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Data proliferation
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Data proliferation

Global data generated annually*
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“The world’s most valuable resource is no longer oil, but data”
[The Economist, 2017]
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Data proliferation

Global data generated annually*

“The world’s most valuable resource is no longer oil, but data”
[The Economist, 2017]

= m

“IDC's 2024 predictions for the future of digital infrastructure point
to greater emphasis on fit-for-purpose platforms and services... By
2025, 70% of companies will invest in alternative computing
technologies to drive business differentiation by compressing time
to value of insights from complex data sets... ”

T[IDC FutureScape, 2024]

* Amount of data generating daily (Exploding Topics, 2024) T “IDC FutureScape, 2024: Worldwide Future of Digital
Infrastructure 2024 Predictions” 4
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Need for efficient data exploration

Mining data to uncover patterns, and gather insights

f Consra"’u’afions,
i€ only took you K

vy jolyon.co.uk

T https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598 5
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Need for efficient data exploration

Mining data to uncover patterns, and gather insights

FN

Conacatvlations,

“Recently, the brightest and fastest-growing supermassive black hole
of the past 9 billion years was discovered. The researchers have
mentioned that "people have been looking for these kinds of objects
since the 1960s", and "somehow, this one seemed to have escaped
all our previous efforts to find it"”

TTABC News, 2022]

sy jolyon.co.uk

T https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598 6



From data to insight with databases

typical workflow...
SQL Query 1 Time
. . A
Select max(a7), |n5|ght querying
avg(al2) from A join 'T‘ B
B where A.al > 7 and —
—
X results v
a7 | al2 data

22 1 a3s Database

Database goal: minimize data to insight time

7
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How do we minimize data to insight time?
Physical design tuning...

Indexes

Observed Materialized vi
aleridlizeaqa views

Workload

ﬁ MV (NatKey, Name)

Supplier#01

DBA

Supplier#02

Caching/prefetching

Page | | Page



Data exploration properties

e Users are domain experts ¢
but not DB(A) experts >

e Ad hoc queries in search P%
of unknown insights FS

e Need for interactivity
and adaptivity

Credit: generated with Gemini




CE, MeLsourne
in data exploration
How do we minimize data to insight time?

Indexes
Ad hoc
workloads 2%
Materialized views
MV (NatKey, Name)

Supplier#01

User

Supplier#02

Caching/prefetching

Page | | Page
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Research gap

Current databases cannot offer support for
(omnipresent) data exploration use cases where users
issue unpredictable queries in search of unknown
insights.

Solution

Custom-tailored (Al-driven) databases can
automatically learn from user interactions with the
database and optimize its performance.

11



Outline

e Select physical design structures

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]
e Tune the layout of physical design structures
[SIGMOD’23, ICDE’24]

e Prefetch data ahead of time
[VLDB’24]

Indexes
A
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Caching/prefetching

Pae Page
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Physical design (PD) tuning is hard

[VLDBJ'18, ICDE’15, DBTest’12]

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

1000 400

B \With indexes
100 - === Without indexes

(log scale)

=

Normalized exec. time

0.1

3383885838
TPC-H Query
And results can be unpredictable :

N N <
— o
g odag

Ql1l
Qle
Q18
Q19
Q21
Q22



Physical designh tuning under looking glass

Workloads Estimates
ad hoc unreliable

Workload Design
Estimated

T Tool
<_Reco. nd.e_d benefit
DBA  Physical design

Query
Optimizer

Broken pipeline....
Machine learning to the rescue
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Embarking the (M) learning train...

Google Scholar

Articles

Any time

Since 2024
Since 2023
Since 2020

Custom range.
Sort by relevance
Sort by date
Review articles

include patents
v/ include citations

Create alert

database tuning with machine leamning n

Automatic database management system tuning through large-scale machine
learning

D Van Aken, A Pavio, GJ Gordon, B Zhang - Proceedings of the 2017 ..., 2017 - dl.acm.org

... to tune new DBMS deplgvments. The crux of our approach is to frain machine learning (ML) ...
knobs. (2) magg#feviously unseen da¥gbase workloads fo known workloads, so that we can ...

Yr Save U9(Cite Cited by 636 Relgled articles  All 25 versions

An inquiry into machine learning-based automatic configuration tuning services
on real-world database management systems

D Van Aken, D Yang, S Brillard, A Fiorino... - Proceedings of the ..., 2021 - dl.acm.org

.. In this study. we conducted a thorough evaluation of machine learning-based DEMS knob

tuning methods with a real workload on an Oracle installation in an enterprise environment

Y7 Save 99U Cite Cited by 68 Related articles Al 12 versions

Automatic database index tuning using machine learning

M Valavala, W Alhamdani - 2021 6th International Conference .... 2021 - ieeexplore.ieee.org

.. used to improve the database performance by ensuring the swift data ... tuning by using
Machine Learning (ML) algorithms will open up new research avenues to address the database ...
¢ Save 90 Cite Cited by 8 Related articles

Qtune: A query-aware database tuning system with deep reinforcement
learning

G Li. X Zhou. S Li, B Gao - Proceedings of the VLDB Endowment, 2019 - dl.acm.org

... OtterTune is a tuning system using traditional machine learning model. For PostgreSQL
we have invited a DBA with 8 years of working experience at Huawei; for MySQL, we invited a ...
Y7 Save 99 Cite Cited by 211 Related articles  All 11 versions

Towards a general framework for ml-based self-tuning databases

T Schmied, D Didona, A Doring, T Parnell... - ... on Machine Learning .... 2021 - dl.acm.org

.. Machine learning approaches. We now introduce two ameong the most prominent ML
approaches to database tuning, which are implemented by the solutions we investigate in this ..
Yr Save 99 Cite Cited by 11 Related articles  All 4 versions

Identifying new directions in database performance tuning
D Colley, C Stanier - Procedia computer science, 2017 - Elsevier

.. approaches in the current database environment: this paper also ... as pattern classification
using machine learning. The rest of ... app hes to datab tuning and Section 4 ...

vr Save 99 Cite Cited by 20 Related articles Al 7 versions

An end-to-end automatic cloud database tuning system using deep
reinforcement learning
J Zhang, Y Liu, K Zhou, G Li, Z Xiao, B Cheng... - Proceedings of the ..., 2019 - dl.acm.org

.. Traditional machine learning methods rely on massive training samples to train the model
while we adopt the try-and-error method to make our model generate diversified samples and ...

[PDF] acm.org

[PDF] cmu.edu

[PDF] ieee.org

[PDF] cam.ac_uk

[PDF] arxiv.org

[PDF] sciencedirect.com

[PDF] tsinghua edu.cn
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Multi- armed bandlts (MAB) for PD tuning

_FLATINON _
L1500 ;

* Pull an arm (slot machine) observe a reward (win/lose)

 Explore vs exploit

* Find a sequence of arms to maximize reward

* Many variants, but C2UCB most interesting
Optimism in the face of uncertainty

21



Index tuning with Multi-Armed Bandits MAB

(CZUCB) [ICDE’21]

Workload

Try arms (index)
Recommended IRSEACREVEIL

Query
Optimizer

e UCB guarantees to converge to optimal policy (effectiveness)
e C (contextual) learns benefit of arms without pulling them (efficiency)
e C (combinatorial) pulls a set of arms per round given constraints (efficiency)

Safety guarantees with fast convergence

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic. 23
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MAB under looking glass... [ cperan

SELECT A.C1 FROM A
»/ WHERE A.C2 =5 AND Arms
A.C3=6
‘ IX1
(1) New (Learns) 10sec gain, 20sec
(5) Query creation time, 30MB size X2
Returning
Query é (3) Identify Arms y
(2) Query details & =~ tm o
Execution time before aD
tunning IX6
. Bandit tuner
(6) Creation time| Execution time IX7
J w/ Index
A (4) Materialize IX6

Automated tuning with provable guarantees

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with

safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic. “
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MAB to the rescue

Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

1.2 -
B MAB — Without indexes

=
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TPCH Query

3x Speed up vs. previous 22x slowdown .
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MAB in action [ICDE’21]
Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets
static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds

Thousands STATIC Thousands AD HOC

40 45
§ 35 =Nolndex g 40 -
- PD Tool <L 35
GEJ 30 Bl VAB o
= e 30
— 25 = 5
go)
G ©
g% S 20
< 15 < qc
2 o
% 10 = 10
() —_—
5 > g S | |[ n
=0 ~ 0

SSB  TPC-H SSB  TPC-H IMDDb

Ske
Workload Workload

MAB robust against complex unpredictable workloads
and skew 27
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MAB for Ijex Tuning: An Example
[ 4 [ 4
PhAysgical Degign
SELECT A.C1 FROM A
WHERE A.C2 = 5 AND Arms
A.C3=6
‘ IX1
(1) New (Learns) 10sec gain, 20sec
(5) Query creation time, 30MB size IX2
Returning
Query é (3) Identify Arms y
(2) Query details & =~ tm o
Execution time before aD
tunning — MV1
Bandit tuner
(6) Creation time, Execution time w/
MV2

Index

(4) Materialize IX6

_____________________________________________________________________________________________________________

De5|gn too complex too Iarge action space =«



HMAB: Hierarchical Multi-armed Bandit

Architecture for Integrated Physical Design Tuning
| [VLDB’22]

[
[
[
l
I Physical Design
_:,- Configuration
) (Indexes +

Views)

L1 Bandits

Smaller bandits for faster convergence — divide and conquer
Knowledge sharing via central bandit — global optimality

[VLDB’22] HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design

Tuning. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic. 32
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HMAB in Action [VLDB’22]

Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad
hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views

Thousands Static Ad hOC

S50 - < 1000 ~y

o £

v - & _

040 - P 800

-

30 | £ 600 | i

O Ne] 2914.41

E 20 + © 400 r

Y ~

510 | H H S 200 | H (

= <=0 x—=pm x—=m x—=m © x—=e0 <—m xX—=0m x—=m

o v3g | W8 | W8« | W8« | © 002 | 39 | o8 | FoF

- 'SEE EEE E’EE EEE = SRS | S2s | S2s | B3s
oaT | oaT | oaT | oaT S5 | 65T | o5 | o5
= = = = = = = =
TPC-H | TPC-H | TPC-DS | IMDb TPC-H | TPC-H | TPC-DS| IMDb

Skew Skew

Up to 96% speed-up, and 67% on average
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Dealing with complexity (HTAP) TKDE23]

Setting: CH-BenCHmark under static workloads, MAB vs. PDTool, 25 rounds

14000
© 12000 n
8 _
o 10000
- ~ . = ]
* x) S & 8000
x1 x2 x3 x4 x5 x6 X7 x8 Uog:tae ©
= = 5 B T 6000 B
(i) =71,0) + 1.,0) % 4000
e J\f s N\ ;
1 |22 |3 [ |as |35 | 57| = fj‘;ﬂ‘;zd 5 2000
— x.0) >4 X, (1) —> ®) 0 = = = =
" 3122|382 3 |32
2 |2B=2| £ |28=3] £ |2¢=
o © a © o ©
=2 =z =z
0:1 1:1 2:1 3:1 4:1 5:1

Transactional to Analytical Ratio (TAR)

MAB with focused updates to support HTAP

New bandit flavor with better regret bounds

[TKDE’23] No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP
workloads with provable guarantees. M. Perera, B. Oetomo, B. Rubinstein, R. Borovica-Gajic. 37



MAB Summary

(H)MAB is a lightweight MAB solution for (integrated)
physical database design tuning

HMARB is the first learned solution to work in the
combined space of indices and views

(H)MAB successfully tackles tuning challenges: optimizer
misestimates, unpredictable and HTAP workloads

Up to 40% and 70% average improvement for integrated
view and index tuning under static and random settings
compared against a SOTA commercial tuning tool

Extensions: bandit warm up [ICDM’21], bandits under
latent reward scaling [ICDM’24]

41



Outline

e Select physical design structures
[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

e Tune the layout of physical design structures
[SIGMOD’23, ICDE’24]

e Prefetch data ahead of time
[VLDB’24]

Indexes

Caching/prefetching

Pae Page




Classic vs learned index layout

key
Classic B+ tree e —
[1,1002,31,713,11[3,31[6,717,2]7,4]8,1][9,1]9,2][9,6] sese [ax,bx]
LEAVES | el .
i Position \‘\\Position p05|t|0n

DATA

. (a)
Learned index
position

key Learned model

Pos = f (key)

Learned indexes promise lower memory footprint
and faster lookup

43
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(M) Learned indexes ...

Go gle Scholar learned index n

Articles

Any time

Since 2024
Since 2023
Since 2020
Custom range...

Sort by relevance
Sort by date

Any type

Review articles

include patenis
" include citations

& Create alert

The case for learned index structures
T Kraska, A Beutel. EH Chi, J Dean... - Proceedings of the 2018 ..., 2018 - dl.acm.org

.. The remainder of this paper is outlined as follows: In the next two sections we introduce the
general idea of leg w&i0g B-Trees as an example. In Section 4 we extend this ..
vr Save 99 ite Cited by 1125 RJ)ated articles Al 23 versions

ALEX: an updatable adaptive learned index

J Ding, UF Minhas, J Yu, C Wang, J Do, Y Li... - Proceedings of the ..., 2020 - dl.acm.org

.. on “learned indexes” has changed the way we look at the decades-old field of DEMS indexing.
.. In this paper. we present a new leamed index called ALEX which addresses practical ...

¥r Save U9 Cite Cited by 302 Related articles All 10 versions

Learned index: A comprehensive experimental evaluation
Z Sun. X Zhou. G Li - Proceedings of the VLDB Endowment, 2023 - dl.acm.org
.. of new learmed indexes for researchers. We compare state-of-the-art learned indexes in the
and provide findings to select suitable learned indexes under various practical scenarios. ...
Yr Save 99 Cite Cited by 24 Related articles Al 2 versions

Why are learned indexes so effective?
P Fermragina, F Lillo... - ... on Machine Learning, 2020 - proceedings.mir.press
.. This is especially known in the context of indexing data ... that learned indexes are provably

better than classic indexes, ... and time occupancy of those learned indexes. Our general resulf ...

Yr Save 99 Cite Cited by 44 Related articles All 15 versions 99

Related searches

learned index structures updatable leamed index
spatial learned index

learned index alex

learned index scheme in storage
learned index string keys

scalable learned index learned index lisa

RadixSpline: a single-pass learned index
AKipf, R Marcus, Avan Renen, M Stoian... - Proceedings of the third ..., 2020 - dl.acm.org

.. While this is a very promising result, existing learned structures are ... ), a learned index that
can be built in a single pass over the data and is competitive with state-of-the-art learned index ...
vr Save 90 Cite Cited by 183 Related articles All 6 versions

Cdfshop: Exploring and optimizing learned index structures
R Marcus, E Zhang, T Kraska - Proceedings of the 2020 ACM SIGMOD ..., 2020 - dl.acm.org
.. models (learned index structures) can achieve low lookup ... model indexes (RMIs), a type of

learned index structure. This ... of RMIs and why learned index struciures can greatly accelerate ...

vz Save 99 Cite Cited by 61 Related articles All 2 versions

[PDF] acm.org

[PDF] aCm.org

[pDF] vidb.org

[PDF] Mir.press

[PDF] acm.org

[PDF] aCm.org
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Are learned indexes disk ready?
[SIGMOD’23]

Normalized throughputs on the FB dataset

= FITing-tree

—— PGM

— B4-tree

— ALEX
—— LIPP

Balanced

Write-Heav Write-Only

Scan-Only

Read-Heavy ookup-Only

B+tree (still) the best choice when disk resident

[SIGMOD’23] Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design
Choices. H. Lan, Z. Bao, S. Culpepper, and R. Borovica-Gagjic.

45
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Where does time go?

[ICDE’24]
#blocks fetched (for reads) Latency breakdown (for writes)
W4 LOOkuD 501 Search (-
#Inner #Inner #Total # Total 10 lamm e
Nodes Blocks Blocks (L) |Blocks|(S)| Scan & | me stats
FITing-tree 5 3 4.2 5 =01
PGM 6 3.9 5.2 5.6 % 20 :
ALEX 77 65 81 106 . = -
LIPP 1.8(18.8) - 3 24 .
B+-tree 4 3 4 4.5 O ffMing-tree PGM Be-tree ALEX  LIPP
* Challenge 1: A learned index cannot * Challenge 2: Most learned
guarantee to reduce 1/O costs when indexes suffer from large
searching data on disk. insertion overheads.

[ICDE’24] A Fully On-disk Updatable Learned Index. H. Lan, Z. Bao, S. Culpepper,
R. Borovica-Gajic and Y. Dong.

46
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Design principles for effective on disk
learned index [ICDE’24]

Challenge 1. A learned
index cannot guarantee to
reduce I/O costs when
searching data on disk.

/ P1. Reducing the Tree Height of the Index
“—— P2. Model-based Operations (Search and Insert)

P3. Lightweight Structure Modification Operations
Challenge 2. Most learned
indexes suffer from large

insertion overheads. P5. Support Duplicate Index Keys

P4. Improve Scan Performance

AULID: an updatable learned index on disk
Simple Yet Effective

47
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AULID Index Layout

Metadata node

EEE]-O

Bring the best of both worlds

18



AULID Index Layout

Leaf Node Layer

el
eee )

49



AULID Index Layout

Leaf Node Layer

Leaf node ———---
Set the size equal to the block size

Sgg% THE UNIVERSITY OF
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AULID Index Layout

Leaf Node Layer

ELEE-O j— O j— .. <«{ EEE-0O

e
2
1
1
1

Data slot — store the indexed value

51



AULID Index Layout

Leaf Node Layer /‘ """ Empty slot — hold the new value

o0 - oin e .. < o0

52



AULID Index Layout

Leaf Node Layer

el
eee )

________

53
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AULID Index Layout

Leaf Node Layer

EEE-0 je EEED-O J— .. < EEE-O

Benefits

- Low overhead for scan operations in fetching the next item (P4).

54
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AULID Index Layout

Leaf Node Layer

EEE-0 je EEED-O J— .. < EEE-O

Benefits

- Low overhead for scan operations in fetching the next item (P4).

- Low insertion overhead and SMO overhead (P3).

55
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AULID Index Layout

Inner Node Layer

56



aggst THE UNIVERSITY OF

e MELBOURNE

AULID Index Layout

Inner Node Layer.

- Mixed inner node

4 mmmmmmmmmmmsmns - Can hold different slot types

i - Use a model to determine

: which slot to be accessed
T T ot

57
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AULID Index Layout

Inner Node Layer

Packed inner node

- Hold the pointer to the leaf
node and the maximum key
in the indexed leaf node

58



Sgg% THE UNIVERSITY OF
&, v+ MELBOURNE

AULID Index Layout

Inner Node Layer

Benefits

- Reducing the tree height of the index (P1).

60
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AULID Index Layout

Inner Node Layer

Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

61
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AULID Index Layout

Inner Node Layer

Benefits

- Reducing the tree height of the index (P1).
- Model-based operations (search and insert) (P2).

- Low SMO overhead in inner nodes (P3).

62
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AULID in action [ICDE’24]

mmmsm FTing-tree wwss PGM s Bt-tree = AJEX ~ = | PP == AULID

Balanced

Balanced

Read-Heavy
PLANET

Consistently outperforming baselines across a range of workloads
and data sets



AULID Learned Index Summary

 We identify the challenges when applying the learned
indexes on disk and propose new design principles

 AULID adopts the principles with the carefully
designed index layout and operations

* AULID significantly outperforms the SOTA across a
range of workloads and datasets

66



Outline

e Select physical design structures
[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

e Tune the layout of physical design structures
[SIGMOD’23, ICDE’24]

e Prefetch data ahead of time
[VLDB’24]

Indexes
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From data to rapid insights with
interactive data exploration

Select Image Source : © S055 | 2MASS

Hama |Help | Tutceial [Chart |List Explore |
Parameters

name Resolve

ra | 179.68929 |deg
dec 1|-0.454379( deg

opt
= o

QM

[179.68929 -0.45438)

Drawing options
| Grid
| Label
_| Photometnic objects
| Objects with spectra
| Invert Image
Advanced options
| APOGEE Spectra
| SDSS Outlines
| SDSS Bounding Boxes
| SDSS Flelds
| SDSS Masks
| SDSS Plates

Powered by Ciick, hold and drag to navigate!!

@ Quick Look
@ Explore
@ Recenter

@ Addto notes
@ Show notes

CNCC navimnata tAal T11

 Need for interactive data exploration with sub-second latency
* Fast retrieval of large amounts of (scientific) data

Support interactivity with hands-free semantics-driven prefetching
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Prefetching in the current landscape

[Prefetcher) Predict g,,.1 block access

No (cache Miss)
- Disk
Retrieve from
Yes (cache Hit) disk

M‘ L
Response J.Q"«

time

______ 1
A
Historical data
acgesses
BN DB |Find qn blocks
= s cached:

qn ) server

X| Not suitable for X| Work with block addresses: Not adaptive
SQL workloads No data semantics

69
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Prefetching as timeseries forecasting

Data semantics is important

There is usually an inter-dependency among values
stored in the data blocks accessed together

Prefetching —} time series forecasting

\[ Results observed from the queries in the previous time
.2 steps form the upcoming queries

70
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SeLeP Overview 500

(a) Block encoding Encoder Dencoder (b) Block partitioning

@ Encodin
E THH Preprocess ® 2
—>btb T P
. —> & O

1
1
1
1
o |
» e
... 4 1
bgiz' L t Y : Update gotIp querlesf Clay-based
Autoencoder ; Gats ’LRepartitioner
; 1
th; ) r
1
q

New
res? Sequence | partition par;tljt:ons
_n—> Block n generator enCOdings
DB encodings
A

k - candidate Prefetcher _p (enc(ai))izp

partitions Partition | "¢8¢,.,
selector

Partition manager

Prediction
model

(c) Semantic learning fine tuning
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Block encoding

* Block can contain hundreds of values

* Need a concise block representation which captures the distinctive
characteristics of the data
» Encode blocks into vectors and aggregate them to form query encodings

4 A sample data block )

(a) Block encoding Encoder Dencoder
@ r : D) .
I Preprocess () nc mg > g r type size
tb; 1 N ¢ p* >4 .
0,0 9 o @ 309 | 46 | 'star' | 2.85
b O O 31.4| 45 | 'star' | 1.86
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1

|

1

1

1

1

1

1

Autoencoder !

Hioetieoder : 30.7 | 24.2 | 'galaxy' [92.62
1
1
tb; r

|

I
m,,rg[r-) Encodes small

near min ™~ ¢ sizes
Block 91].12 :B

encodings
avg(g) J Mnsﬂ*;«() k} There are
\near max  stars Galaxies
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Block partitioning

Classification problem:

Having the sequence of last [ query encodings, predict and fetch

blocks that will be accessed next

Large dataset —} Substantial number of labels

Group blocks frequently accessed together into partitions

Previous Grofy

th,
tb,
resp bgbl 53522 bng tbg
01 (3} 04 (pibr th,

5 4

Updated G4y with [, =10

Graph partitioning on affinity graph
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Semantic Learning

e Learn partition access pattern from a sequence of query encodings
and fine tune the model with new workloads

Query encodings

k —Candidate Prefetcher — —— I E
partitions orttion Tésiﬂ Bredicion (enc(ai))i—n_i / T 0\
selector ——>  model I .89.21[.79.68.24
fine tuning — - 010101010
41131.33[19(81
enc(qy)
Encoder LSTM H iL :3 a 0(0[0]01{O0
| . O | g 71.43].65].:55.67
|2 - E | BE Yo B 01010 0 0
= | | - E—' L.J I:me.-JE 61118[.731.39161
S mJ ¢ W \en/C(qn A
Time Distributed Encoder Output
od od o d
., Ty, i’y Accessed partitions contain blocks

“2) with galaxies and high g average



SelLeP in Action
Setting: 16GB SDSS DRY7, prefetch size = k X 128 block, 4GB cache

[VLDB’24]

Queries: multi-table join SOL workloads

SDSS Birds
> 100 1 R . . 100 A A . .
3\, o
o 75 T 75 T . e
= v ——
e 59 4/9/ T 50 ——
e
T 25 - L=

1 10 20 30 40 1 10 20 30 40

Prefetching k Prefetching k

—e— SeleP 55— SGDP Naive  —A— Lookahead —— Rand-Readahead

95% average hit ratio, outperforming SOTA by 40%



I/O Reduction with SeLeP . .

Setting: 16GB SDSS DR7, prefetch size = k X 128 block, 4GB cache
Queries: multi-table join SOL workloads

()]
£1.0
|_

O 0.81

~

205
0 0.2
)

" 0.0-

505> grd°

—e— SeleP 55— SGDP Naive  —A— Lookahead —— Rand-Readahead

80% average 1/0O reduction, outperforming SOTA by 45%



S UNIVERSITY OF
E MELBOURNE

SelLeP Adaptivity [VLDB’24]

Setting: 16GB SDSS DRY7, prefetch size = k X 128 block, 4GB cache
Queries: Shifts at sequence number = {2000, 4000, 6000} with novel
guery templates and access to unseen data

Shift 1 Shift 2 Shift 3

1001 m ‘
/’_NNH \ 'w \ ‘ \'.'f\j
—~ 801 Cache w ' | * g1l
X warm-up |# |} JI
9 60 1 : ‘ :‘
3
40 1 \
% — SelLeP Naive 4
2041 — Lookahead —~ SGDP ,_P\L
--- Rand-Readahead
0 2000 4000 6000 8000 10000

Query sequence number

Graceful adaptation to unpredictable workloads



SeLeP Summary

Prefetching can substantially reduce I/O time, but
the existing SOTA prefetchers ignore data semantics
and cannot deal with ad hoc workloads

SelLeP can benefit all types of exploratory workloads
by leveraging data semantics

SelLeP improves hit ratio up to 40% and reduces |/O
time up to 45% compared to SOTA prefetchers

78
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Al-Powered Databases

https://ai-db-uom.github.io/
Custom-tailored (Al-driven) databases that automatically learn from user
interactions with the database to optimize its performance

Learn from .....

Physical design tuning

1. Queries [ICDF’21, ICDM’21, VLDB’23, TKDE’23]
[SIGMOD’12] . _ _ .
[CACM’15] . PD_ tuning via Multi-Armed Bandits
[ICDE’21] * Tailored for HTAP, ad hoc workloads
[ICDM’21] * Provable performance guarantees
[VLDB23] Learned Indexes

2. Data [ADC’20, SIGMOD’23, ICDE’24, VLDB’25]
[ICDE 1,5] * Updateable (on disk) learned indexes
[VLDBJ 18] . . : N )

j Refine * Indexing via function interpolation
[ADC’20] : .
) * Spatial learned indexes
[SIGMOD’23] @
[ICDE"24] Caching/prefetching

3. Harqlware Fast responses [DEBS'22, VLDB'24] |
[VLDB’16] * Semantics driven prefetching
[ADMS’17] * Tailored for (ad hoc) data exploration

[CACM’19]


https://ai-db-uom.github.io/
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Where to go from here?

Al-Powered Databases: From a passive data retrieval
provider to a co-pilot for insight discoveries

* \What makes some data

interesting?
» Measures of interestingness
> Novelty discovery
* Can we predict user intent?
» Long term and short-term goal
recognition
* Can we recommend queries

that lead to insights?

» Query formulation (LMs)
> From text to SQL and back

Credit: generated with Gemini 83




Special thanks to the Al-powered DB team

e My students/postdocs: e Collaborators:
— Malinga Perera — Benjamin Rubinstein
— Bastian Oetomo — Zhifeng Bao
— Hai Lan — Farhana Choudhury
— Farzaneh Zirak — Jianzhong Qi
— Guanli Liu — Lars Kulik
— David Adams — Nir Lipovetzky
— Lankadinee Rathuwadu — Christopher Leckie
— Dinuka de Zoysa — James Bailey

And many more (external) collaborators...
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https://renata.borovica-gajic.com/
https://ai-db-uom.github.io/
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