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Big data proliferation

The Digital Universe: 50-fold Growth from the Beginning of
2010 to the End of 2020

40,000

”Big data is when the current technology does not enable users

to obtain timely, cost-effective, and quality answers to data-driven
questions. “ [Steve Todd, Berkeley]

Technology follows Moore’s Law T 16,000
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* “The Digital Universe in 2020: Big Data, Bigger Digital Shadows, T “Trends in big data analytics“, 2014, Kambatla et al
and Biggest Growth in the Far East”, 2012, IDC 2
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What business analysts want
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Thesis statement

As traditional DBMS rely on predefined assumptions
about workload, data and storage, changes cause
loss of performance and unpredictability.

Insight
Query execution must adapt at three levels

(to workload, data and hardware) to stabilize and
optimize performance and cost.
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Outline

e Minimize data-to-insight time
— Workload-driven adaptation [SIGMOD’12, VLDB’12, CACM’15]

e Improve predictability of response time
— Data-driven adaptation [DBTest’12, ICDE’15]

 Reduce analytics cost
— Cold storage & hardware-driven adaptation [VLDB'16]
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Outline

e Minimize data-to-insight time

— Workload-driven adaptation

e Improve predictability of response time

— Data-driven adaptation

e Reduce analytics cost

— Cold storage & hardware-driven adaptation
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Data-to-insight time

Traditional query stack Raw data querying stack
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Optimize raw data querying stack

Raw data querying stack
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PostgresRaw: NoDB from idea to practice

Pointers to end of tuples

1. Positional indexing

1|Supplier#01|17|335-1736|5755.94 |each slyly... //

2| Supplier#02|5|861-2259|4032.68| slyly bold...
3|Supplier#03|1|516-1199|4192.40|blithely...
upplier#04|15|787-7479|4641.08|riously eve..

upplier# 1|21-151-690-3663|-283.84].
ly... 6] lier#06|14|24-696-997-
69|1365. inal...

«’]{ointers to attributes
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PostgresRaw in action

Setting: 7.5M tuples, 150 attributes, 11GB file
Queries: 10 arbitrary attributes per query, vary selectivity
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Data-to-insight time halved with PostgresRaw
Per query performance comparable to traditional DBMS
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Summary of PostgresRaw

e Query processing engine over raw data files
e Uses user queries for partial data loading and tuning
e Comparable performance to traditional DBMS

IMPACT
e Enables timely data exploration with 0 initialization
e Decouples user interest from data growth
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Outline

e Improve predictability of response time

— Data-driven adaptation

12
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Index: with or without?

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes
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Access path selection problem

S Index Scan
Re-optimization
[MID’98, POP’04, RIO’05, BOU’14] .
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Quest for predictable execution

Index Scan
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Removing variability due to (sub-optimal) choices :
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Smooth Scan

Morph between Index and Sequential Scan
based on observed result distribution

16
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Morphing mechanism
Modes:

1. Index Access: Traditional index access
2. Entire Page Probe: Index access probes entire page
3. Gradual Flattening Access: Probe adjacent region(s)
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Morphing policy

e Selectivity Increase -> Mode Increase SEL_region >= SEL_global
SEL region < SEL global

e Selectivity Decrease -> Mode Decrease

~y ":JL ‘ ~~ .
\:~~ ).\~~\ ~~~~~ X:  Page with result

N, ‘~‘~\‘:~~~ S~ SR: Region selectivity
N
SG: Global selectivity

P PAGES '\ NSy eIt .
XIXIXIX[ | X[XIX E IXIX] IX XIXIXIX

B - T —

HE

~ ~
N y

|«

Region snooping = Data-driven adaptation
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Smooth Scan in action
Setting: Micro-benchmark, 25GB table, Order by, Selectivity 0-100%

Execution time (sec)
(log scale)
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Near-optimal over entire selectivity range .
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Summary of Smooth Scan

e Statistics-oblivious access path
e Uses region snooping to morph between alternatives
e Near-optimal performance for all selectivities

IMPACT
e Removes access path selection decision

e |[mproves predictability by reducing variability in
guery execution

20
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Outline

e Minimize data-to-insight time

— Workload-driven adaptation

e Improve predictability of response time

— Data-driven adaptation

e Reduce analytics cost

— Cold storage & hardware-driven adaptation

21
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Proliferation of cold data

“80% enterprise data is cold with 60% CAGR” [Horison, 2015]
“cold data: incredibly valuable for analysis” [Intel, 2013]

Cold Storage Devices (CSD) to the rescue

Active disks
J/l/
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PB-size storage at cost ~ tape and latency ~ disks
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CSD in the storage tiering hierarchy

ns WS ms sec min hour
Data Access Latency
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CSD in the storage tiering hierarchy

Tiers
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Can we shrink tiers to reduce cost? .
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CSD in the storage tiering hierarchy
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Can we shrink tiers to reduce cost? .
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CSD in the storage tiering hierarchy

Tiers Storing 100TB of data
vy il 100 - [Horison, 2015]
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CSD offer significant cost savings (40%)
But ... can we run queries over CSD? 2
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Query execution over CSD

Setting: virtualized enterprise datacenter, clients: PostgreSQL , TPCH 50, Q12,
CSD: shared, layout: one client per group
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Skipper to the rescue

Multi-way joins: \
Opportunistic execution
[031] [Dé\trlggered upon data arrival
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Skipper in action

Setting: multitenant enterprise datacenter, clients: TPCH 50, Q12,
CSD: shared, layout: one client per group
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Approximates HDD-based capacity tier by 20% avg.
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Summary of Skipper

e Efficient query execution over CSD with:
1. Rank-based |/O scheduling
2. Out-of-order execution based on multi-way joins
3. Progress based caching policy

e Approximates performance of HDD-based storage tier

IMPACT

e Cold storage can reduce TCO by shrinking storage hierarchy
e Skipper enables data analytics-over-CSD-as-a-service

30
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Thesis contributions

Minimize data-to-insight time
— Workload-driven adaptation
— Skip loading, tune as a byproduct of query execution

Improve predictability of response time

— Data-driven adaptation
— Remove access decisions a priori, transform gradually

Reduce analytics cost

— Cold storage & hardware-driven adaptation
— From plan pull-based to hardware push-based execution

Uncertainty cured with adaptivity
Thank you!



