
A Multi-level Caching Architecture for
Stateful Stream Computation

Muhammed Tawfiqul Islam, Renata Borovica-Gajic,
Shanika Karunasekera
School of Computing and Information Systems (CIS)
The University of Melbourne, Australia

16th ACM International Conference on Distributed and
Event-based Systems (DEBS22), Copenhagen, Denmark

2

Introduction

• Stream processing is used for real-time applications that deal
with large volumes, velocities, and varieties of data.

• Intermediate states of computations might need to be
retained in memory until a streaming application is complete.

• Memory capacity is limited in a worker/server node.
• Multiple parallel processes might share primary memory.
• As a result, a streaming application might fail to run or

complete due to a memory shortage.
• Also, need support for complex state representation.

3

Existing Approaches

• Spilling state information to disk alleviates the problem by
allowing the query to finish, but will cause significant performance
overhead.

• State management through periodic checkpointing is
insufficient for dealing with dynamic state updates in a real-time
application.

• In-memory based object store showcases poor performance due
to the added communications with the external object store.

• No support for complex state representations such as graphs,
hashes, and trees that cannot be stored using a key-value
mapping.

4

Contributions

• Scalable multi-level caching architecture to support the
state management of complex streaming applications.

• Prototype API in Java for the proposed multi-level caching
architecture as a caching library for developing stateful
stream applications that benefit from in-memory caching.

• Integrated various data structures into the caching API to
represent complex states.

• The caching API manages the application state and cache
levels transparently.

• Implemented real-time streaming and synthetic applications
by utilizing the prototype API to showcase the performance
benefits.

5

System Architecture

• Each process has its own singleton
program cache, which is shared by
multiple threads within that process.

• Different processes on the same
host share the same in-memory
object store and secondary storage.

• The cache manager provides a
transparent interface to the
application to enable caching
support.

• 3rd party program cache (e.g.,
Caffeine) is used to retain
frequently accessed objects.

• Objects are evicted (based on
cache policy) to the object store
when cache memory limit is
reached.

6

Multi-level Caching Library (class diagram)

Open-source caching library: https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

7

Performance Evaluation

• Experiment Setup: Integrated to RAPID (Real time Analytics Platform for
Interactive Data Mining), deployed on Nectar Research Cloud Virtual Machines.

• Benchmark Applications:
– Synthetic application

• real-time objects (files) access and storage into JVM heap
• Zipf distribution to generate object access patterns

– Real application
• spatio-temporal event detection algorithm
• collects real-time data streams from Twitter
• quadtree-based method to split the geographical space into multi-scale

regions based on the density of social media data
• unsupervised statistical approach is performed to identify regions with an

unexpected density of social posts
• update states (quadtree join, merge, and prune) in real-time
• requires representing and updating complex computation state

• State Management Approaches:
– JVM-based (native application)
– Redis-only cache
– Caffeine-Redis cache (proposed multi-level caching approach)

8

Application Performance - Synthetic

(a) Application Completion Time (b) Relative Performance (slowdowns as
compared to the native JVM application)

9

Memory Footprint Analysis - Synthetic

(a) Memory usages from each approach
(JVM heap space is capped at 3GB for
all the algorithms)

10

Effects of Cache Size - Synthetic

(a) Effects of cache size on cache hit rates

11

Application Performance - Real

(a) Interval-1 (#Tweets = 120k) (b) Interval-2 (#Tweets = 131k)

(c) Interval-3 (#Tweets = 157k) (d) Interval-4 (#Tweets = 171k)

12

Effects of Cache Overhead - Real

(a) Effects of 3rd party program cache overhead
on application performance

13

Effects of Cache Size - Real

(a) Effects of cache size on cache hit rates (a) Effects of cache size on Redis load times

14

Conclusions and Future Work

Conclusions:
• Memory limitations in servers for streaming applications is a critical problem
• Proposed a multi-level caching architecture to enable caching support for

streaming applications
• Frequent objects are always kept at fastest (closest) level of the cache to boost

application performance
• Slower memory levels are used to evict infrequent objects when cache limit is

reached
• Support for representation of complex object states

Future Work:
• Devise new caching policies for the program cache
• Incorporate the caching architecture in emerging streaming applications
• Support for other program caches and in-memory object stores (e.g.,

memcached, Hazelcast)

