

Finding All Nearest Neighbors with a Single Graph Traversal

Yixin Xu, Jianzhong Qi, Renata Borovica-Gajic, and Lars Kulik

Motivation

Parking undersupply? 65% oversupply

[1] https://www.eveningtelegraph.co.uk/fp/park-ride-scheme-considered-ease-parking-dundees-ninewells-hospital/

[2] http://nelsonnygaard.com/publication/parking-in-mixed-use-districts/

[3] http://www.global.datafest.net/projects/smart-parking-imt

• Find the nearest parking space for every driver

Efficient & scalable All Nearest Neighbour (ANN) algorithm

• Example:

- Query objects
- Data objects

• Find the nearest parking space for every driver

Efficient & scalable All Nearest Neighbour (ANN) algorithm

• Example:

- Query objects
- Data objects

• Find the nearest parking space for every driver

Efficient & scalable All Nearest Neighbour (ANN) algorithm

• Example:

- Query objects
- Data objects

Literature review

• ANN algorithms in Euclidean space cannot be applied

VIVET the first study on ANN problem in spatial networks

	INE	G-tree	ROAD	IER-PHL	DisBrw
Query time	5 th	2 nd	3 rd	1 st	3 rd
Precomputation time	1 st	3 rd	2 nd	4 th	5 th
Precomputation memory	1 st	2 nd	3 rd	4 th	5 th

State-of-the-arts: IER-PHL, G-tree, INE

[4] Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. PVLDB 9(6), 492–503 (2016)

• Large memory cost, not scalable to large networks

US road network (23.9 million vertices)										
	IER-PHL	G-tree	VIVET							
Memory	>64 GB	2.4 GB	182.7MB							

 Multiple visit to the same areas, not efficient for large query sets

Precomputation phase

- Traverse the graph only once
- Short precomputation time
- Low memory size
- Query phase
 - Answer a NN query in constant time
 - Answer an ANN query in linear time

- Precomputation algorithm
 - Step 1, add a virtual vertex v^*
 - Step 2, connect v^* with all data objects with weight zero
 - Step 3, traverse the road network from the virtual vertex (Dijkstra's algorithm)
- Example

Precomputation phase

- Get NN(v_i) from SP(v^* , v_i)
 - SP(v^* , v_i) must traverse exactly one data object
 - The traversed object is the nearest neighbour (NN) of v_i
- Example

$$\mathsf{SP}(v^*, v_{11}) = \{v^*, \boldsymbol{o}_2, v_{10}, v_{11}\}$$

 $NN(v_{11}) = o_2$

The Index of VIVET

• VIVET index

	<i>v</i> ₁	<i>v</i> ₂	v ₃	<i>v</i> ₄	<i>v</i> ₅	v ₆	v ₇	v ₈	v ₉	<i>v</i> ₁₀	<i>v</i> ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃
NN	<i>o</i> ₁	<i>o</i> ₂	<i>o</i> ₁	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂					
distance	1	2	5	0	2	6	6	8	0	5	8	10	9

Memory: linear to the number of vertices

Query phase

• Query algorithm

	<i>v</i> ₁	<i>v</i> ₂	v ₃	v ₄	<i>v</i> ₅	v ₆	v ₇	v ₈	v ₉	v ₁₀	v ₁₁	<i>v</i> ₁₂	<i>v</i> ₁₃
NN	<i>o</i> ₁	<i>o</i> ₂	<i>o</i> ₁	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂	<i>o</i> ₂					
distance	1	2	5	0	2	6	6	8	0	5	8	10	9
$v_{1} = v_{13}$ $v_{1} = v_{12}$ $v_{1} = v_{12}$ $v_{1} = v_{1}$ $v_{1} = v_{1}$ $v_{1} = v_{1}$ $v_{2} = v_{1}$ $v_{4} = v_{1}$ $v_{4} = v_{1}$ $v_{9} = v_{1}$ $v_{1} = v_{1}$ $v_{1} = v_{1}$ $v_{2} = v_{1}$ $v_{3} = v_{5}$ $v_{8} = v_{1}$													

Datasets

- Road network: 9th DIMACS Implementation Challenge^[5]
- Real-world data objects from OpenStreetMap^[4]
- Synthetic objects
- Implementation
 - C++
 - 64-bit virtual node with 1.8GHz GPU and 64GB RAM from Nectar^[6]

[4] Abeywickrama, T., Cheema, M.A., Taniar, D.: K-nearest neighbors on road networks: a journey in experimentation and in-memory implementation. PVLDB 9(6), 492–503 (2016)

[5] http://www.dis.uniroma1.it/challenge9/download.shtml

[6] https://nectar.org.au

- Precomputation memory
 - Vary the road network size

VIVET reduces the memory consumption by one order of magnitude

Precomputation memory

- Vary the number of data objects

VIVET reduces the memory consumption by one order of magnitude

- Precomputation time
 - Vary the road network size

NY COLFLA NW CAL E W CTRUSA VIVET reduces the precomputation time by one order of magnitude

- Precomputation time
 - Vary the number of data objects

VIVET reduces the precomputation time by one order of magnitude

- Query time
 - Vary the number of query objects

VIVET outperforms state-of-the-art by more than two orders of magnitude

• VIVET in directed graphs

- Reverse the road network edges
- Apply VIVET on the reversed graph

VIVET without index

– Run the precomputation phase online

Conclusion

- ANN is a fundamental query in spatial database
- The size of VIVET index is linear to the number of vertices
- VIVET answers an ANN query in linear time
- Future work
 - All k nearest neighbor
 - Other nearest neighbor problems, i.e., continuous nearest neighbor, reverse nearest neighbor

Thank you