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Introduction

Traffic congestion

Transportation systems become more crowded and complex

Social cost of 30Bn by 2030 in 8 Australian capital cities [1].

Intelligent Transportation Systems were introduced.

e Traffic condition forecasting systems.
o A core component of ITSs
o  Predict future traffic condition given historical observations

Fig 2: Traffic congestion

Fig 1: Intelligent transportation system
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Fig 3: A general pipeline of ST-GNN models for traffic prediction [2]
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Spatial-Temporal Graph Neural Networks for Traffic Flow Forecasting

e Before STGNNSs, Statistical Time Series Algorithms and ML models.
e GNNs models spatial dependencies in complex road networks.
e STGNN => A model architecture with Graph Neural Network paired with a temporal ML model.

e STGCN [3] is one of the earliest STGNN followed by number of complex STGNNs [4-6]

e Fails to model past information propagation from neighbouring nodes.

e Most of them fails to incorporate features beyond raw traffic flow sequences.
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Literature Review K\

Spatial Module of Spatial-Temporal Graph Neural Networks

e Various Graph Neural Network Architectures [7-9].

Spatial
Module

Convolution
Recurrent GNN

e Wide adoption of STGNNs after the introduction of Graph Convolution Network (GCN) [10].

Graph Attention
Networks

e GAT assigns different weights to neighbours according to their importance [11].

e Bipartite GAT aggregate neighbourhood information spanning multiple time steps.

¥
AT ICIENT




Literature Review K\

Temporal Module of Spatial-Temporal Graph Neural Network
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CNN Based Attention Based

RNN Based

RNNs suffer from vanishing gradient problem.

CNNs unable to capture long-distance dependencies [12].
Attention based approaches are superior compared to RNNs and CNNs

Transformer model is an encoder-decoder architecture built on an attention mechanism [13].
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Fig 6: RNN Fig 7: 1D CNN Fig 8:1D CNN + Attention




_ Motivation _____ ;&

Two maijor issues in current STGNNSs.

o Fail to ascertain how the traffic flow on a specific road at a given time is impacted by
previous traffic conditions on adjacent roads.

o  Fails incorporate multiple types of input sequences for predictions which could reveal
more temporal and spatial dependencies.




Contribution

e A new STGNN architecture; Spatial-Temporal Bipartite Graph Neural Network (STBGAT).

e Main contributions:

O

A novel bipartite Graph Attention Network facilitating explicit past information
propagation from neighbourhood.

A heterogeneous cross-attention mechanism for transformers which enables feature-
wise attention distribution, and allows integration of multiple feature sequences..
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Bipartite Graph Attention Network

Fig 11: Formation of Bipartite Graph

e Traffic flow recorded on a sensor at a specific time step is influenced by;
o Traffic flow on adjacent roads in previous time steps due to propagation delay [6].

o  What will happen if a road accident occurs in a road section?
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Heterogeneous Cross Attention Layers

Cross attention component assigns attention values for encoder input sequence.

Naive implementation does not support feature-wise attention distribution.

Allows more precise and finer-grained modeling of temporal relationships.

Two feature sequences
o Historical observation sequence

o Representative sequence




Problem Statement \

Given the historical observations spanning across a specific time window and sensor network
information,

Problem is to establish a mapping function to output a sequence of future traffic flow values
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Fig 9: Problem Statement




R\
Data Inputs

e First Input sequence generated by traffic flow values in;
o Last hour.
o Same one hour duration in the previous day.

o Same one hour duration in the last week.

e Advantages of using observations in previous day and last week.
o ldentify long-term and short-term trends.

o  Mitigate the impact of missing values in shorter sequences.

e Second Traffic input sequence is a representative traffic flow sequence.

o Averaging traffic flow values in training dataset.




Methodology K\

Data Preprocessing

e Representative traffic flow sequences using the average behavior within training dataset.

e Redefined connectivity of road network.

Distance based
graph

Semantics based
graph




Methodology

Encoder Decoder Architecture
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_Experiment ;&

Datasets
e Comprehensive evaluation on two widely used dataset groups. e ‘5

o PEMS dataset 3 i “ .

o PEMS-BAY, METR-LA datasets. BRI 8 e
Dataset Sensors Time Range p. - , ,.. 113
PEMS04 307 01/01/2018 - 28/02/2018 Fig 12: PEMS sensor network
PEMS07 883 01/05/2017 - 31/08/2017
PEMSO08 170 01/07/2016 - 31/08/2016 : _ ;
PEMS-BAY 325 01/01/2017 - 30/06/2017 i 7 SOT SO Ansiy orin L
METR-LA 207 01/03/2012 - 30/06/2012 g

Mem .-l{._
Table I: Details of Datasets et
2

Fig 13: METR-LA sensor network
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__ Experiment
Baselines ‘\\

e Analyzed performance against current state-of-the-art models.

e Baselines:

PEMS dataset PEMS-BAY, METR-LA
o VAR o VAR

o SVR o SVR

o LSTM o LSTM

o DCRNN o DCRNN

o STGCN o STGCN

o GMAN o GMAN

o ASTGNN o STEP

o PDFormer o STGM

Table 2: Baselines




_Experiment \_

Comparison of Performance
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e Introduced a novel spatial-temporal for traffic flow forecasting.
e STBGAT outperforms latest state-of-the-art baselines in four real-world datasets.
e Ablation study demonstrated the effectiveness of two new concepts;

o Bipartite Graph Attention Network

o Heterogeneous Cross Attention Mechanism




Thank you

Source Code: https://github.com/DimuthuLakmal /STBGAT
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Ablation Study
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