

### Real-Time Intelligent Autonomous Intersection Management Using Reinforcement Learning

Authors: Udesh Gunarathna, Shanika Karunasekera, Renata Borovica-Gajic, Egemen Tanin

Presenter: Udesh Gunarathna

### Most of us stuck at intersections everyday!

#### Why?

- Stop-and-go nature at red lights disrupts the traffic flow
- There is a time gap between traffic signals phases
- We wait at red lights even when there are no vehicles crossing the intersection from other roads



### Can we do better?



Can we avoid traffic signals and manage to cross the intersection collaboratively?



Challenging to coordinate with human drivers



Autonomous vehicles and smart infrastructure can provide a solution



### Autonomous Intersection Management (AIM)

• Vehicles coordinate their speed and arrival times towards the intersection for collision free traversal through the intersection

• Vehicles traverse in First-Come First-Server order

• Proposed by Dresner et al.[1]



www.mdpi.com/1424-8220/22/6/2217

[1]. K. Dresner and P. Stone, "A multiagent approach to autonomous intersection management," *Journal of Artificial Intelligence Research*, vol. 31, pp. 591–656, 2008

# Improvements to AIM

- We can optimize the traversing order to improve the flow. i.e. leverage platooning
- If vehicles cross the intersection at a higher speed; the intersection crossing time is reduced and stop-and-go nature is avoided



## Challenges of AIM in Real-time



Computational time should be low



If the intersection controller takes a long time to compute a schedule which may lead to vehicle crashing



Autonomous vehicles need to plan their trajectories in realtime

## **Proposed Architecture: A Multi-agent Solution**



• Models the problem as a multiagent solution to overcome the computational complexity

• Coordinating Agent uses a modified polling-based system to find an optimized order to travel and assign a schedule for each vehicle

• RL Agents use a novel reinforcement learning algorithm to compute the best trajectory to adhere to the schedule



**Objective:** Find an optimized traversing order for vehicles arriving at the intersection stochastically and assign an arrival time for each vehicle

### Polling-based Coordinating Agent



Models the vehicles as a set of customers in a set of queues and the intersection controller as a server



The server computes the service order by popping customers from queues. It spends a **service time** for each customer and encounters **switching time** when a customer is selected from a different queue

# Modified Polling System

- The above formulation can only be applied to intersections with single lanes and vehicles going straight through the intersection
- We proposed a modified polling system to handle complex intersections with multiple-lanes and multiple turning directions
- Our polling algorithm proposed a **queue dependent matrix** to replace switching time and service time



## **Reinforcement Learning Agents**

- **Objective 1 (Trajectory Control Task):** Compute a trajectory to reach the intersection exactly at the scheduled time
  - If a vehicle reaches in a higher speed to the intersection, then it will take less time to cross the intersection

• Objective 2 (Cruise Control Task): Needs to be aware of the vehicle in front and maintain a safe distance

## Why achieving both tasks is difficult



- Trajectory control task requires long term planning while Cruise control task requires short term planning
- Typically, reinforcement learning algorithms learn either the short-term or long-term goal
- Q-learning contains a fixed parameter named discount factor to set the problem as a shortterm or long-term task but cannot accommodate both simultaneously

# Solution?

• We propose a novel RL algorithm named **Multi-discount Qlearning** to solve the above problem without increasing the computational complexity to learn the task

 Multi-discount Q-learning adaptively changes discount factor based on the feedback received from the trajectory control and cruise control tasks

• Can guarantee the convergence

## **Experimental Results: Performance**

| Traffic Level | Low   | Mid    | High   |
|---------------|-------|--------|--------|
| DTS           | 77.59 | 235.73 | 543.18 |
| FCFS-AIM      | 15.21 | 131.46 | 388.57 |
| H-AIM         | 15.25 | 98.09  | 313.34 |
| LP-AIM        | 13.85 | 94.92  | 304.44 |
| CMQ-AIM       | 13.66 | 92.76  | 302.63 |

Experiments were carried out in a four-legged intersection. The travel time is shown in seconds

## **Experimental Results: Safety**

| Traffic Level | Low | Mid | High |
|---------------|-----|-----|------|
| H-AIM         | 65  | 49  | 69   |
| LP-AIM        | 1   | 66  | 51   |
| CMQ-AIM       | 0   | 0   | 0    |

Experiments were carried out in a four-legged intersection. The number of vehicles violated the arrival time are presented in the table

#### **Detailed results available in the paper!**

## • Thank You!