
A Fully On-disk Updatable Learned Index

Hai Lan1, Zhifeng Bao1, J. Shane Culpepper2, Renata Borovica-Gajic3, Yu Dong4

1 RMIT University, 2 The University of Queensland
3 The University of Melbourne, 4 PingCAP

Apply Learned Indexes on Disk?

3

Learned indexes in main memory

show promising performance in

throughput and index size.

FACT 1

Widely used database systems are

still on disk due to the large

dataset size, index size and so on.

FACT 2

The Case for Learned

Index Structures

SIGMOD 2020

Are Updatable Learned

Indexes Ready?

VLDB 2022

Apply Learned Indexes on Disk?

4

Learned indexes in main memory

show promising performance in

throughput and index size.

FACT 1

Widely used database systems are

still on disk due to the large

dataset size, index size and so on.

FACT 2

The Case for Learned

Index Structures

SIGMOD 2020

Are Updatable Learned

Indexes Ready?

VLDB 2022

Apply Learned Indexes on Disk?

5

Updatable Learned Indexes Meet Disk-Resident

DBMS - From Evaluations to Design Choices

SIGMOD 2023

Normalized throughputs on the FB dataset

Apply Learned Indexes on Disk?

6

Updatable Learned Indexes Meet Disk-Resident

DBMS - From Evaluations to Design Choices

SIGMOD 2023

Overall, B+-tree is the (second-)best.

LIPP outperforms other indexes on Lookup-Only workload.

PGM outperforms other indexes on Write-Only workload.

Normalized throughputs on the FB dataset

Apply Learned Indexes on Disk?

7

Apply Learned Indexes on Disk?

8

#blocks/nodes fetched in Read-Only workload

Challenge 1. A learned index cannot guarantee

to reduce I/O costs when searching data on disk.

Lookup

Scan

Apply Learned Indexes on Disk?

9

#blocks/nodes fetched in Read-Only workload Latency breakdown in Write-Only workload

Challenge 1. A learned index cannot guarantee

to reduce I/O costs when searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

Lookup

Scan

Design Principles

10

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

Design Principles

11

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P1. Reducing the Tree Height of the Index.

Design Principles

12

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P1. Reducing the Tree Height of the Index.

P2. Model-based Operations (Search and Insert).

Design Principles

13

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P2. Model-based Operations (Search and Insert).

P3. Lightweight Structure Modification Operations (SMO).

P1. Reducing the Tree Height of the Index.

Design Principles

14

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P3. Lightweight Structure Modification Operations (SMO).

P2. Model-based Operations (Search and Insert).

P1. Reducing the Tree Height of the Index.

P4. Better Scan Performance.

Design Principles

15

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P3. Lightweight Structure Modification Operations (SMO).

P4. Better Scan Performance.

P2. Model-based Operations (Search and Insert).

P1. Reducing the Tree Height of the Index.

P5. Support Duplicate Index Keys.

Design Principles

16

Challenge 1. A learned index cannot

guarantee to reduce I/O costs when

searching data on disk.

Challenge 2. Most learned indexes

suffer from large insertion overheads.

P1. Reducing the Tree Height of the Index.

P2. Model-based Operations (Search and Insert).

P3. Lightweight Structure Modification Operations (SMO).

AULID, an updatable learned index on disk
Simple Yet Effective

P4. Better Scan Performance.

P5. Support Duplicate Index Keys.

AULID Index Structure

17

AULID Index Structure

18

Leaf Node Layer

… … ……

AULID Index Structure

19

Leaf Node Layer

… … ……

Leaf node
Set the size equal to the block size

AULID Index Structure

20

Leaf Node Layer

… … ……

Leaf node
Set the size equal to the block size

Data slot – store the indexed value

AULID Index Structure

21

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Leaf node
Set the size equal to the block size

AULID Index Structure

22

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Pointer between siblings
Leaf node
Set the size equal to the block size

AULID Index Structure

23

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Benefits

- Low overhead for scan operations in fetching the next item (P4).

Pointer between siblings
Leaf node
Set the size equal to the block size

AULID Index Structure

24

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Benefits

- Low overhead for scan operations in fetching the next item (P4).

- Low insertion overhead and SMO overhead (P3).

Pointer between siblings
Leaf node
Set the size equal to the block size

AULID Index Structure

25

Inner Node Layer

…

… …

ℳ

ℳ

AULID Index Structure

26

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

AULID Index Structure

27

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

Packed inner node

- Hold the pointer to the leaf node

and the maximum key in the

indexed leaf node

AULID Index Structure

28

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

Packed inner node

- Hold the pointer to the leaf node

and the maximum key in the

indexed leaf node

p1 k1 p2 k2 …

AULID Index Structure

29

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

Packed inner node

- Hold the pointer to the leaf node

and the maximum key in the

indexed leaf node
Benefits

- Reducing the tree height of the index (P1).

AULID Index Structure

30

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

Packed inner node

- Hold the pointer to the leaf node

and the maximum key in the

indexed leaf node
Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

AULID Index Structure

31

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot

to be accessed next

Packed inner node

- Hold the pointer to the leaf node

and the maximum key in the

indexed leaf node
Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

- Low SMO overhead in inner nodes (P3).

AULID Index Structure

32

Metadata Node

ℳ

……

Metadata Node

- Address of the root node

- Address of the last leaf node

- Minimum key in the last leaf node

- Model of the root node if it is the mixed

inner node

- Store all mixed inner node’s model

in its parent node

AULID Operations

33

AULID Operations

34

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

AULID Operations

35

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Updatable Learned Index with

Precise Positions

VLDB 2021

Fastest Minimum Conflict Degree (FMCD)

AULID Operations

36

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Updatable Learned Index with

Precise Positions

VLDB 2021

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

than 1024, we build another mixed node.

AULID Operations

37

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

than 1024, we build another mixed node.

Why we choose FMCD and extend it?

AULID Operations

38

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

than 1024, we build another mixed node.

Why we choose FMCD and extend it?

✓ Compared to other model construction strategies, it can

achieve the lowest average tree height most of time.

AULID Operations

39

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

than 1024, we build another mixed node.

Why we choose FMCD and extend it?

✓ Compared to other model construction strategies, it can

achieve the lowest average tree height most of time.

✓ Each conflict in FMCD will build a new node, which may

lead to a high tree height in some parts of the dataset.

AULID Operations

40

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

1024, we build another mixed node.

Why we choose FMCD and extend it?

✓ Compared to other model construction strategies, it can

achieve the lowest average tree height most of time.

✓ Each conflict in FMCD will build a new node, which may

lead to a high tree height in some parts of the dataset.

✓ Packed inner nodes reduce memory consumption and

overhead in SMO.

AULID Operations

41

Bulkload

Step 1: Construct the leaf nodes and collect the

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct

the inner nodes.

Step 3: Build the metadata node.

Packed inner nodes to hold the keys when #keys

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys

mapped to the same slot is greater than 64 while

not larger than 1024.

When #keys mapped to the same slot is greater

1024, we build another mixed node.

AULID Operations

42

Search

Step 1: Visit metadata node and check keylk? keyminStep 1

AULID Operations

43

Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the

root node, load related block and read the slot.
Step 2

AULID Operations

44

Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the

root node, load related block and read the slot.

Step 3: If the slot type is , read the pointer and

load the corresponding block

Step 3

AULID Operations

45

Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the

root node, load related block and read the slot.

Step 3: If the slot type is , read the pointer and

load the corresponding block.

Step 4: If the node is packed inner node, do a binary

search to find the slot to access next and load the

corresponding leaf node.

Step 4

AULID Operations

46

Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the

root node, load related block and read the slot.

Step 3: If the slot type is , read the pointer and

load the corresponding block.

Step 4: If the node is packed inner node, do a binary

search to find the slot to access next and load the

corresponding leaf node.

Step 5: Do a binary search on the leaf node.
Step 5

AULID Operations

47

Insert

Step 1: Insert into leaf node

… …
Not full

AULID Operations

48

Insert

Step 1: Insert into leaf node

… …

…

…

…

Not full

Full

Store the large half values

in the original block.

Collect address and keymax of

the new leaf node.

AULID Operations

49

Insert

Step 2: Insert (keymax, addr) into the inner nodes.

1. Empty slot

2. Pointer to leaf node

3. Pointer to packed inner node

4. Special routing slot

AULID Operations

50

Insert

Step 2: Insert (keymax, addr) into the inner nodes.

1. Empty slot

2. Pointer to leaf node

AULID Operations

51

Insert

Step 2: Insert (keymax, addr) into the inner nodes.

2. Pointer to leaf node

3. Pointer to packed inner node

AULID Operations

52

Insert

Step 2: Insert (keymax, addr) into the inner nodes.

3. Pointer to packed inner node

4. Special routing slot

AULID Operations

53

Insert

Step 2: Insert (keymax, addr) into the inner nodes.

4. Special routing slot

AULID Operations

54

Tree Adjustment

Why – with more data inserted, some parts of the

index may have a large height.

AULID Operations

55

Tree Adjustment

Why – with more data inserted, some parts of the

index may have a large height.

When – two criteria met at the same time:

o Percentage of the items in a subtree rooted

at node 𝑛 in the third layer or a deeper layer

is larger than 𝛼.

o Number of current items rooted at node 𝑛 is

larger than 𝛽 times of the initial size.

AULID Operations

56

Tree Adjustment

Why – with more data inserted, some parts of the

index may have a large height.

When – two criteria met at the same time:

o Percentage of the items in a subtree rooted

at node 𝑛 in the third layer or a deeper layer

is larger than 𝛼.

o Number of current items rooted at node 𝑛 is

larger than 𝛽 times of the initial size.

How – reload the inner node items rooted at

node 𝑛 and call our revised FMCD algorithm.

Experiment – Goal

57

Q1: How good is AULID as compared to other learned

indexes and a B+-tree when disk-resident?

Q2: How well does AULID scale to large datasets?

Q3: Do the proposed index structure design and structural

modification operation help improve the performance?

Q4: What are the impacts of different parameter

settings on AULID performance?

Experiment – Goal

58

Q1: How good is AULID as compared to other learned

indexes and a B+-tree when disk-resident?

Q2: How well does AULID scale to large datasets?

Q3: Do the proposed index structure design and structural

modification operation help improve the performance?

Q4: What are the impacts of different parameter

settings on AULID performance?

Experiment – Setup

❑ Datasets

❑ Baselines
❑ ALEX, PGM, FITing-tree, LIPP, B+-tree

59

Hardness
Global Hardness

Easy Normal Hard

Local

Hardness

Easy C1

Normal C2 C4

Hard C3

C1: COVID (200M / 800M)

C2: PLANET (200M / 800M)

C3: GENOME (200M / 800M)

C4: OSM (200M / 800M)

Are Updatable Learned

Indexes Ready?

VLDB 2022

Updatable Learned Indexes Meet Disk-Resident

DBMS - From Evaluations to Design Choices

SIGMOD 2023

Experiment – Setup

❑ Workload

❑ Metric

60

Lookup-Only Scan-Only Write-Only Write-Heavy Balanced Read-Heavy

100% lookups 100% scans 100% inserts 90% inserts

10% lookups

50% inserts

50% lookups

10% inserts

90% lookups

Throughput (number of operations per second)

Fetched block count from disk

Storage size

P99 latency & standard deviation

Smaller is better

Larger is better

Updatable Learned Indexes Meet Disk-Resident

DBMS - From Evaluations to Design Choices

SIGMOD 2023

Experiment – Throughput Comparison

61

✓ AULID significantly beats other indexes in all datasets and workloads.

✓ B+-tree is the second best in most workloads and datasets.

Experiment – Bulkload & Storage

62

✓ AULID has similar bulkload time to B+-tree and is faster than other indexes.

✓ AULID has a stable index size among different dataset and is competitive to B+-tree.

Experiment – Large Scale Data

63

Throughput Speedup Storage/time ratio

✓ The superiority of AULID also holds on large scale datasets.

Conclusion

64

❑We reveal the challenges when applying the learned

indexes on disk and propose our design principles.

❑We propose AULID to meet the principles with the carefully

designed index layout and operations.

❑Our experiments show AULID significantly beats our

baselines in all workloads and testing datasets.

Thanks!

65

	Slide 1: A Fully On-disk Updatable Learned Index
	Slide 3: Apply Learned Indexes on Disk?
	Slide 4: Apply Learned Indexes on Disk?
	Slide 5: Apply Learned Indexes on Disk?
	Slide 6: Apply Learned Indexes on Disk?
	Slide 7: Apply Learned Indexes on Disk?
	Slide 8: Apply Learned Indexes on Disk?
	Slide 9: Apply Learned Indexes on Disk?
	Slide 10: Design Principles
	Slide 11: Design Principles
	Slide 12: Design Principles
	Slide 13: Design Principles
	Slide 14: Design Principles
	Slide 15: Design Principles
	Slide 16: Design Principles
	Slide 17: AULID Index Structure
	Slide 18: AULID Index Structure
	Slide 19: AULID Index Structure
	Slide 20: AULID Index Structure
	Slide 21: AULID Index Structure
	Slide 22: AULID Index Structure
	Slide 23: AULID Index Structure
	Slide 24: AULID Index Structure
	Slide 25: AULID Index Structure
	Slide 26: AULID Index Structure
	Slide 27: AULID Index Structure
	Slide 28: AULID Index Structure
	Slide 29: AULID Index Structure
	Slide 30: AULID Index Structure
	Slide 31: AULID Index Structure
	Slide 32: AULID Index Structure
	Slide 33: AULID Operations
	Slide 34: AULID Operations
	Slide 35: AULID Operations
	Slide 36: AULID Operations
	Slide 37: AULID Operations
	Slide 38: AULID Operations
	Slide 39: AULID Operations
	Slide 40: AULID Operations
	Slide 41: AULID Operations
	Slide 42: AULID Operations
	Slide 43: AULID Operations
	Slide 44: AULID Operations
	Slide 45: AULID Operations
	Slide 46: AULID Operations
	Slide 47: AULID Operations
	Slide 48: AULID Operations
	Slide 49: AULID Operations
	Slide 50: AULID Operations
	Slide 51: AULID Operations
	Slide 52: AULID Operations
	Slide 53: AULID Operations
	Slide 54: AULID Operations
	Slide 55: AULID Operations
	Slide 56: AULID Operations
	Slide 57: Experiment – Goal
	Slide 58: Experiment – Goal
	Slide 59: Experiment – Setup
	Slide 60: Experiment – Setup
	Slide 61: Experiment – Throughput Comparison
	Slide 62: Experiment – Bulkload & Storage
	Slide 63: Experiment – Large Scale Data
	Slide 64: Conclusion
	Slide 65: Thanks!

