Toward timely, predictable and
cost-effective data analytics

Renata Borovica-Gajic
DIAS, EPFL

AINS (Wl

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

'
Big data proliferation

The Digital Universe: 50-fold Growth from the Beginning of
2010 to the End of 2020

40,000

”Big data is when the current technology does not enable users

to obtain timely, cost-effective, and quality answers to data-driven
questions. “ [Steve Todd, Berkeley]

Technology follows Moore’s Law T 16,000

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

* “The Digital Universe in 2020: Big Data, Bigger Digital Shadows, T “Trends in big data analytics“, 2014, Kambatla et al
and Biggest Growth in the Far East”, 2012, IDC 2

(I
What business analysts want

¥
&,

£ Timely, predictable, cost-effective queries

! T—

e —
T

User Wasted 35 - [WinterCorp, 2013]
frustration resources 20 .
1 m Expected {7;25 | Ml Development
c
w Actual 2 5 7 Administration
E g 15 - B System
10 -
o)
O 5 -
O]
DW
Minimal data-to- Predictable Low infrastructure

insight time response time cost 3

N 1 o
Thesis statement

As traditional DBMS rely on predefined assumptions
about workload, data and storage, changes cause
loss of performance and unpredictability.

Insight
Query execution must adapt at three levels

(to workload, data and hardware) to stabilize and
optimize performance and cost.

N o
Outline

e Minimize data-to-insight time
— Workload-driven adaptation [SIGMOD’12, VLDB’12, CACM’15]

e Improve predictability of response time
— Data-driven adaptation [DBTest’12, ICDE’15]

 Reduce analytics cost
— Cold storage & hardware-driven adaptation [VLDB'16]

T 1
Outline

e Minimize data-to-insight time

— Workload-driven adaptation

e Improve predictability of response time

— Data-driven adaptation

e Reduce analytics cost

— Cold storage & hardware-driven adaptation

T o
Data-to-insight time

Traditional query stack Raw data querying stack
100
T 9 | @ Processing (Q1)
= g0 | B Convert
2 N Tokenize
‘i i S 70 r Parse
insicht querying S W Pa
g = 60 | mI/0
Q
o 5 50
E loading 5 40
5 30
O
Q 20
o100 b
data Raw data querying

overheads

Time to first insight too long

Does not scale with data growth Overheads too high

Current technology # efficient exploration :

T o
Optimize raw data querying stack

Raw data querying stack

A
100 - @ Processing (Q1)

S 90 | W Convert o
& 5 Tokenize £
c - =
| s |-
© ~ Q4
g 50 r 2 & 1
- L
c % Let users show by Q4
5 30 . . 2 Q3
3 asking queries S
L% 20 —

10 Q1 Q1

0

Raw data DBMS NoDB

Not everything needed for Q1 _
guerying

NoDB: Workload-driven data loading & tuning -

C1F
PostgresRaw: NoDB from idea to practice

Pointers to end of tuples

1. Positional indexing

1|Supplier#01|17|335-1736|5755.94 |each slyly... //

2| Supplier#02|5|861-2259|4032.68| slyly bold...
3|Supplier#03|1|516-1199|4192.40|blithely...
upplier#04|15|787-7479|4641.08|riously eve..

upplier# 1|21-151-690-3663|-283.84].
ly... 6] lier#06|14|24-696-997-
69|1365. inal...

«’]{ointers to attributes

NationKey Name
10
135 7 9111315

N buckers —
Adjust to queries = progressively cheaper access -

Frequency

CI I

PostgresRaw in action

Setting: 7.5M tuples, 150 attributes, 11GB file
Queries: 10 arbitrary attributes per query, vary selectivity

~ 7000 ~ 4806
1800 - Q20 =~ Q19 =~ Q18
Ql7 =Qle m=mQl5
1600 - Ql4 m®mQl3 m=mQl2
mQll mQl0 mQ9
- 1400 - mQ8 ®mWQ7 mQ6
< mQ5 ®mQ4 mQ3
< 1200 - mQ2 m®mQl ~Lload
Q
£ 1000 -
)
C
O 800 -
=
0
S 600 - \
X [
X E—
400 - \
00 \ \
" AN N

Data-to-insight time halved with PostgresRaw
Per query performance comparable to traditional DBMS

T o
Summary of PostgresRaw

e Query processing engine over raw data files
e Uses user queries for partial data loading and tuning
e Comparable performance to traditional DBMS

IMPACT
e Enables timely data exploration with 0 initialization
e Decouples user interest from data growth

11

N o
Outline

e Improve predictability of response time

— Data-driven adaptation

12

T 1
Index: with or without?

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

1000 r 400

Bl \With indexes
100 - === Without indexes

(log scale)

Normalized exec. time
[N

0.1 NN < N O N 00 O O
deddo'o'ddd&|

TPC-H Query
Performance hurt after tuning 13

NN <
—
g gdad

Ql1l
Qlé6
Q18
Q19
Q21
Q22

CIr
Access path selection problem

S Index Scan
Re-optimization
[MID’98, POP’04, RIO’05, BOU’14] .
£l = :
c O -
o m .
o= o
E & . Full Scan
£ .
% = RISK .
Ll e :
o -
o .
0 Estimated Selectivity Actual 100%

Statistics: unreliable advisor
Re-optimization: risky 14

(I
Quest for predictable execution

Index Scan

n
, e g]

Aredictable Execution

- Full Scan
RISK .

Selectivity 100%

Execution time

pZ

0

Removing variability due to (sub-optimal) choices :

N 1 o
Smooth Scan

Morph between Index and Sequential Scan
based on observed result distribution

16

- (j

Morphing mechanism
Modes:

1. Index Access: Traditional index access
2. Entire Page Probe: Index access probes entire page
3. Gradual Flattening Access: Probe adjacent region(s)

— INDEX
\\//
v /'/ HEAP
. ; PAGES

Mode 1 Mode2 Mode3

17

'
Morphing policy

e Selectivity Increase -> Mode Increase SEL_region >= SEL_global
SEL region < SEL global

e Selectivity Decrease -> Mode Decrease

~y ":JL ‘ ~~ .
\:~~).\~~\ ~~~~~ X: Page with result

N, ‘~‘~\‘:~~~ S~ SR: Region selectivity
N
SG: Global selectivity

P PAGES '\ NSy eIt .
XIXIXIX[| X[XIX E IXIX] IX XIXIXIX

B - T —

HE

~ ~
N y

|«

Region snooping = Data-driven adaptation

- (j

Smooth Scan in action
Setting: Micro-benchmark, 25GB table, Order by, Selectivity 0-100%

Execution time (sec)
(log scale)

100000

10000

1000

100

10

1

0.1

=+=Full Scan

-==|ndex Scan
Sort Scan

=*=Smooth Scan

O 0.001001 01 1 20 50 75 100
Selectivity(%)

Near-optimal over entire selectivity range .

N o
Summary of Smooth Scan

e Statistics-oblivious access path
e Uses region snooping to morph between alternatives
e Near-optimal performance for all selectivities

IMPACT
e Removes access path selection decision

e |[mproves predictability by reducing variability in
guery execution

20

T 1
Outline

e Minimize data-to-insight time

— Workload-driven adaptation

e Improve predictability of response time

— Data-driven adaptation

e Reduce analytics cost

— Cold storage & hardware-driven adaptation

21

CIr |

Proliferation of cold data

“80% enterprise data is cold with 60% CAGR” [Horison, 2015]
“cold data: incredibly valuable for analysis” [Intel, 2013]

Cold Storage Devices (CSD) to the rescue

Active disks
J/l/
Latency ~10sec
M

Al Power one disk

N
NI

Latency ”@

Cool one disk

PB-size storage at cost ~ tape and latency ~ disks

VN

- (j
CSD in the storage tiering hierarchy

ns WS ms sec min hour
Data Access Latency

23

CIr |
CSD in the storage tiering hierarchy

Tiers
.
I
: SSD 295 I
I 15k RPM Performance 1
! HDD :
e e T T .
I 7200 $S |
: RPM Capacity !
: HDD .
7

ns s ms sec min hour
Data Access Latency

«—?

>

Can we shrink tiers to reduce cost? .

CIr |
CSD in the storage tiering hierarchy

e Tiers __________.
$5 1
: 15k RPM Performance 1
! HDD :
b--- vt B .
| 7200 SS |
: RPM Capacity ! D ?
| HDD |
W
ns s sec min hour

Data Access Latency

Can we shrink tiers to reduce cost? .

CIr |
CSD in the storage tiering hierarchy

Tiers Storing 100TB of data
vy il 100 - [Horison, 2015]
,-SSD $SS "
! ! 350 :
| TSk RPM Performance : I
l HDD . '
, _ - / , y 300 1$159,641
V)
250 !
/ 8 v
O 200
—
2 150
CSD -
3 100
O
/ 50
0
% % Trad. CSD
ns s ms sec min hour 3-tier 2-tier

CSD offer significant cost savings (40%)
But ... can we run queries over CSD? 2

N 1 o
Query execution over CSD

Setting: virtualized enterprise datacenter, clients: PostgreSQL , TPCH 50, Q12,
CSD: shared, layout: one client per group

> [%€ csp
Q
£ 4 | = HDD
=
CA
O o
=% 3
@ S
v S 2 -
U X
QDV
(O 1 -
Q
>
<

0

1 5

Numl%er of cli3ents (grgups)
Lost opportunity: CSD relegated to archival storage

CIr
Skipper to the rescue

Multi-way joins: \
Opportunistic execution
[031] [Dé\trlggered upon data arrival

T ey Mt ety vl)
1. [1/0 scheduter OPECVERUPMaPY, - cache @

Virtualized enterTf]

VM1 VM2

) ————| » |Management 1 !
!
\ I l /__/ \KT‘ Al 31 C1 \/
"Novel ranking algorithm: Progress driven caching:
Balances access efficiency Favors caching of objects to
across groups and fairness \maximize query progress P

_across clients)

28

T o
Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12,
CSD: shared, layout: one client per group

> T <« PostgreSQL on CSD
g 4 | = PostgreSQL on HDD
) Skipper
O O 3 -
v 0
NS
QO 2 r
Q0 i
C =
g 1 + ?n____M
<
0)

1 2 3 4 5
Number of clients (groups)

Approximates HDD-based capacity tier by 20% avg.

'
Summary of Skipper

e Efficient query execution over CSD with:
1. Rank-based |/O scheduling
2. Out-of-order execution based on multi-way joins
3. Progress based caching policy

e Approximates performance of HDD-based storage tier

IMPACT

e Cold storage can reduce TCO by shrinking storage hierarchy
e Skipper enables data analytics-over-CSD-as-a-service

30

- (j

Thesis contributions

Minimize data-to-insight time
— Workload-driven adaptation
— Skip loading, tune as a byproduct of query execution

Improve predictability of response time

— Data-driven adaptation
— Remove access decisions a priori, transform gradually

Reduce analytics cost

— Cold storage & hardware-driven adaptation
— From plan pull-based to hardware push-based execution

Uncertainty cured with adaptivity
Thank you!

