
Spatial-Temporal Bipartite Graph Attention 
Network for Traffic Forecasting (STBGAT)

Dimuthu Lakmal, Kushani Perera, Renata Borovia-Gajic, Shanika Karunasekera
University of Melbourne

PAKDD 2024



Introduction

Traffic congestion

● Transportation systems become more crowded and complex

● Social cost of 30Bn by 2030 in 8 Australian capital cities [1].

● Intelligent Transportation Systems were introduced.

● Traffic condition forecasting systems.
○ A core component of ITSs
○ Predict future traffic condition given historical observations

Fig 1: Intelligent transportation system

Fig 2: Traffic congestion 



Introduction

Traffic Flow Forecasting

Fig 4: A traffic flow sequence

● Traffic flow forecasting problem is a spatial-temporal graph 
modeling problem
○ Historical observations
○ Spatial structure of the sensor network

● Various types of Spatial-Temporal Graph Neural Networks 
(STGNN)

Fig 3: A general pipeline of ST-GNN models for traffic prediction [2]

Fig 5: Spatial structure of sensor 
network



Spatial-Temporal Graph Neural Networks for Traffic Flow Forecasting

Literature Review

● Before STGNNs, Statistical Time Series Algorithms and ML models.

● GNNs models spatial dependencies in complex road networks.

● STGNN => A model architecture with Graph Neural Network paired with a temporal ML model.

● STGCN [3] is one of the earliest STGNN followed by number of complex STGNNs [4-6]

● Fails tomodel past information propagation from neighbouring nodes.

● Most of them fails to incorporate features beyond raw traffic flow sequences.



Spatial Module of Spatial-Temporal Graph Neural Networks

Literature Review

● Various Graph Neural Network Architectures [7-9].

Spatial 
Module

Convolution 

GNN
Recurrent GNN

Graph Attention 

Networks

● Wide adoption of STGNNs after the introduction of Graph Convolution Network (GCN) [10].

● GAT assigns different weights to neighbours according to their importance [11].

● Bipartite GAT aggregate neighbourhood information spanning multiple time steps.



Temporal Module of Spatial-Temporal Graph Neural Network

Literature Review

Temporal 
Module

CNN BasedRNN Based Attention Based

● RNNs suffer from vanishing gradient problem.

● CNNs unable to capture long-distance dependencies [12].

● Attention based approaches are superior compared to RNNs and CNNs

● Transformer model is an encoder-decoder architecture built on an attention mechanism [13].

Fig 6: RNN Fig 7: 1D CNN Fig 8: 1D CNN + Attention 



● Two major issues in current STGNNs.

○ Fail to ascertain how the traffic flow on  a specific road at a given time is impacted by 
previous traffic conditions on adjacent roads.

○ Fails incorporate multiple types of input sequences for predictions which could reveal 
more temporal and spatial dependencies.

Motivation



● A new STGNN architecture; Spatial-Temporal Bipartite Graph Neural Network (STBGAT).

● Main contributions:

○ A novel bipartite Graph Attention Network facilitating explicit past information
propagation from neighbourhood.

○ A heterogeneous cross-attention mechanism for transformers which enables feature-
wise attention distribution, and allows integration of multiple feature sequences..

Contribution



Bipartite Graph Attention Network

Contribution

● Traffic flow recorded on a sensor at a specific time step is influenced by;

○ Traffic flow on adjacent roads in previous time steps due to propagation delay [6].

○ What will happen if a road accident occurs in a road section?

Fig 11: Formation of Bipartite Graph



Heterogeneous Cross Attention Layers

Contribution

● Cross attention component assigns attention values for encoder input sequence.

● Naive implementation does not support feature-wise attention distribution.

● Allows more precise and finer-grained modeling of temporal relationships.

● Two feature sequences

○ Historical observation sequence

○ Representative sequence



Problem Statement

Given the historical observations spanning across a specific time window and sensor network 
information,

Problem is to establish a mapping function to output a sequence of future traffic flow values

Fig 9: Problem Statement 

+



Data Inputs

Methodology

● First Input sequence generated by traffic flow values in;

○ Last hour.

○ Same one hour duration in the previous day.

○ Same one hour duration in the last week.

● Advantages of using observations in previous day and last week.

○ Identify long-term and short-term trends.

○ Mitigate the impact of missing values in shorter sequences.

● Second Traffic input sequence is a representative traffic flow sequence.

○ Averaging traffic flow values in training dataset.



Data Preprocessing

Methodology

● Representative traffic flow sequences using the average behavior within training dataset.

● Redefined connectivity of road network.

Graphs

Distance based 
graph

Semantics based 
graph



Encoder Decoder Architecture

Methodology

Fig 10: Overall Architecture



Datasets

Experiment

● Comprehensive evaluation on two widely used dataset groups.

○ PEMS dataset

○ PEMS-BAY, METR-LA datasets.

Table 1: Details of Datasets

Fig 12: PEMS sensor network

Fig 13: METR-LA sensor network



Baselines

Experiment

● Analyzed performance against current state-of-the-art models.

● Baselines:

PEMS-BAY, METR-LAPEMS dataset

○ VAR
○ SVR
○ LSTM

○ DCRNN
○ STGCN
○ GMAN

○ STEP
○ STGM

○ VAR
○ SVR
○ LSTM

○ DCRNN
○ STGCN
○ GMAN

○ ASTGNN
○ PDFormer

Table 2: Baselines



Comparison of Performance

Experiment

Table 3: Prediction Accuracy 
Results (PEMS04-08)

Table 4: Prediction Accuracy 
Results (PEMS-Bay, METR-LA)



Conclusion

● Introduced a novel spatial-temporal for traffic flow forecasting.

● STBGAT outperforms latest state-of-the-art baselines in four real-world datasets.

● Ablation study demonstrated the effectiveness of two new concepts;

○ Bipartite Graph Attention Network

○ Heterogeneous Cross Attention Mechanism



Thank you

Source Code: https://github.com/DimuthuLakmal/STBGAT
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