
Machine learning and
databases

Renata Borovica-Gajic
renata.borovica@unimelb.edu.au
http://renata.borovica-gajic.com/

Friends or foes?

Databases = fast retrieval

2

Database System
(DBMS)

select val from sales
where id = max;

Results

Modern applications challenge status quo

0.5 sec

Machine Learning (ML) to the rescue

Modern applications are challenging

3
Photos credit: Bloomberg, Stock market°, Atlas experiment, CERN*, Strato Data Centre, cloudˆ

Properties:
• Ever growing data
• Ad hoc data exploration
• Multi-tenancy

Challenges:
• Complex optimization problems
• Analytical models fail

Why now?

Can adjust beyond history Free telemetry (features)

Computational power

DBMS needs and ML capabilities = perfect match 4

Are there real use cases?

Plenty! Performance tuning an obvious choice

0.1

1

10

100

1000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
14

Q
16

Q
18

Q
19

Q
21

Q
22

N
or

m
al

ize
d

ex
ec

.
tim

e
(lo

g
sc

al
e)

TPC-H Query

Tuned
Original
PDTool
Without indexes

Setting: TPC-H, SF10, DBMS-X, Tuning tool (PDTool) 5GB for indexes

400

[VLDBJ’18, ICDE’15, DBTest’12]

5

Analytical modeling is hard!

Cause for sub-optimal plans

6

Cardinality errors

Order of magnitude more tuples

Cost model

Wrong decision of cost model

Part

Part
Index
scan

Table
lookup

Estimated:
305K

Actual:
298K

…

Lineitem

Lineitem

Index
scan

Table
lookup

Estimated:
6K

Actual:
3.2M

…

Part

Table
scan

Nested
loop join

Actual:
108K

Estimated:
192K

Index tuning under looking glass

DBA

Physical
Design

Tool

DBMS
Query

Optimizer

“What if”

Estimated
benefit

Representative
Workload

Broken pipeline….

Workloads
ad hoc

Estimates
unreliable

7

Recommended
indexes

(M)Learning to the rescue

8

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

Q
15

Q
16

Q
17

Q
18

Q
19

Q
20

Q
21

Q
22

N
or

m
al

ize
d

ex
ec

ut
io

n
tim

e

TPCH Query

Series1MAB Without indexes_

Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

3x Speed up vs. previous 22x slowdown

Outline
• Performance tuning with MAB

• Lightweight learned indices

• Critical view on learning-based algorithms

9

[ADC’20]

[ICDE’21, ICDM’21]

Outline
• Performance tuning with MAB

• Lightweight learned indices

• Critical view on learning-based algorithms

10

[ADC’20]

[ICDE’21, ICDM’21]

Learning with Multi-armed bandits (MAB)

11

• Pull an arm (slot machine) observe a reward (win/lose)
• Explore vs exploit
• Find a sequence of arms to maximize reward
• Many variants, but C2UCB most interesting

Optimism in the face of uncertainty

Index tuning with MAB (C2UCB)

12Safety guarantees with fast convergence

[ICDE’21]

• UCB guarantees to converge to optimal policy
• C (contextual) learns benefit of arms without pulling them
• C (combinatorial) pulls a set of arms per round given constraints

DBA

DBMS
Query

Optimizer

“What if”

Estimated
benefit

Observe
Workload

Recommended
indexes

MAB
Try arms (index)
Observe reward

MAB in action

13

Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets
static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds

Thousands

MAB robust against complex unpredictable workloads
and skew

0
5

10
15
20
25
30
35
40

To
ta

l W
or

kl
oa

d
Ti

m
e

(s
ec

)

No Index
PD Tool
MAB

Workload

SSB TPC-H TPC-H
Skew

TPC-DS IMDb

STATIC

0
5

10
15
20
25
30
35
40
45

To
ta

l W
or

kl
oa

d
Ti

m
e

(s
ec

)

SSB TPC-H TPC-H
Skew

TPC-DS IMDb

Thousands AD HOC

[ICDE’21]

MAB in action: Zoom in TPC-DS

14Lightweight, yet effective

Setting: TPC-DS, static vs ad hoc queries, MAB vs PDTool, 25 rounds

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25

To
ta

l T
im

e
Pe

r R
ou

nd
 (s

ec
)

Round Number

NoIndex

PDTool

MAB

STATIC AD HOC

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20 25

To
ta

l T
im

e
Pe

r R
ou

nd
 (s

ec
)

Round Number

[ICDE’21]

Dealing with complexity (HTAP)

15

0

2000

4000

6000

8000

10000

12000

14000

N
oI

nd
ex

PD
To

ol
M

AB

N
oI

nd
ex

PD
To

ol
M

AB

N
oI

nd
ex

PD
To

ol
M

AB

N
oI

nd
ex

PD
To

ol
M

AB

N
oI

nd
ex

PD
To

ol
M

AB

N
oI

nd
ex

PD
To

ol
M

AB

0:1 1:1 2:1 3:1 4:1 5:1

To
ta

l W
or

kl
oa

d
Ti

m
e

(s
ec

)

Transactional to Analytical Ratio (TAR)

Setting: CH-BenCHmark under static workloads, MAB vs. PDTool, 25 rounds

MAB adapts to complex environments

[under submission]

Dealing with complexity (indexes & views)

16

Setting: indexes & mat. views, dynamic workloads, MAB vs. PDTool, 25 rounds

MAB adapts to heterogenous data structures

[under submission]

But isn’t exploration too expensive?

Setting: TPC-H benchmark 10GB, 5 queries, 25 rounds static

(Inexpensive) warm up reduces exploration cost

Cutting to the chase with warm bandits
[ICDM’21]

75

80

85

90

95

100

1 5 9 13 17 21 25

Ti
m

e
pe

r r
ou

nd
 (s

ec
)

Round

cold start
warm start

18

Performance tuning with MAB

• MAB is a lightweight solution for physical design tuning
• C2UCB enables exploration without pulling all arms
• Safety bounds guarantee convergence to optimal choice

(in hindsight)
• MAB successfully deals with tuning tools’ stumbling

blocks (optimizer’s misestimates, unpredictable
workloads, HTAP, heterogenous data structures)

• Up to 96% improvement and 35% on average compared
against a commercial tuning tool

19

Summary

Outline
• Performance tuning with MAB

• Lightweight learned indices

• Critical view at learning-based algorithms

20

[ADC’20]

[ICDE’21, ICDM’21]

Mathematical view on indexing
Position Product Price

(Key)
1 Product A 100

2 Product X 161

3 Product L 299

4 Product D 310

5 Product G 590

An index is a function 𝒇𝒇:𝑼𝑼 ↦ 𝑵𝑵 that takes a key
and returns its position.

0
1
2
3
4
5
6

0 200 400 600 800

Ke
y

po
sit

io
n

Price

F(key) = Indexing Function on Price
I(price)

Keys form monotonically increasing CDF 21

So... we can build a model to predict them!

Neural
Networks

Polynomial
Models

𝒇𝒇 𝒙𝒙 ≈ ∑𝒂𝒂𝒊𝒊𝒙𝒙𝒊𝒊

0
1
2
3
4
5
6

0 200 400 600 800

Ke
y

po
sit

io
n

Price

F(x) = Indexing Function

Kraska et al.[SIGMOD’18]

key position key position

22

Learned index as a function approximation
[ADC’20]

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≈ 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛
For a chosen degree 𝑛𝑛

𝛼𝛼𝑖𝑖 =
𝑝𝑝𝑖𝑖
𝑁𝑁
�
𝑘𝑘=0

𝑁𝑁−1

𝑓𝑓 − cos
𝜋𝜋
𝑁𝑁

𝑘𝑘 +
1
2

⋅ cos
𝑖𝑖𝑖𝑖
𝑁𝑁

𝑁𝑁 + 𝑘𝑘 +
1
2

𝑝𝑝0 = 1,𝑝𝑝𝑘𝑘 = 2 (if 𝑘𝑘 > 0)

Coefficients given by Discrete Chebyshev Transform

Need to store only coefficients… 23

Function interpolation for learned indices

24

Model Type Average query time (nsec)
Creation time (sec)

Normal LogNormal Uniform

B-Tree 31.5 46.0 56.3 34.6

Function interpolation
(Chebyshev Polynomials)

62.1 751 40.2 3.8

Neural Network Model 402 1100 516 1 hour

Model Type Size of Database (in Entries)

500k Entries 1M Entries 1.5M Entries 2M Entries

B-Tree 33.034 MB 66.126 MB 99.123 MB 132.163 MB

Neural Network 210.73 kB 210.73 kB 210.73 kB 210.73 kB

Chebyshev Polynomials 1.8kB 1.8kB 1.8kB 1.8kB

30-90% faster at querying than NN, 99% space saving

[ADC’20]

Function interpolation to the rescue

• Use of simple function interpolation instead of
NN for learned index approximation

• Benefits:
– No hyperparameter tuning
– Fast creation time (10x)
– Higher compression rate (99% space saving)

25

Summary

Outline
• Performance tuning with MAB

• Lightweight learned indices

• Critical view on learning-based algorithms

26

[ADC’20]

[ICDE’21, ICDM’21]

Properties for future DBMS adoption

Lightweight, yet (provably) accurate is key

• Small computational overhead
— Pre-training important, yet often ignored
— Resources plus time invested

• Ability to adapt and generalize
— See the past, adjust to unpredictable future
— Train on development port to product environment
— Transfer learning critical

• Safety guarantees required
— Prove it does the right thing
— Explain the output (decisions made)

27

Numerous opportunities for innovation

• ML within the DB Engine
– Physical database design
– Learned vs traditional data structures
– Configuration tuning
– Resource management
– Query optimization

• Innovation in ML domain
– Hierarchical MABs (infinite arms)
– Pretraining for faster convergence (warm start)
– Lightweight transfer learning

28

Learning DBMSs for efficient data analysis

Where to go from here

Queries

Data
Fast response

DBMS System

29

“It is not the strongest species that survive, nor the most intelligent, but the ones
most responsive to change.” Charles Darwin

Learn
Adapt
Refine

Hardware

[SIGMOD’12]
[VLDB’12]
[CACM’15]
[ICDE’21]
[ICDM’21]

[DBTest’12]
[ICDE’15]
[VLDBJ’18]
[ADC’20]

[VLDB’16]
[ADMS’17]
[CACM’19]

Thank you!

Special thanks to

30

Malinga
Perera

Bastian
Oetomo

Ben
Rubinstein

Questions?

THANK YOU

31

BACKUP

32

MAB against other baselines

33

Setting: TPC-DS benchmark 10GB, 25 rounds static, total time in min

	Machine learning and databases
	Databases = fast retrieval
	Modern applications are challenging
	Why now?
	Are there real use cases?
	Cause for sub-optimal plans
	Index tuning under looking glass
	(M)Learning to the rescue
	Outline
	Outline
	Learning with Multi-armed bandits (MAB)
	Index tuning with MAB (C2UCB)
	MAB in action
	MAB in action: Zoom in TPC-DS
	Dealing with complexity (HTAP)
	Dealing with complexity (indexes & views)
	But isn’t exploration too expensive?
	Performance tuning with MAB
	Outline
	Mathematical view on indexing
	So... we can build a model to predict them!
	Learned index as a function approximation
	Function interpolation for learned indices
	Function interpolation to the rescue
	Outline
	Properties for future DBMS adoption
	Numerous opportunities for innovation
	Where to go from here
	Special thanks to
	Questions?
	BACKUP
	MAB against other baselines

