(%) D!
THE UNIVERSITY OF

MELBOURNE

A Multi-level Caching Architecture for
Stateful Stream Computation

Muhammed Tawfiqul Islam, Renata Borovica-Gajic,
Shanika Karunasekera

School of Computing and Information Systems (CIS)
The University of Melbourne, Australia

16th ACM International Conference on Distributed and
Event-based Systems (DEBS22), Copenhagen, Denmark

;& THE UNIVERSITY OF

¢S mersourne | Introduction

« Stream processing is used for real-time applications that deal
with large volumes, velocities, and varieties of data.

« Intermediate states of computations might need to be
retained in memory until a streaming application is complete.

 Memory capacity is limited in a worker/server node.

* Multiple parallel processes might share primary memory.

« As aresult, a streaming application might fail to run or

complete due to a memory shortage.
« Also, need support for complex state representation.

Complex
Interdependent States
(Objects)

R

@ < »| State Backend
—_— % State
—_— \ Migration

2 Streams Process Heap

‘vz Si& THE UNIVERSITY OF

43 metsourne | Existing Approaches

« Spilling state information to disk alleviates the problem by
allowing the query to finish, but will cause significant performance
overhead.

« State management through periodic checkpointing is
insufficient for dealing with dynamic state updates in a real-time
application.

* In-memory based object store showcases poor performance due
to the added communications with the external object store.

* No support for complex state representations such as graphs,
hashes, and trees that cannot be stored using a key-value

mapping.

‘vz Si& THE UNIVERSITY OF

« MELBOURNE Contributions

« Scalable multi-level caching architecture to support the
state management of complex streaming applications.

* Prototype API in Java for the proposed multi-level caching
architecture as a caching library for developing stateful
stream applications that benefit from in-memory caching.

* |Integrated various data structures into the caching API to
represent complex states.

* The caching APl manages the application state and cache
levels transparently.

« Implemented real-time streaming and synthetic applications
by utilizing the prototype API to showcase the performance
benefits.

System Architecture

Each process has its own singleton
program cache, which is shared by
multiple threads within that process.
Different processes on the same

host share the same in-memory Fgsssd |
. Process-2
object store and secondary storage. E—
The cache manager provides a
. Thread-1 | | Thread-2 | |Thread-N
transparent interface to the rack] | | [race] | | oracd
application to enable caching

l

Suppor't. c(;\gjl;ilfﬂn

3rd party program cache (e.g., ST 1,

Caffeine) is used to retain Manager
: : !

frequently accessed objects. :‘ srdpary

Objects are evicted (based on L Cache

cache policy) to the object store — T P

3rd Party
In-memory
Object Store

Spill

when cache memory limit is
reached.

Fetch

Secondary
Storage

THE UNIVERSITY OF

MELBOURNE \ Multi-level Caching Library (class diagram)

CaffeineHashMap | _ _ __ __ _ __ __ __ _ _ __ _ - >'CaffeineCacheManager‘
- keyMap: (- T T T By {1}
—— HashMap<String, | T T~ >
String> || g 8 At s = >
! ! } N b |
~ JO-- | | | w
r - — T , RedisObjectFactory |
CaffeineArrayList| __ _J) | |
|| G
- keyList: |
(| ArrayList<String> I |
Cacheable <]_, = : I L)
key: stri <—— = a . ———————
e = 5 || \ . ApplicationDriver
+ getKey(): <}) CaffeineHashSet | __ __ _) | :
+ setKey(): <]_\ 7 - | -attr{bute one
L J __| -keySet: I -attribute two
HashSet<String> 0..* |
| +method one
b g | -method two
- ~N | I
CacheableAppClass D |
————— \
-attribute one (p :)
B T CaffeineObjectFactory

#method one
-method two

. J

Open-source caching library: https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

https://github.com/tawfiqul-islam/MemoryManagerJVMRedis

Performance Evaluation

« Experiment Setup: Integrated to RAPID (Real time Analytics Platform for
Interactive Data Mining), deployed on Nectar Research Cloud Virtual Machines.
e Benchmark Applications:
— Synthetic application

real-time objects (files) access and storage into JVM heap
Zipf distribution to generate object access patterns

— Real application

spatio-temporal event detection algorithm

collects real-time data streams from Twitter

quadtree-based method to split the geographical space into multi-scale
regions based on the density of social media data

unsupervised statistical approach is performed to identify regions with an
unexpected density of social posts

update states (quadtree join, merge, and prune) in real-time

requires representing and updating complex computation state

o State Management Approaches:
— JVM-based (native application)
— Redis-only cache
— Caffeine-Redis cache (proposed multi-level caching approach)

Application Performance - Synthetic

200 1
w -
2
o 150
£ 3
|,_
c o
o 0
E 100 1 g
z =
£ T
O (02

ul
o

Redis CR-10% CR-15% CR-20% CR-25% CR-30% 0- Redis CR-10% CR-15% CR-20% CR-25% CR-30%

(a) Application Completion Time (b) Relative Performance (slowdowns as
compared to the native JVM application)

Memory Footprint (MB)

(@)

VM Redis CR-10% CR-15% CR-20% CR-25% CR-30%

Memory usages from each approach
(JVM heap space is capped at 3GB for
all the algorithms)

Effects of Cache Size - Synthetic

O O O O O
N w H (6] ()}

Cache Hit Rate (%)

O
e

0= : . : .
10% 15% 20% 25% 30%
Cache Size

(a) Effects of cache size on cache hit rates

10

Application Performance - Real

2.01
c c
§ 1.51 3
z o
5 3
n [0
210 :
© ®
& g
0.5
0.0- . 1
Redis CR-10% CR-15% CR-20% CR-25% CR-30% ' Redis CR-10% CR-15% CR-20% CR-25% CR-30%
(@) Interval-1 (#Tweets = 120k) (b) Interval-2 (#Tweets = 131k)
5 6
c c 5_
24 :
2 o
2 2 44
o3 2
z g3
© 2 =
& 824
1 4
1 4
RERIE - R CRISt ERatia SRRt SRSt Redis CR-10% CR-15% CR-20% CR-25% CR-30%
(c) Interval-3 (#Tweets = 157k) (d) Interval-4 (#Tweets = 171k)

11

SSi&= THE UNIVERSITY OF

(8. mecsourne | Effects of Cache Overhead - Real

1 25 Cache Size
120 —— 10k
= 20k
i —¥— 30k
c 1,15 e
== 50k
_§ 1.10-
© 1.051
wn
.GZ) 1.00
© 0.95-
&
0.90 1
0.85-
0.80

20000 40000 60000 80000 100000
#Tweets

(a) Effects of 3rd party program cache overhead
on application performance

12

Effects of Cache Size - Real

100.00 -
A 99.95 __60-
Q 0
:‘L: 99.90 - 850-
S =
z 99.85 - 40-
I (@)
o 99.80- — 301
o 0
(@] © i
8 99.751 g 20
101
99.70+
0-
10% 15% 20% 25% 30% 10% 15% 20% 25% 30%
Cache Size Cache Size
(a) Effects of cache size on cache hit rates (a) Effects of cache size on Redis load times

13

14

Conclusions and Future Work

Conclusions:

Memory limitations in servers for streaming applications is a critical problem
Proposed a multi-level caching architecture to enable caching support for
streaming applications

Frequent objects are always kept at fastest (closest) level of the cache to boost
application performance

Slower memory levels are used to evict infrequent objects when cache limit is
reached

Support for representation of complex object states

Future Work:

Devise new caching policies for the program cache

Incorporate the caching architecture in emerging streaming applications
Support for other program caches and in-memory object stores (e.g.,
memcached, Hazelcast)

