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Background
• Learned Index

– A function that maps a search key to the storage address
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Background
• Related Works

– Regression based

RMI [1]: Tree structure + Linear regression/NN models

ALEX [2]: Updatable based on RMI

– Interpolation based

PGM-index [3]: Piecewise linear models

RadixSpline [4]: Spline points + a radix table

4



Background
• Challenge: the index learning cost is high

– Regression based

Multiple iterations in model training

One-pass way cannot learn well

– Interpolation based

The one-pass way needs nested loops
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Methods
• Our goals

– Reduce the build cost

– Maintain the query efficiency

– Keep the index structure and index size
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Methods
• Solutions

– Use pre-trained models

– Fine-tuning
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• Overview

– Synthetic datasets 

– Pre-trained models

– Similarity measurement of CDFs

– Model adaptation + Fine-tuning
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• Similarity measurement

– Definition: given two datasets DS and DT, the dissimilarity is the area between their empirical CDFs

– Method: use relative frequency histograms

9

Methods



• Synthetic datasets and Pre-trained models

– Target: a set of datasets to represent real datasets with a high similarity

– Method: use ε to limit the bin size within {0, ε/2, ε}

– Examples: 12 CDFs of generated datasets (ε = 0.5)
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• Experimental Environment

– Hardware: 64-bit machine, 3.60 GHz Intel i9 CPU, RTX 2080Ti GPU, 64 GB RAM, 
and 1 TB HDD

– Datasets: 

Real: amzn, face, osm, and wiki to follow SOSD benchmark[5]

Synthetic: skewed datasets (200 million) to follow [6]

– Implementation: Follow SOSD benchmark

– We set ε=0.3 (987 pre-trained models)
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Experiments: real datasets
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Experiments: synthetic datasets



Conclusions
– Enable model reuse + fine-tuning in 1-d learned indices

– Propose a synthetic dataset generation method

– Reduce the index build time
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• Experimental Results

– Datasets generation
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