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Updatable Learned Indexes Meet Disk-Resident 

DBMS - From Evaluations to Design Choices

SIGMOD 2023

Overall, B+-tree is the (second-)best.

LIPP outperforms other indexes on Lookup-Only workload.

PGM outperforms other indexes on Write-Only workload.

Normalized throughputs on the FB dataset
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#blocks/nodes fetched in Read-Only workload

Challenge 1. A learned index cannot guarantee 

to reduce I/O costs when searching data on disk.

Lookup

Scan
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#blocks/nodes fetched in Read-Only workload Latency breakdown in Write-Only workload
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to reduce I/O costs when searching data on disk.

Challenge 2. Most learned indexes 

suffer from large insertion overheads.

Lookup

Scan
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Challenge 1. A learned index cannot 

guarantee to reduce I/O costs when 

searching data on disk.

Challenge 2. Most learned indexes 

suffer from large insertion overheads.

P1. Reducing the Tree Height of the Index.

P2. Model-based Operations (Search and Insert).

P3. Lightweight Structure Modification Operations (SMO).

AULID, an updatable learned index on disk
Simple Yet Effective

P4. Better Scan Performance.

P5. Support Duplicate Index Keys.
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Benefits

- Low overhead for scan operations in fetching the next item (P4).

- Low insertion overhead and SMO overhead (P3).

Pointer between siblings 
Leaf node
Set the size equal to the block size
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Inner Node Layer

…

… …

ℳ

ℳ
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Mixed inner node

- Can hold different slot types

- Use a model to determine which slot 

to be accessed next
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to be accessed next
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node

- Can hold different slot types

- Use a model to determine which slot 

to be accessed next

Packed inner node

- Hold the pointer to the leaf node 

and the maximum key in the 

indexed leaf node
Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

- Low SMO overhead in inner nodes (P3).
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Metadata Node

ℳ

……

Metadata Node

- Address of the root node

- Address of the last leaf node

- Minimum key in the last leaf node

- Model of the root node if it is the mixed 

inner node

- Store all mixed inner node’s model 

in its parent node 
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maximum key and address of each leaf node.
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Bulkload

Step 1: Construct the leaf nodes and collect the 

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct 

the inner nodes. 

Updatable Learned Index with 

Precise Positions

VLDB 2021

Fastest Minimum Conflict Degree (FMCD) 
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Bulkload

Step 1: Construct the leaf nodes and collect the 

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct 

the inner nodes. 

Packed inner nodes to hold the keys when #keys 

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys 

mapped to the same slot is greater than 64 while 

not larger than 1024.

When #keys mapped to the same slot is greater 

1024, we build another mixed node.

Why we choose FMCD and extend it?

✓ Compared to other model construction strategies, it can 

achieve the lowest average tree height most of time.

✓ Each conflict in FMCD will build a new node, which may 

lead to a high tree height in some parts of the dataset.

✓ Packed inner nodes reduce memory consumption and 

overhead in SMO.
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Bulkload

Step 1: Construct the leaf nodes and collect the 

maximum key and address of each leaf node.

Step 2: Call FMCD-based algorithm to construct 

the inner nodes. 

Step 3: Build the metadata node.

Packed inner nodes to hold the keys when #keys 

mapped to the same slot is not greater than 64.

A special routing slot to hold the keys when #keys 

mapped to the same slot is greater than 64 while 

not larger than 1024.

When #keys mapped to the same slot is greater 

1024, we build another mixed node.
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Search

Step 1: Visit metadata node and check keylk? keyminStep 1
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Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the 

root node, load related block and read the slot.
Step 2
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Search

Step 1: Visit metadata node and check keylk? keymin

Step 2: Compute which slot to access next in the 

root node, load related block and read the slot.

Step 3: If the slot type is      , read the pointer and 

load the corresponding block.

Step 4: If the node is packed inner node, do a binary 

search to find the slot to access next and load the 

corresponding leaf node.

Step 5: Do a binary search on the leaf node.
Step 5
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Insert

Step 1: Insert into leaf node

… …
Not full
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Insert

Step 1: Insert into leaf node

… …

…

…

…

Not full

Full

Store the large half values 

in the original block.

Collect address and keymax of 

the new leaf node.
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Insert

Step 2: Insert (keymax, addr ) into the inner nodes.

1. Empty slot

2. Pointer to leaf node

3. Pointer to packed inner node

4. Special routing slot
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Insert

Step 2: Insert (keymax, addr ) into the inner nodes.

4. Special routing slot



AULID Operations

54

Tree Adjustment

Why – with more data inserted, some parts of the 

index may have a large height.
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Why – with more data inserted, some parts of the 

index may have a large height.

When – two criteria met at the same time:

o Percentage of the items in a subtree rooted 

at node 𝑛 in the third layer or a deeper layer 

is larger than 𝛼.

o Number of current items rooted at node 𝑛 is 

larger than 𝛽 times of the initial size.
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Tree Adjustment

Why – with more data inserted, some parts of the 

index may have a large height.

When – two criteria met at the same time:

o Percentage of the items in a subtree rooted 

at node 𝑛 in the third layer or a deeper layer 

is larger than 𝛼.

o Number of current items rooted at node 𝑛 is 

larger than 𝛽 times of the initial size.

How – reload the inner node items rooted at 

node 𝑛 and call our revised FMCD algorithm.
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Q1: How good is AULID as compared to other learned 

indexes and a B+-tree when disk-resident?

Q2: How well does AULID scale to large datasets?

Q3: Do the proposed index structure design and structural 

modification operation help improve the performance?

Q4: What are the impacts of different parameter 

settings on AULID performance?
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❑ Datasets

❑ Baselines
❑ ALEX, PGM, FITing-tree, LIPP, B+-tree

59

Hardness
Global Hardness

Easy Normal Hard

Local 

Hardness

Easy C1

Normal C2 C4

Hard C3

C1: COVID (200M / 800M)

C2: PLANET (200M / 800M)

C3: GENOME (200M / 800M)

C4: OSM (200M / 800M)

Are Updatable Learned 

Indexes Ready?

VLDB 2022

Updatable Learned Indexes Meet Disk-Resident 

DBMS - From Evaluations to Design Choices

SIGMOD 2023
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❑ Workload

❑ Metric
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Lookup-Only Scan-Only Write-Only Write-Heavy Balanced Read-Heavy

100% lookups 100% scans 100% inserts 90% inserts

10% lookups

50% inserts

50% lookups

10% inserts

90% lookups

Throughput (number of operations per second)

Fetched block count from disk

Storage size

P99 latency & standard deviation

Smaller is better

Larger is better

Updatable Learned Indexes Meet Disk-Resident 

DBMS - From Evaluations to Design Choices

SIGMOD 2023
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✓ AULID significantly beats other indexes in all datasets and workloads.

✓ B+-tree is the second best in most workloads and datasets.
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✓ AULID has similar bulkload time to B+-tree and is faster than other indexes.

✓ AULID has a stable index size among different dataset and is competitive to B+-tree.



Experiment – Large Scale Data

63

Throughput Speedup Storage/time ratio

✓ The superiority of AULID also holds on large scale datasets.
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❑We reveal the challenges when applying the learned 

indexes on disk and propose our design principles.

❑We propose AULID to meet the principles with the carefully 

designed index layout and operations.

❑Our experiments show AULID significantly beats our 

baselines in all workloads and testing datasets.



Thanks!

65


	Slide 1: A Fully On-disk Updatable Learned Index
	Slide 3: Apply Learned Indexes on Disk?
	Slide 4: Apply Learned Indexes on Disk?
	Slide 5: Apply Learned Indexes on Disk?
	Slide 6: Apply Learned Indexes on Disk?
	Slide 7: Apply Learned Indexes on Disk?
	Slide 8: Apply Learned Indexes on Disk?
	Slide 9: Apply Learned Indexes on Disk?
	Slide 10: Design Principles
	Slide 11: Design Principles
	Slide 12: Design Principles
	Slide 13: Design Principles
	Slide 14: Design Principles
	Slide 15: Design Principles
	Slide 16: Design Principles
	Slide 17: AULID Index Structure
	Slide 18: AULID Index Structure
	Slide 19: AULID Index Structure
	Slide 20: AULID Index Structure
	Slide 21: AULID Index Structure
	Slide 22: AULID Index Structure
	Slide 23: AULID Index Structure
	Slide 24: AULID Index Structure
	Slide 25: AULID Index Structure
	Slide 26: AULID Index Structure
	Slide 27: AULID Index Structure
	Slide 28: AULID Index Structure
	Slide 29: AULID Index Structure
	Slide 30: AULID Index Structure
	Slide 31: AULID Index Structure
	Slide 32: AULID Index Structure
	Slide 33: AULID Operations
	Slide 34: AULID Operations
	Slide 35: AULID Operations
	Slide 36: AULID Operations
	Slide 37: AULID Operations
	Slide 38: AULID Operations
	Slide 39: AULID Operations
	Slide 40: AULID Operations
	Slide 41: AULID Operations
	Slide 42: AULID Operations
	Slide 43: AULID Operations
	Slide 44: AULID Operations
	Slide 45: AULID Operations
	Slide 46: AULID Operations
	Slide 47: AULID Operations
	Slide 48: AULID Operations
	Slide 49: AULID Operations
	Slide 50: AULID Operations
	Slide 51: AULID Operations
	Slide 52: AULID Operations
	Slide 53: AULID Operations
	Slide 54: AULID Operations
	Slide 55: AULID Operations
	Slide 56: AULID Operations
	Slide 57: Experiment – Goal
	Slide 58: Experiment – Goal
	Slide 59: Experiment – Setup
	Slide 60: Experiment – Setup
	Slide 61: Experiment – Throughput Comparison
	Slide 62: Experiment – Bulkload & Storage
	Slide 63: Experiment – Large Scale Data
	Slide 64: Conclusion
	Slide 65: Thanks!

