Al-powered Databases: From data deluge to rapid insights

Renata Borovica-Gajic

renata.borovica@unimelb.edu.au https://renata.borovica-gajic.com/

EPFL, IC Colloquium

Australian Government L'Oréal FWIS'23

Data proliferation

Global data generated annually*

* Amount of data generating daily (Exploding Topics, 2024)

∓ "IDC FutureScape, 2024: Worldwide Future of Digital Infrastructure 2024 Predictions"

Data proliferation

Global data generated annually*

"The world's most valuable resource is no longer oil, but data" [The Economist, 2017]

* Amount of data generating daily (Exploding Topics, 2024)

200

〒 "IDC FutureScape, 2024: Worldwide Future of Digital Infrastructure 2024 Predictions"

Data proliferation

Global data generated annually*

"The world's most valuable resource is no longer oil, but data" [The Economist, 2017]

"IDC's 2024 predictions for the future of digital infrastructure point to greater emphasis on fit-for-purpose platforms and services... By 2025, 70% of companies will invest in alternative computing technologies to drive business differentiation by compressing time to value of insights from complex data sets..."
^T[IDC FutureScape, 2024]

* Amount of data generating daily (Exploding Topics, 2024)

200

N

〒 "IDC FutureScape, 2024: Worldwide Future of Digital Infrastructure 2024 Predictions"

Need for efficient data exploration

Mining data to uncover patterns, and gather insights

Thttps://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598

Need for efficient data exploration

Mining data to uncover patterns, and gather insights

"Recently, the brightest and fastest-growing supermassive black hole of the past 9 billion years was discovered. The researchers have mentioned that "people have been looking for these kinds of objects since the 1960s", and "somehow, this one seemed to have escaped all our previous efforts to find it"" T[ABC News, 2022]

www.jolyon.co.uk

From data to insight with databases typical workflow...

Database goal: minimize data to insight time

How do we minimize data to insight time? Physical design tuning...

MELBOURNE

Data exploration properties

- Users are domain experts but not DB(A) experts
- Ad hoc queries in search of unknown insights
- Need for interactivity and adaptivity

Credit: generated with Gemini

in data exploration How do we minimize data to insight time?

Research gap

Current databases cannot offer support for (omnipresent) data exploration use cases where users issue unpredictable queries in search of unknown insights.

Solution

Custom-tailored (AI-driven) databases can automatically learn from user interactions with the database and optimize its performance.

Outline

• Select physical design structures

[ICDE'21, ICDM'21, VLDB'22, TKDE'23, ICDM'24]

- Tune the layout of physical design structures [SIGMOD'23, ICDE'24]
- Prefetch data ahead of time [VLDB'24]

Outline

• Select physical design structures

[ICDE'21, ICDM'21, VLDB'22, TKDE'23, ICDM'24]

- Tune the layout of physical design structures [SIGMOD'23, ICDE'24]
- Prefetch data ahead of time [VLDB'24]

Physical design (PD) tuning is hard [VLDBJ'18, ICDE'15, DBTest'12]

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

And results can be unpredictable

Physical design tuning under looking glass

Broken pipeline.... Machine learning to the rescue

Embarking the (M) learning train...

=	Google Scholar	database tuning with machine learning	
•	Articles	pout 535,000 results (0.3) sec)	
	Any time	Automatic database management system tuning through large-scale machine	[PDF] acm.org
	Since 2024	learning	
	Since 2023	D Van Aken, A Pavlo, GJ Gordon, B Zhang - Proceedings of the 2017, 2017 - dl.acm.org	
	Since 2020	to tune new DBMS deployments. The crux of our approach is to train machine learning (ML)	
	Custom range	knobs, (2) map dreviously unseen database workloads to known workloads, so that we can \$\$\$ Save 99 Cite Cited by 636 Related articles All 25 versions	
	Sort by relevance		
	Sort by date	An inquiry into machine learning-based automatic configuration tuning services on real-world database management systems	[PDF] cmu.edu
	Any type	D Van Aken, D Yang, S Brillard, A Fiorino Proceedings of the, 2021 - dl.acm.org	
	Review articles	In this study, we conducted a thorough evaluation of machine learning-based DBMS knob tuning methods with a real workload on an Oracle installation in an enterprise environment	
	include natents	な Save 切り Cite Cited by 68 Related articles All 12 versions	
	include citations		
	· Include enations	Automatic database index tuning using machine learning	[PDF] ieee.org
	Create alert	M Valavala, W Alhamdani - 2021 6th International Conference, 2021 - ieeexplore.ieee.org	
	Cieate alert	used to improve the database performance by ensuring the swift data tuning by using	
		Machine Learning (ML) algorithms will open up new research avenues to address the database	
		☆ Save 奶 Cite Cited by 6 Related articles	
		Otune A succe database tuning suctors with door reinforcement.	
		Quine. A query-aware database tuning system with deep reinforcement	[PDF] Cam.ac.uk
		Cli X Zhou Sli B Gao, Proceedings of the VI DB Endowment 2019, diacm org	
		OtterTune is a tuning system using traditional machine learning model. For DestaraSOL	
		we have invited a DBA with 8 years of working experience at Huawei: for MySQL we invited a	
		☆ Save 99 Cite Cited by 211 Related articles All 11 versions	
		Towards a general framework for ml-based self-tuning databases	[PDF] arxiv.org
		T Schmied, D Didona, A Doring, T Parnell on Machine Learning, 2021 - di.acm.org	
		Machine learning approaches. We now introduce two among the most prominent ML	
		approaches to database tuning, which are implemented by the solutions we investigate in this ☆ Save 99 Cite Cited by 11 Related articles All 4 versions	
		Identifying new directions in database performance tuning	[PDF] sciencedirect.com
		D Colley, C Stanier - Procedia computer science, 2017 - Elsevier	
		approaches in the current database environment; this paper also as pattern classification using machine learning. The rest of approaches to database performance tuning and Section 4	
		☆ Save 99 Cite Cited by 20 Related articles All 7 versions	
		An end-to-end automatic cloud database tuning system using deep reinforcement learning	[PDF] tsinghua.edu.cn
		J Zhang, Y Liu, K Zhou, G Li, Z Xiao, B Cheng Proceedings of the, 2019 - dl. acm.org	
		Traditional machine learning methods rely on massive training samples to train the model	
		while we adopt the try and error method to make our model generate diversified earnales and	

Multi-armed bandits (MAB) for PD tuning

- Pull an arm (slot machine) observe a reward (win/lose)
- Explore vs exploit
- Find a sequence of arms to maximize reward
- Many variants, but **C²UCB** most interesting

Optimism in the face of uncertainty

- UCB guarantees to converge to optimal policy (effectiveness)
- **C** (contextual) learns benefit of arms without pulling them (efficiency)
- **C** (combinatorial) pulls a set of arms per round given constraints (efficiency)

Safety guarantees with fast convergence

[ICDE'21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Automated tuning with provable guarantees

[ICDE'21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

MAB to the rescue

Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

3x Speed up vs. previous 22x slowdown

[ICDE'21]

MAB in action

Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds

MAB for Index Tuning: An Example Physical Design

Design too complex, too large action space

32

HMAB: Hierarchical Multi-armed Bandit Architecture for Integrated Physical Design Tuning [VLDB'22]

Smaller bandits for faster convergence – divide and conquer Knowledge sharing via central bandit – global optimality

[VLDB'22] HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design Tuning. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

HMAB in Action

MELBOURNE

[VLDB'22]

Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views

Up to 96% speed-up, and 67% on average

Dealing with complexity (HTAP) [TKDE'23]

Setting: CH-BenCHmark under static workloads, MAB vs. PDTool, 25 rounds

MAB with focused updates to support HTAP New bandit flavor with better regret bounds

[TKDE'23] No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP workloads with provable guarantees. M. Perera, B. Oetomo, B. Rubinstein, R. Borovica-Gajic. ³⁷

MAB Summary

- (H)MAB is a lightweight MAB solution for *(integrated)* physical database design tuning
- HMAB is the first learned solution to work in the combined space of indices and views
- (H)MAB successfully tackles tuning challenges: optimizer *misestimates, unpredictable and HTAP* workloads
- Up to 40% and 70% average improvement for integrated view and index tuning under static and random settings compared against a SOTA commercial tuning tool
- Extensions: bandit warm up [ICDM'21], bandits under latent reward scaling [ICDM'24]

Outline

• Select physical design structures

[ICDE'21, ICDM'21, VLDB'22, TKDE'23, ICDM'24]

- Tune the layout of physical design structures [SIGMOD'23, ICDE'24]
- Prefetch data ahead of time [VLDB'24]

Classic vs learned index layout

Learned indexes promise lower memory footprint and faster lookup

(M) Learned indexes ...

Google Scholar	learned index	۹.			
Articles	About 9,460,000 results (0, 1 sec)				
Any time Since 2024 Since 2023 Since 2020	The case for learned index st <u>T Kraska</u> . <u>A Beutel</u> , <u>EH Chi</u> , <u>J Dean</u> The remainder of this paper is outlining general idea of leaved undexes using the Sava 99 of the crited by 1125 per	[PDF] acm.org			
Sort by relevance Sort by date	ALEX: an updatable adaptive learned index Sort by date ALEX: an updatable adaptive learned index J Ding, UF Minhas, J Yu, C Wang, J Do, Y Li Proceedings of the, 2020 - dl.acm.org on "learned indexes" has changed the way we look at the decades-old field of DBMS indexing.				
Review articles	$rac{1}{2}$ Save 99 Cite Cited by 302 Related articles All 10 versions				
include patents	Learned index: A compreheners <u>Z Sun, X Zhou, G Li</u> - Proceedings of th of new learned indexes for research , and provide findings to select suital	[PDF] Vldb.org			
	☆ Save 99 Cite Cited by 24 Relat Why are learned indexes So <u>P Ferragina</u> , <u>F Lillo</u> on Machine L This is especially known in the conte better than classic indexes , and time ☆ Save 99 Cite Cited by 44 Relat	[PDF] mlr.press			
	Related searches learned index structures spatial learned index learned index alex scalable learned index	updatable learned index learned index scheme in storage learned index string keys learned index lisa			
	RadixSpline: a single-pass lea <u>A Kipf, R Marcus, A van Renen, M Stoia</u> While this is a very promising result, can be built in a single pass over the da ☆ Save ୨୦ Cite Cited by 183 Rela	[PDF] acm.org			
	Cdfshop: Exploring and optimi <u>R Marcus</u> , E Zhang, <u>T Kraska</u> - Proceet models (learned index structures) c learned index structure. This of RM	zing learned index structures dings of the 2020 ACM SIGMOD, 2020 - dl.acm.org an achieve low lookup model indexes (RMIs), a type of is and why learned index structures can greatly accelerate	[PDF] acm.org		

☆ Save 99 Cite Cited by 61 Related articles All 2 versions

44

[SIGMOD'23]

Are learned indexes disk ready?

Normalized throughputs on the FB dataset

B+tree (still) the best choice when disk resident

[SIGMOD'23] Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices. H. Lan, Z. Bao, S. Culpepper, and R. Borovica-Gajic.

Where does time go?

[ICDE'24]

#blocks fetched (for reads)

Latency breakdown (for writes)

					Look	up _{50 {}	Search			
	# Inner	# Inner	# Total	# Total		40-	Insert			
	Nodes	Blocks	Blocks (L)	Blocks (S)	Scan	us)	Stats			
FITing-tree	5	3	4.2	5		¥ 30 - ਨ				
PGM	6	3.9	5.2	5.6		- 02 atend	_			
ALEX	7.7	6.5	8.1	10.6		ت - 10				
LIPP	1.8 (18.8)	-	3	24						
B+-tree	4	3	4	4.5		0 _ F	ITing-tree PGM	B+-tree	ALEX	LIPP

• Challenge 1: A learned index cannot guarantee to reduce I/O costs when searching data on disk.

 Challenge 2: Most learned indexes suffer from large insertion overheads.

[ICDE'24] A Fully On-disk Updatable Learned Index. H. Lan, Z. Bao, S. Culpepper, R. Borovica-Gajic and Y. Dong.

Design principles for effective on disk learned index [ICDE'24]

Challenge 1. A learned index cannot guarantee to reduce I/O costs when searching data on disk.
 Challenge 2. Most learned indexes suffer from large insertion overheads.
 P1. Reducing the Tree Height of the Index
 P2. Model-based Operations (Search and Insert)
 P3. Lightweight Structure Modification Operations
 P4. Improve Scan Performance
 P5. Support Duplicate Index Keys

AULID: <u>an updatable learned index on disk</u> <u>Simple Yet Effective</u>

Bring the best of both worlds

Leaf Node Layer

Benefits

- Low overhead for scan operations in fetching the *next* item (P4).

Benefits

- Low overhead for scan operations in fetching the *next* item (P4).
- Low insertion overhead and SMO overhead (P3).

Mixed inner node

- Can hold different **slot** types
- Use a model to determine which slot to be accessed next

Mixed inner node

- Can hold different slot types
 - Use a **model** to determine which slot to be accessed next

Packed inner node

- Reducing the **tree height** of the index (P1).

Mixed inner node

- Can hold different slot types
- Use a **model** to determine which slot to be accessed next

Packed inner node

Benefits

- Reducing the **tree height** of the index (P1).
- Model-based operations (search and insert) (P2).

Mixed inner node

- Can hold different slot types
- Use a **model** to determine which slot to be accessed next

Packed inner node

Benefits

- Reducing the **tree height** of the index (P1).
- Model-based operations (search and insert) (P2).
- Low **SMO** overhead in inner nodes (**P3**).

Mixed inner node

- Can hold different slot types
- Use a **model** to determine which slot to be accessed next

Packed inner node

AULID in action

[ICDE'24]

MELBOURNE

Consistently outperforming baselines across a range of workloads and data sets

AULID Learned Index Summary

- We identify the **challenges** when applying the learned indexes on disk and propose new design **principles**
- **AULID** adopts the principles with the carefully designed index layout and operations
- AULID significantly outperforms the SOTA across a range of workloads and datasets

Outline

• Select physical design structures

[ICDE'21, ICDM'21, VLDB'22, TKDE'23, ICDM'24]

- Tune the layout of physical design structures [SIGMOD'23, ICDE'24]
- Prefetch data ahead of time [VLDB'24]

From data to rapid insights with interactive data exploration

CDCC navigato tool [1]

- Need for interactive data exploration with sub-second latency
- Fast retrieval of large amounts of (scientific) data

Support interactivity with hands-free semantics-driven prefetching

Prefetching in the current landscape

Not suitable for SQL workloads
Work with block addresses: No data semantics
Not adaptive

Prefetching as timeseries forecasting

Data semantics is important

There is usually an inter-dependency among values stored in the data blocks accessed together

Results observed from the queries in the previous time steps form the upcoming queries

SeLeP Overview

MELBOURNE

[VLDB'24] SeLeP: Learning Based Semantic Prefetching for Exploratory Database Workloads. F. Zirak, F. Choudhury, and R. Borovica-Gajic.

Block encoding

- Block can contain hundreds of values
- Need a concise block representation which captures the distinctive characteristics of the data
 - Encode blocks into vectors and aggregate them to form query encodings

Block partitioning

• Classification problem:

Having the sequence of last l query encodings, predict and fetch blocks that will be accessed next

Large dataset — Substantial number of labels

Group blocks frequently accessed together into partitions

0.1 0.4 Previous G_{aff} : 0. $\left(b_{4}^{tb_{1}}
ight)$ 0.3 $(b_6^{tb_3})$ 0.6 res^B_a : $b_5^{tb_1}$ $b_{32}^{tb_2}$ $b_8^{tb_2}$ 0.1 0.4 Updated G_{aff} with $l_p = 10$: $b_6^{tb_3}$ $b_9^{tb_2}$ $\langle b_8^{tb_1} \rangle$ 0.6 0.1

tb₁ tb₂ tb₃ tb₄

Partition encodings

Graph partitioning on affinity graph

Semantic Learning

• Learn partition access pattern from a sequence of query encodings and fine tune the model with new workloads

SeLeP in Action

[VLDB'24]

Setting: 16GB SDSS DR7, prefetch size = $k \times 128$ block, 4GB cache **Queries:** multi-table join <u>SQL</u> workloads

95% average hit ratio, outperforming SOTA by 40%

[VLDB'24]

I/O Reduction with SeLeP

Setting: 16GB SDSS DR7, prefetch size = $k \times 128$ block, 4GB cache **Queries:** multi-table join <u>SQL</u> workloads

80% average I/O reduction, outperforming SOTA by 45%

SeLeP Adaptivity

[VLDB'24]

Setting: 16GB SDSS DR7, prefetch size = $k \times 128$ block, 4GB cache **Queries:** Shifts at sequence number = {2000, 4000, 6000} with novel query templates and access to unseen data

Graceful adaptation to unpredictable workloads

SeLeP Summary

- Prefetching can substantially reduce I/O time, but the existing SOTA prefetchers ignore data semantics and cannot deal with ad hoc workloads
- SeLeP can benefit all types of exploratory workloads by leveraging data semantics
- SeLeP improves hit ratio up to 40% and reduces I/O time up to 45% compared to SOTA prefetchers

AI-Powered Databases

https://ai-db-uom.github.io/

Custom-tailored (AI-driven) databases that automatically learn from user interactions with the database to optimize its performance

Learn from

[CACM'19]

1. Queries [SIGMOD'12] [CACM'15] DBMS [ICDE'21] [ICDM'21] [VLDB'23] 2. Data Learn [ICDE'15] Adapt [VLDBJ'18] Refine [ADC'20] [SIGMOD'23] [ICDE'24] 3. Hardware **Fast responses** [VLDB'16] [ADMS'17]

Physical design tuning [ICDE'21, ICDM'21, VLDB'23, TKDE'23]

- PD tuning via Multi-Armed Bandits
- Tailored for HTAP, ad hoc workloads
- Provable performance guarantees

Learned Indexes [ADC'20, SIGMOD'23, ICDE'24, VLDB'25]

- Updateable (on disk) learned indexes
- Indexing via function interpolation
- Spatial learned indexes

Caching/prefetching [DEBS'22, VLDB'24]

- Semantics driven prefetching
- Tailored for (ad hoc) data exploration

Where to go from here?

AI-Powered Databases: From a passive data retrieval provider to a co-pilot for insight discoveries

- What makes some data interesting?
 - Measures of interestingness
 - Novelty discovery
- Can we predict user intent?
 - Long term and short-term goal recognition
- Can we recommend queries that lead to insights?
 - Query formulation (LMs)
 - From text to SQL and back

Special thanks to the Al-powered DB team

- My students/postdocs:
 - Malinga Perera
 - Bastian Oetomo
 - Hai Lan
 - Farzaneh Zirak
 - Guanli Liu
 - David Adams
 - Lankadinee Rathuwadu
 - Dinuka de Zoysa

- Collaborators:
 - Benjamin Rubinstein
 - Zhifeng Bao
 - Farhana Choudhury
 - Jianzhong Qi
 - Lars Kulik
 - Nir Lipovetzky
 - Christopher Leckie
 - James Bailey

And many more (external) collaborators...

THANK YOU

Questions?

Personal website: https://renata.borovica-gajic.com/

Project website: https://ai-db-uom.github.io/

Email: renata.borovica@unimelb.edu.au

Looking for PhD students!

*This work is supported by the Australian Research Council Discovery Early Career Researcher Award DE230100366, and L'Oréal UNESCO FWIS'23 Fellowship.