

Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting (STBGAT)

Dimuthu Lakmal, Kushani Perera, Renata Borovia-Gajic, Shanika Karunasekera **University of Melbourne**

PAKDD 2024

Introduction

Traffic congestion

- Transportation systems become more crowded and complex
- Social cost of **30Bn by 2030** in 8 Australian capital cities [1].
- Intelligent Transportation Systems were introduced.
- Traffic condition forecasting systems.
 - A core component of ITSs
 - Predict future traffic condition given historical observations

Fig 1: Intelligent transportation system

Fig 2: Traffic congestion

Traffic Flow Forecasting

- Traffic flow forecasting problem is a **spatial-temporal graph modeling problem**
 - Historical observations
 - Spatial structure of the sensor network
- Various types of Spatial-Temporal Graph Neural Networks (STGNN)

Fig 3: A general pipeline of ST-GNN models for traffic prediction [2]

Fig 4: A traffic flow sequence

Spatial-Temporal Graph Neural Networks for Traffic Flow Forecasting

- Before STGNNs, Statistical Time Series Algorithms and ML models.
- GNNs models spatial dependencies in complex road networks.
- STGNN => A model architecture with Graph Neural Network paired with a temporal ML model.
- **STGCN** [3] is one of the earliest STGNN followed by number of complex STGNNs [4-6]
- Fails to model past information propagation from neighbouring nodes.
- Most of them fails to incorporate features beyond raw traffic flow sequences.

Spatial Module of Spatial-Temporal Graph Neural Networks

• Various Graph Neural Network Architectures [7-9].

- Wide adoption of STGNNs after the introduction of Graph Convolution Network (GCN) [10].
- GAT assigns different weights to neighbours according to their importance [11].
- Bipartite GAT aggregate neighbourhood information spanning multiple time steps.

Temporal Module of Spatial-Temporal Graph Neural Network

- RNNs suffer from **vanishing gradient problem**.
- CNNs unable to capture long-distance dependencies [12].
- Attention based approaches are superior compared to RNNs and CNNs
- Transformer model is an **encoder-decoder architecture built on an attention mechanism** [13].

Motivation

• **Two major issues** in current STGNNs.

- Fail to ascertain how the traffic flow on a specific road at a given time is **impacted by previous traffic conditions on adjacent roads**.
- Fails incorporate **multiple types of input sequences for predictions** which could reveal more temporal and spatial dependencies.

Contribution

- A new STGNN architecture; Spatial-Temporal Bipartite Graph Neural Network (STBGAT).
- Main contributions:
 - A novel bipartite Graph Attention Network facilitating explicit past information propagation from neighbourhood.
 - A heterogeneous cross-attention mechanism for transformers which enables featurewise attention distribution, and allows integration of multiple feature sequences..

Contribution

Bipartite Graph Attention Network

Fig 11: Formation of Bipartite Graph

- Traffic flow recorded on a sensor at a specific time step is influenced by;
 - Traffic flow on adjacent roads in previous time steps due to propagation delay [6].
 - What will happen if a road accident occurs in a road section?

Heterogeneous Cross Attention Layers

- Cross attention component assigns attention values for encoder input sequence.
- Naive implementation does not support feature-wise attention distribution.
- Allows more precise and finer-grained modeling of temporal relationships.
- Two feature sequences
 - Historical observation sequence
 - Representative sequence

Given the historical observations spanning across a specific time window and sensor network information,

Problem is to **establish a mapping function to output a sequence of future traffic flow values**

Methodology

Data Inputs

- First Input sequence generated by traffic flow values in;
 - Last hour.
 - Same one hour duration in the previous day.
 - Same one hour duration in the last week.
- Advantages of using observations in previous day and last week.
 - Identify long-term and short-term trends.
 - Mitigate the impact of missing values in shorter sequences.
- Second Traffic input sequence is a **representative traffic flow sequence**.
 - Averaging traffic flow values in training dataset.

Methodology

Data Preprocessing

- Representative traffic flow sequences using the average behavior within training dataset.
- Redefined connectivity of road network.

Methodology

Encoder Decoder Architecture

Fig 10: Overall Architecture

Experiment

Datasets

- Comprehensive evaluation on two widely used dataset groups.
 - **PEMS dataset**
 - PEMS-BAY, METR-LA datasets.

Dataset	Sensors	Time Range
PEMS04	307	01/01/2018 - 28/02/2018
PEMS07	883	01/05/2017 - 31/08/2017
PEMS08	170	01/07/2016 - 31/08/2016
PEMS-BAY	325	01/01/2017 - 30/06/2017
METR-LA	207	01/03/2012 - 30/06/2012

Table 1: Details of Datasets

Fig 12: PEMS sensor network

Fig 13: METR-LA sensor network

Experiment

Baselines

- Analyzed performance against current state-of-the-art models.
- Baselines:

PEMS dataset	PEMS-BAY, METR-LA							
VARSVR	VARSVR							
• LSTM	○ LSTM							
• DCRNN								
• STGCN	• STGCN							
• GMAN	○ GMAN							
• ASTGNN	• STEP							
• PDFormer	• STGM							

Table 2: Baselines

Comparison of Performance

			V	/AR		SVR	LSTM	DC- RNN	ST- GCN	GMA	N A	ST- NN	PDF- ormer	PDF- ormer(L)	ST- BGAT	
Table 3: Prediction Accuracy Results (PEMS04-08)	2	MAE	2	3.75	6 3	28.66	26.81	23.65	22.27	19.14	18	.60	18.39	18.40	18.17	
	MSI	RMS	3	6.66	5 Q	14.59	40.74	37.12	35.02	31.60	31	.03	30.01	30.25	28.23	
	PE	MAP	E 1	8.10) <u> </u>	19.15	22.33	14.75	13.87	13.19	12	2.63	12.13	12.23	12.02	
	ь	MAF	1	01.5	0 3	32.97	29.71	23 63	22.90	20.97	20	62	19.83	N/A	18.34	_
	MS	RMSI	5 1	55.1	4	i0.15	45.32	36.51	35.44	34.10	.34	.02	32.87	N/Λ	30.86	
	PE	MAP	B 3	9.69		15.43	14.14	12.28	11.98	9.05	8.	86	8.53	N/Λ	7.63	
	8	MAE	2	2.32	1 1	23.25	22.19	18.19	17.84	15.31	13	.29	13.58	12.51	12.39	
	MS	RMSI	З 3	3.83	:	6.15	33.59	28.18	27.12	24.92	23	.33	23.51	22.10	21.02	
	PE	MAP	5 1	4.47	63	4.71	18.74	11.24	11.21	10.13	9.	03	9.05	8.55	8.43	
					VAR	SVR	LSTM	DCRNN	SIGCN	GMAN	STGM	STEP	STBGAT			
Table 4: Prediction Accuracy Results (PEMS-Bay, METR-LA)			MAL	ų.	2.93	3.28	2.37	2.07	2.49	1.86	1.86	1.79	1.75			
		PEMS	RMS	SE	5.44	7.08	4.96	4.74	5.69	4.32	4.37	4.20	3.60			
		BAY	MAR	PE	6.50	8.00	5.70	4.90	5.79	4.37	4.34	4.18	4.01			
		1000	MAE	Б	6.52	6.72	2 4.37	3.60	4.59	3.44	3.23	3.37	4.56			
		METR -LA	RMS	sE	10.1	13.7	6 8.69	7.60	9.40	7.35	7.10	6.99	8.12			
			MAL	PE	15.80	167	0 14.00	10.50	12.70	10.07	0.30	9.61	10.96			

- Introduced a novel spatial-temporal for traffic flow forecasting.
- STBGAT outperforms latest state-of-the-art baselines in four real-world datasets.
- Ablation study demonstrated the effectiveness of two new concepts;
 - **Bipartite Graph Attention Network**
 - Heterogeneous Cross Attention Mechanism

Thank you

Source Code: https://github.com/DimuthuLakmal/STBGAT

[1] Traffic and congestion cost trends for Australian capital cities. (n.d.). Traffic and congestion cost trends for Australian capital cities. Retrieved May 24, 4 C.E., from https://www.bitre.gov.au/sites/default/files/is_074.pdf

[2] Bui, K. H. N., Cho, J., & Yi, H. (2022). Spatial-temporal graph neural network for traffic forecasting: An overview and open research issues. *Applied Intelligence*, *52*(3), 2763-2774.

[1] Yan Tian, Kaili Zhang, Jianyuan Li, Xianxuan Lin, and Bailin Yang. 2018. Lstm-based traffic flow prediction with missing data. Neurocomputing, 318:297–305.

[2] Qing Wang, Jianying Zheng, Hao Xu, Bin Xu, and Rong Chen. 2017. Roadside magnetic sensor system for vehicle detection in urban environments. IEEE Transactions on Intelligent Transportation Systems, 19(5):1365–1374.

[3] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.

[4] heonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan Kim, Sungahn Ko, and Jaegul Choo. 2020. St-grat: A novel spatiotemporal graph attention networks for accurately forecasting dynamically changing road speed. In Proceedings of the 29th ACM international conference on information & knowledge management, pages 1215–1224.

[5] Chuanpan Zheng, Xiaoliang Fan, Cheng Wang, and Jianzhong Qi. 2020. Gman: A graph multi-attention network for traffic prediction. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages 1234–1241.

[6] Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. 2023. Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction. arXiv preprint arXiv:2301.07945.

[7] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong. 2020. Lsgcn: Long short-term traffic prediction with graph convolutional networks. In IJCAI, volume 7, pages 2355–2361.

[8] Xiangyuan Kong, Weiwei Xing, Xiang Wei, Peng Bao, Jian Zhang, and Wei Lu. 2020. Stgat: Spatial-temporal graph attention networks for traffic flow forecasting. IEEE Access, 8:134363–134372.

[9] Zhilong Lu, Weifeng Lv, Yabin Cao, Zhipu Xie, Hao Peng, and Bowen Du. 2020. Lstm variants meet graph neural networks for road speed prediction. Neurocomputing, 400:34–45.

[10] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

[12] Shengnan Guo, Youfang Lin, Huaiyu Wan, Xiucheng Li, and Gao Cong. 2021. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering, 34(11):5415–5428.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural information processing systems, 30.

[14] Teng Zhou, Guoqiang Han, Xuemiao Xu, Chu Han, Yuchang Huang, and Jing Qin. 2019. A learning-based multimodel integrated framework for dynamic traffic flow forecasting. Neural Processing Letters, 49:407–430

[15] Yatao Zhang, Tianhong Zhao, Song Gao, and Martin Raubal. 2023. Incorporating multimodal context information into traffic speed forecasting through graph deep learning. International Journal of Geographical Information Science, 37(9):1909–1935

[16] Xiaoan Qin. 2023. Traffic flow prediction based on two-channel multi-modal fusion of mcb and attention. IEEE Access, 11:58745–58753.

[17] Qi Chen, Wei Wang, Kaizhu Huang, Suparna De, and Frans Coenen. 2021. Multi-modal generative adversarial networks for traffic event detection in smart cities. Expert Systems with Applications, 177:114939

[18] R. S. D. Sousa, A. Boukerche, and A. A. Loureiro, "Vehicle trajectory similarity: models, methods, and applications," ACM Computing Surveys (CSUR), vol. 53, no. 5, pp. 1–32, 2020

[19] P. Tong, M. Li, M. Li, J. Huang, and X. Hua, "Large-scale vehicle trajectory reconstruction with camera sensing network," in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, 2021, pp. 188–200

[20] X. Zeng, C. Lancelle, C. Thurber, D. Fratta, H. Wang, N. Lord, A. Chalari, and A. Clarke, "Properties of noise cross-correlation functions obtained from a distributed acoustic sensing array at garner valley, california," Bulletin of the Seismological Society of America, vol. 107, no. 2, pp. 603–610, 2017.

[21] "Distributed acoustic sensing," https://www.bandweaver.com/fiber_optic_sensing_technology/distributed-acoustic-sensing/, May 2017, accessed: 2023-9-30.

[22] I. Corera, E. Piñeiro, J. Navallas, M. Sagues, and A. Loayssa, "Long-range and high-resolution traffic monitoring based on pulse-compression das and advanced vehicle tracking algorithm," in Optical Fiber Sensors. Optica Publishing Group, 2022, pp. Th2–3.

Appendix

Ablation Study

