, we generate the threshold following the geometric

distribution, which is also used in SelNet [48] and SimCard [41].

Environment. Experiments are run on a Red Hat Enterprise Server

7.9 with an Intel Xeon CPU E5-2690 v3 @ 2.60GHz having 50 cores,

512GBmemory, and an Nvidia Tesla P100 GPUwith 16GBmemory.

7.2 Estimation Accuracy
Table 6 shows the Q-error and MAPE of different methods on all

testing datasets. The best results are highlighted in bold. We make

the following observations: (1) Overall, SRCE,MRCE andMRCE-
Approx achieve the top-3 accuracy in almost all datasets and met-

rics. (2) MRCE outperforms all baselines (SimCard, SelNet, and

Samping-based methods) in terms of MAPE, except for the GLOVE

4
Notably, Mean Squared Error (MSE) and Mean Absolute Error (MAE) are sensitive to

the outlier. Thus, we exclude them.
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dataset where MRCE is the second best and has a significantly

smaller MAPE than other learning-based methods. (3) Except for

max Q-error, MRCE outperforms other baselines in other Q-error

percentiles. Notably, the max Q-error is sensitive to the outlier and

can be very large. (4)MRCE-Approx has slightly worse accuracy

than MRCE in terms of Q-error while being competitive on MAPE.

MRCE-Approx outperforms the baselines on nearly all datasets. (5)

Fasttext and Glove are the two hard datasets for SelNet. This is

probably because of a sudden and significant change in distribution.

Figure 7 presents the cardinality curve of 30 randomly sampled

data objects from FACE, Fasttext, and Glove. FACE is smoother

than Fasttext and Glove. A minor miscalculation in determining

the control points and their corresponding selectivities could lead

to a substantial error in cardinality estimation. (6) SimCard shows

a worse accuracy over time series data than the embedding data

derived from unstructured data.

Table 6: Q-error and MAPE of Each Method
Dataset Method Mean 90th 95th 99th Max MAPE

Fasttext

SimCard 5.27 11.70 17.23 33.63 381.00 2.24

SelNet 2.75 5.02 7.17 14.98 337.26 0.89

Sampling-10% 3.3 7.67 14.33 29.33 147.67 0.55
Sampling-1% 23.82 57.67 117.67 237.67 1241 1.16

SRCE 1.69 2.54 2.89 6.51 1162.63 0.59

MRCE 1.81 2.71 3.50 6.00 672.48 0.55
MRCE-Approx 1.96 2.73 3.48 6.00 3364.15 0.68

Glove

SimCard 9.69 16.89 32.67 111.00 19738.38 5.52

SelNet 5.61 11.32 19.02 50.57 552.36 2.18

Sampling-10% 3.12 7.67 12.67 27.67 139.33 0.47
Sampling-1% 22.86 69.33 111 224.33 924.33 1.02

SRCE 2.10 2.81 3.88 10.13 748.97 0.75

MRCE 1.73 2.67 3.12 6.72 2484.61 0.55

MRCE-Approx 1.76 2.46 2.78 6.03 3693.36 0.57

FACE

SimCard 7.87 18.97 28.74 55.61 161.35 2.15

SelNet 1.62 2.35 2.96 5.12 63.95 0.53

Sampling-10% 3.17 7.67 14.33 27.67 146 0.46

Sampling-1% 23.81 72.67 116 296 1959.33 1.02

SRCE 1.35 1.83 2.31 2.57 88.65 0.31
MRCE 1.55 2.17 2.61 3.82 1180.15 0.43

MRCE-Approx 1.57 2.23 2.68 3.98 1180.16 0.43

Youtube

SimCard 4.92 10.48 15.37 31.75 251.75 1.01

SelNet 1.98 3.15 4.25 8.57 74.80 0.81

Sampling-10% 3.61 7.67 16 32.67 132.67 0.62

Sampling-1% 26.33 64.33 132.67 267.67 1104.33 1.27

SRCE 1.66 2.54 3.03 5.61 34.40 0.50

MRCE 1.55 2.44 2.67 3.84 108.59 0.4
MRCE-Approx 1.58 2.42 2.67 3.99 132.67 0.41

ECG

SimCard 228.56 45.71 407.96 5541.20 98116.64 262.53

SelNet 2.04 3.13 4.55 12.26 334.48 0.87

Sampling-10% 3.2 7.67 14.33 27.67 146 0.48

Sampling-1% 23.23 56 116 296 964.33 1.02

SRCE 1.83 2.57 4.12 10.61 43.76 0.67

MRCE 1.56 2.52 2.77 4.55 62.47 0.44
MRCE-Approx 1.65 2.67 2.98 5.51 197.46 0.46

Seismic

SimCard 118.55 104.22 299.33 2326.20 48669.14 87.79

SelNet 1.75 2.51 3.44 7.93 185.30 0.67

Sampling-10% 3.35 7.67 14.33 29.33 147.67 0.55

Sampling-1% 24.22 72.67 117.67 301.00 1241.00 1.15

SRCE 2.04 2.82 4.33 11.88 290.09 0.51

MRCE 1.65 2.67 3.00 5.17 117.60 0.46

MRCE-Approx 1.87 2.71 3.85 8.23 301.00 0.45

7.3 Efficiency
We now consider the efficiency of offline processing (comprising

data preparation time and training time) and online estimation.

Offline Processing There are two aspects to offline processing,

data preparation, and model training. For SRCE, we consider the
time spent in building the high-dimensional index and the time

Figure 7: Cardinality Distribution of 30 Series on FACE, Fast-
text, and Glove.
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Figure 9: Memory Usage of
Each Method

in generating reference object candidates as training time. We can

see that: (1) SRCE has the smallest overhead in preprocessing with-

out the need to prepare the training data; (2) MRCE has a larger

overhead in data preparation to get the cardinality functions of

each reference object candidates while it usually has a lower train-

ing time than SimCard and SelNet and shows a lower offline time

compared to SimCard and SelNet in most datasets.

Online EstimationWe run 100 queries sequentially for estimation

time and report their average time. Table 7 shows the estimation

time of each method. We can observe: (1) overall, SelNet is the

most efficient one; (2) our proposed methods, SRCE and MRCE-
Approx5, have a competitive estimation time to SelNet. With a

similar estimation overhead, our methods can achieve a better

estimation accuracy as elaborated in Table 6.

Table 7: Estimation Time (ms) of Each Method
Method Fasttext Glove FACE Youtube ECG Seismic
SimCard 48 52.8 47.7 59.5 89.6 80.9

SelNet 4.0 3.7 2.2 4.4 4.1 3.3

Sampling-10% 70.0 130.2 108.6 126.7 257.8 59.9

Sampling-1% 3.2 7.7 6.9 9.7 26.2 3.3

SRCE 4.74 7.67 7.21 6.37 5.95 5.42

MRCE 16.1 18.5 13.4 27.5 18.1 14.8

MRCE-Approx 3.57 3.51 4.08 5.94 4.28 3.54

7.4 Memory Usage
In Figure 9, we report the memory usage of each method to store the

“model” of each method (yet it is worth highlighting that accuracy

is our foremost concern). We observe that: (1)MRCE andMRCE-
Approx outperform the baselines by a large margin as shown in

Table 6, with acceptable memory consumption; (2) compared to

SRCE, MRCE and MRCE-Approx significantly reduce the mem-

ory consumption; (3) although SimCard has the smallest memory

overhead, it cannot achieve acceptable accuracy as shown in Ta-

ble 6; (4) compared to SelNet, the memory usage of MRCE and

MRCE-Approx only slightly increased.

5
When counting the estimation time, we compute the average search time and estima-

tion time separately to avoid cache line impact on performance. This is feasible because

we can assign the process running on different cores under the NUMA architecture.
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Figure 10: Data Update Study

7.5 Data Updates
We now verify the effectiveness of the proposed method in handling

data updates on FACE and ECG forMRCE. Results on other datasets
are presented in our report [7]. For each dataset, we sample 100𝐾

data objects as the base dataset. Then, we incrementally insert

100𝐾 new data objects in five update operations (each operation

inserts 20𝐾 objects). We compare (1)W/O Update, which reuses the

existing model and reference objects’ linear functions, (2) Update
All, which updates linear functions of all existing reference objects,

(3) Top-30, which updates the top-30 nearest reference objects’ linear
functions, and (4) Re-train, which retrains the model from scratch

and shows the optimal accuracy. Figure 10 plots the mean Q-error

of each method and the overhead in supporting the data updates.

We observe that: (1) as more data is inserted without updating the

model and reference objects’ information, the Q-error continues to

increase; (2) re-training the model from scratch achieves the best

accuracy but incurs a large overhead; (3) compared to re-training the

model, only updating the reference objects’ information can achieve

similar accuracy but takes much less time; (4) Top-30 achieves the
best balance between accuracy and updating time.

7.6 Scalability Study
We compare SelNet,MRCE, andMRCE-Approx on theDEEP dataset [9]
(cf. Table 5). The query selection process and the parameter settings

of each method follow those in Section 7.1. We exclude SRCE, Sim-

Card, and Sampling-based methods for the following reasons: (1)

SRCE cannot work on large-scale datasets (cf. Section 7.4); (2) the

accuracy of SimCard is not acceptable (cf. Section 7.2); (3) sampling-

based strategies result in large estimation time (cf. Section 7.3). From

Table 8, we observe that: (1) all methods can efficiently estimate

cardinality, especiallyMRCE-Approx and SelNet; (2) compared to

SelNet, MRCE andMRCE-Approx achieve higher accuracy.

7.7 Parameter Study
7.7.1 SRCE - Shift Value Study. In this section, we verify the benefit
of shift value and discuss how to compute it effectively. We first

randomly sample 60 data objects, denoted as D1, from the whole

dataset and generate their testing queries; then, we select 30 objects,

Table 8: Scalability Study

Metric Method
|S |

10M 25M 50M 75M 100M

Mean Q-error

SelNet 2.38 2.92 3.45 3.61 3.93

MRCE 1.9 2.13 2.4 2.52 2.68

MRCE-Approx 1.96 2.43 2.49 2.71 2.93

Est. Time (ms)

SelNet 4.1 4.1 4.1 4.0 4.1

MRCE 9.11 9.11 9.11 9.31 9.11

MRCE-Approx 4.27 4.52 4.52 4.72 4.52

denoted as D2, from D1 using the idea from Section 4.1; at last,

we report the sum of mean Q-error of all objects in D1 by using

the reference objects from D2. A lower value means more queries

being well supported. In Figure 11(a), the x-axis plots which nearest

neighbor is used in computing the shift value. 0meanswe do not use

shift value. We can observe that: (1) compared to the case without

the shift value, using shift value can produce better estimation; (2)

the accuracy gradually increases as we consider the 𝑖-th nearest

neighbor as the turning point when 𝑖 increases from 0 to 6 and then

converges when 𝑖 exceeds 6. Therefore, we choose the 6-th nearest

neighbor as the turning point in our experiments.

7.7.2 SRCE - Two-step Reference Candidates Generation Study. We

now verify our proposed reference candidates generation algorithm

from Section 4.1, including its parameter setting (𝑠1 and 𝑠2) and

discuss the advantage compared to the one-step process which

directly uses the sampled data objects as reference objects. We

randomly select 1000 query objects from the entire dataset and

generate the testing queries as we do in Section 4.1. We use 120 and

30 as the default values for 𝑠1 and 𝑠2, respectively. When studying

the parameter 𝑠2, we report the mean Q-error of the testing queries

and the estimation latency while for 𝑠1 we only report the mean

Q-error given that 𝑠1 does not influence the estimation time.

Figure 11(b) shows the impact of different sizes of 𝑠1. We observe

that (1) using a larger 𝑠1 leads to higher accuracy; (2) compared

to the one-step process (𝑠1 = 30), the proposed two-step method

(𝑠1 > 30) is more effective, especially on GLOVE. In this paper,

we select the same 𝑠1 for all testing datasets and set it to 120. Fig-

ure 11(c) and Figure 11(d) show the results on 𝑠2. We can see that:

(1) a larger 𝑠2 leads to higher accuracy; (2) meanwhile, more refer-

ence candidates lead to more time in reference object selection due

to more candidates being verified. To balance the efficiency and

effectiveness, we set 𝑠2 to 30.

7.7.3 SRCE - The Choice of 𝑘 When Generating the Testing Queries.
Ideally, we should set 𝑘 to a suitable value to ensure that the gener-

ated queries can reflect the cardinality function of the query object.

From Figure 11(e), we can see that a larger 𝑘 leads to a smaller

mean Q-error. When 𝑘 exceeds 200, the results tend to be stable.

Considering that fetching more results leads to longer search time,

we set 𝑘 to 250 as a default value in our experiments.

7.7.4 SRCE - Impact of High-dimensional Index. WeadoptHNSW [1,

35] as our index to generate testing queries. Several parameters in

HNSW are critical to the recall of top-𝑘 search, including M, efCon-
struction, and efSearch. For all of them, a larger value leads to better

recall but increases search time and memory consumption. Here,

we study the impact of efSearch only for the following reasons: (1)

a large M leads to a large storage usage. Thus, we use the default

setting (32) in HNSW; (2) a larger efConstruction only leads to a

longer index building time but does not affect the online search
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Figure 11: Parameter Study of Shift Value, 𝑠1, 𝑠2, and 𝑘 in SRCE

Figure 12: Parameter Study – efSearch

Figure 13: Parameter Study – 𝑣 . The dashed line indicates
the mean Q-error and selection latency of the corresponding
dataset with the same color by checking the reference object
candidates one by one.

time. Figure 12 shows the mean Q-error of the testing queries and

the estimation latency under different efSearch settings, and we

find that: (1) a larger efSearch leads to a smaller mean Q-error, i.e.,

results in finding a better reference object; (2) however, a larger

efSearch incurs longer search time in fetching top-250 results. To

balance the two, we set efSearch to 128 for all datasets.

7.7.5 SRCE - Effectiveness of the Proposed Checking Strategy and the
Choice of Value in Ordering Reference Object Candidates. Figure 13
reports the mean Q-error and selection latency under different

𝑣 (cf. Section 4.2.2). We can see that: (1) the proposed strategy

significantly reduces the reference object selection time (at least by

3x), which is crucial to achieving fast online estimation; (2) by only

verifying a subset of the reference object candidates, the accuracy

under the proposed strategy is slightly worse than that of the naive

method, i.e, checking one by one; (3) the value of 𝑣 can influence the

order of reference candidates, resulting in different mean Q-error.

We set 𝑣 to 250 as a default, which works well across all datasets.

7.7.6 MRCE - The Impact of 𝑓 (𝑅𝑖 , 𝜏). We leverage the linear func-

tions to obtain an estimated value under a given error bound. We

conduct an experiment on ECG to show the benefits of such an idea

in terms of storage usage, estimation efficiency, and accuracy. Over-

all, a larger error bound leads to lower storage usage and estimation

time, and it has little impact on the estimation accuracy.

Table 9: Impact of 𝑓 (𝑅𝑖 , 𝜏) Computation
Error Bound Mean 90th 95th 99th Max Est. Time (ms) Storage (MB)

10 1.56 2.52 2.77 4.55 62.47 0.046 330.40

20 1.57 2.55 2.80 4.53 83.16 0.025 104.48

40 1.57 2.56 2.81 4.55 54.01 0.019 48.35

80 1.56 2.49 2.74 4.40 45.35 0.014 31.47

160 1.56 2.47 2.69 4.37 50.98 0.012 22.52

Preparation time

SRCE

Dataset size

MRCE

MRCE-Appr

trade-off between efficiency and accuracy

small large

Memory usage

short

long small

large

Figure 14: Decision Matrix of Methods
7.8 Recommendation on the Choice of Methods
Choosing the appropriate method depends on factors like dataset

size, desired accuracy, efficiency, and memory usage. Figure 14

depicts a decision matrix for making recommendations. Due to

its high memory consumption, SRCE is suitable only for small

datasets, e.g., million-scale datasets, especially when users require

quick estimation (with short preparation time). MRCE and MRCE-
Appr, which have lower memory requirements, are applicable to

both million-scale and larger datasets. However, these methods

typically require several hours to prepare the estimation module for

a specific dataset.MRCE-Appr is preferable for users who require

faster estimation, at the cost of slightly reduced accuracy compared

toMRCE.

8 CONCLUSION & FUTUREWORK
In this paper, we study the problem of cardinality estimation for

similarity search on high-dimensional data. Based on our obser-

vations, we introduce a new concept reference object and propose

two novel methods, SRCE andMRCE, which utilize reference ob-

jects’ information to estimate the cardinality of a query object. Our

comprehensive experiments show the superiority of our proposed

methods in terms of estimation efficiency and estimation accuracy.

The future direction of our work is threefold: (1) to explore other

reference object candidates generation and selection strategies for

MRCE and MRCE-Appr to reduce the storage overhead further; (2)

to apply our methods to other high-dimensional search processes,

like top-𝑘 search, by enhancing the initial search range; and (3) to

integrate our approach with existing cardinality estimation models

to support queries on both relational and high-dimensional data.
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