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Data proliferation

2

* Amount of data generating daily (Exploding Topics, 2024) ₸ “IDC FutureScape, 2024: Worldwide Future of Digital 
Infrastructure 2024 Predictions”

Global data generated annually*
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“The world’s most valuable resource is no longer oil, but data”  
[The Economist, 2017]
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* Amount of data generating daily (Exploding Topics, 2024) ₸ “IDC FutureScape, 2024: Worldwide Future of Digital 
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“IDC's 2024 predictions for the future of digital infrastructure point 
to greater emphasis on fit-for-purpose platforms and services… By 

2025, 70% of companies will invest in alternative computing 
technologies to drive business differentiation by compressing time 

to value of insights from complex data sets… ”  
₸[IDC FutureScape, 2024]

“The world’s most valuable resource is no longer oil, but data”  
[The Economist, 2017]



Need for efficient data exploration
Mining data to uncover patterns, and gather insights

5₸ https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598



Need for efficient data exploration
Mining data to uncover patterns, and gather insights
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“Recently, the brightest and fastest-growing supermassive black hole 
of the past 9 billion years was discovered. The researchers have 

mentioned that "people have been looking for these kinds of objects 
since the 1960s", and "somehow, this one seemed to have escaped 

all our previous efforts to find it"”  
₸[ABC News, 2022]

₸ https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598



From data to insight with databases
typical workflow…
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User

Database

Select max(a7), 
avg(a12) from A join 
B where A.a1 > 7 and 

B.r = 45;

SQL Query 1

results

a7 a12

45 23.5

Time

insight

data

querying

tuning

Database goal: minimize data to insight time



How do we minimize data to insight time?
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DBA

DBMS
Observed
Workload

Physical design tuning…

 Indexes

Materialized views

Caching/prefetching

Page Page

17

5

…

MV (NatKey, Name)

Supplier#01

Supplier#02

…



Data exploration properties

• Users are domain experts 
but not DB(A) experts

• Ad hoc queries in search 
of unknown insights

• Need for interactivity 
and adaptivity

9

Credit: generated with Gemini



How do we minimize data to insight time?
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User

DBMS
Observed
Workload

Indexes

Materialized views

Caching/prefetching

Page Page

17

5

…

MV (NatKey, Name)

Supplier#01

Supplier#02

…

in data exploration
V

Ad hoc 
workloads

No DB(A) 
knowledge



Research gap

11

Current databases cannot offer support for 
(omnipresent) data exploration use cases where users 

issue unpredictable queries in search of unknown 
insights. 

Solution
Custom-tailored (AI-driven) databases can 

automatically learn from user interactions with the 
database and optimize its performance.



Outline

• Select physical design structures
   

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]



Outline

• Select physical design structures
   

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]



Physical design (PD) tuning is hard
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TPC-H Query

Tuned

Original

With indexes

Without indexes

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

400

[VLDBJ’18, ICDE’15, DBTest’12]

[VLDBJ’18] Smooth Scan: Robust Access Path Selection without Cardinality Estimation. 
R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser.And results can be unpredictable



Physical design tuning under looking glass

DBA

Physical 
Design 

Tool

DBMS

Query 
Optimizer

“What if”

Estimated
benefit

Representative
Workload

Broken pipeline….

Workloads 

ad hoc

Estimates 

unreliable
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Recommended
Physical design

Machine learning to the rescue



Embarking the (M) learning train…

20



Multi-armed bandits (MAB) for PD tuning

21

• Pull an arm (slot machine) observe a reward (win/lose)
• Explore vs exploit
• Find a sequence of arms to maximize reward 
• Many variants, but C2UCB most interesting

Optimism in the face of uncertainty



[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with 
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Index tuning with Multi-Armed Bandits MAB 
(C2UCB)

23

Safety guarantees with fast convergence

[ICDE’21]

• UCB guarantees to converge to optimal policy (effectiveness)

• C (contextual) learns benefit of arms without pulling them (efficiency)

• C (combinatorial) pulls a set of arms per round given constraints (efficiency)

DBA

DBMS

Query 
Optimizer

“What if”

Estimated
benefit

Observe
Workload

Recommended
indexes

MAB
Try arms (index)
Observe reward



(6) Creation time, Execution time 
w/ Index

MAB under looking glass…

24

IX6

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND 

A.C3 = 6

(3) Identify Arms

(Learns) 10sec gain, 20sec 
creation time, 30MB size

(2) Query details & 
Execution time before 
tunning

Arms

(4) Materialize IX6

IX1

IX2 

IX7

(1) New 
Query(5) 

Returning
Query

[ICDE’21]

Bandit tuner

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with 
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Automated tuning with provable guarantees



MAB to the rescue
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TPCH Query

Series1MAB Without indexes_

Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

3x Speed up vs. previous 22x slowdown



MAB in action 

27

Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets
static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds 
 

Thousands

MAB robust against complex unpredictable workloads 
and skew
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MAB for Index Tuning: An Example

31

MV1

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND 

A.C3 = 6

(3) Identify Arms

(6) Creation time, Execution time w/ 
Index

(Learns) 10sec gain, 20sec 
creation time, 30MB size

(2) Query details & 
Execution time before 
tunning

Arms

(4) Materialize IX6

IX1

IX2 

MV2

(1) New 
Query(5) 

Returning
Query

Physical Design
X

Design too complex, too large action space

Bandit tuner



[VLDB’22] HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design 
Tuning. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

HMAB: Hierarchical Multi-armed Bandit 
Architecture for Integrated Physical Design Tuning 
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L2 
Bandit

Bandit for Table 
A (indexes)

Bandit for Table 
B (indexes)

Bandit for 
materialized 

views

Physical Design
Configuration

(Indexes + 
Views)L1

 B
an

d
it

s

Smaller bandits for faster convergence – divide and conquer
Knowledge sharing via central bandit – global optimality

[VLDB’22]
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HMAB in Action
Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad 
hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views
 

Static Ad hoc

34

2914.41

Up to 96% speed-up, and 67% on average

Thousands

[VLDB’22]

~



[TKDE’23] No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP 
workloads with provable guarantees. M. Perera, B. Oetomo, B. Rubinstein, R. Borovica-Gajic.

MAB with focused updates to support HTAP

Dealing with complexity (HTAP)

37
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[TKDE’23]

New bandit flavor with better regret bounds



MAB Summary

• (H)MAB is a lightweight MAB solution for (integrated) 
physical database design tuning

• HMAB is the first learned solution to work in the 
combined space of indices and views

• (H)MAB successfully tackles tuning challenges: optimizer 
misestimates, unpredictable and HTAP workloads

• Up to 40% and 70% average improvement for integrated 
view and index tuning under static and random settings 
compared against a SOTA commercial tuning tool

• Extensions: bandit warm up [ICDM’21], bandits under 
latent reward scaling [ICDM’24]

41



Outline

• Select physical design structures
   

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]



Learned model
Pos = f (key)

Classic vs learned index layout

Learned indexes promise lower memory footprint 
and faster lookup 

Classic B+ tree

Learned index

key

key

position

position

43



(M) Learned indexes …

44



Are learned indexes disk ready?

45

[SIGMOD’23] Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design 
Choices. H. Lan, Z. Bao, S. Culpepper, and R. Borovica-Gajic.

Normalized throughputs on the FB dataset

[SIGMOD’23]

B+tree (still) the best choice when disk resident



Where does time go?

46

#blocks fetched (for reads) Latency breakdown (for writes)

• Challenge 1: A learned index cannot 
guarantee to reduce I/O costs when 
searching data on disk.

• Challenge 2: Most learned 
indexes suffer from large 
insertion overheads.

Lookup

Scan

[ICDE’24]

[ICDE’24] A Fully On-disk Updatable Learned Index. H. Lan, Z. Bao, S. Culpepper, 
R. Borovica-Gajic and Y. Dong.



Design principles for effective on disk 
learned index

47

Challenge 1. A learned 
index cannot guarantee to 
reduce I/O costs when 
searching data on disk.

Challenge 2. Most learned 
indexes suffer from large 
insertion overheads.

P1. Reducing the Tree Height of the Index

P2. Model-based Operations (Search and Insert)

P3. Lightweight Structure Modification Operations 

AULID: an updatable learned index on disk
Simple Yet Effective

P4. Improve Scan Performance

P5. Support Duplicate Index Keys

[ICDE’24]
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… … ……

…

… …

Metadata node

ℳ

ℳ

…

AULID Index Layout

Bring the best of both worlds



AULID Index Layout
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Leaf Node Layer

… … ……



AULID Index Layout
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… … ……

Leaf node
Set the size equal to the block size

Leaf Node Layer



AULID Index Layout
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Leaf node
Set the size equal to the block size



AULID Index Layout
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Leaf node
Set the size equal to the block size



AULID Index Layout
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Pointer between siblings Leaf node
Set the size equal to the block size



AULID Index Layout
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Pointer between siblings Leaf node
Set the size equal to the block size

Benefits

- Low overhead for scan operations in fetching the next item (P4).



AULID Index Layout
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Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Benefits

- Low overhead for scan operations in fetching the next item (P4).

- Low insertion overhead and SMO overhead (P3).

Pointer between siblings Leaf node
Set the size equal to the block size



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine 

which slot to be accessed 
next



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine 

which slot to be accessed 
next

Packed inner node
- Hold the pointer to the leaf 

node and the maximum key 
in the indexed leaf node



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine 

which slot to be accessed 
next

Packed inner node
- Hold the pointer to the leaf 

node and the maximum key 
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine 

which slot to be accessed 
next

Packed inner node
- Hold the pointer to the leaf 

node and the maximum key 
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).



AULID Index Layout
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Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine 

which slot to be accessed 
next

Packed inner node
- Hold the pointer to the leaf 

node and the maximum key 
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

- Low SMO overhead in inner nodes (P3).



AULID in action

64Consistently outperforming baselines across a range of workloads 
and data sets

[ICDE’24]



AULID Learned Index Summary

66

• We identify the challenges when applying the learned 
indexes on disk and propose new design principles

• AULID adopts the principles with the carefully 
designed index layout and operations

• AULID significantly outperforms the SOTA across a 
range of workloads and datasets



Outline

• Select physical design structures
   

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]



Support interactivity with hands-free semantics-driven prefetching

From data to rapid insights with 
interactive data exploration

68

• Need for interactive data exploration with sub-second latency
• Fast retrieval of large amounts of (scientific) data



Prefetching in the current landscape

69

Not suitable for 
SQL workloads

Work with block addresses: 
No data semantics 

Not adaptive

DB 
server

Find 𝑞𝑛  blocks

Prefetcher

Yes (cache Hit)

No (cache Miss)
Disk

cache

Is cached?

Response 
time

Retrieve from 
disk

Predict 𝑞𝑛+1 block access

𝑞𝑛

Historical data 
accesses



Prefetching as timeseries forecasting

70

Prefetching  time series forecasting

Results observed from the queries in the previous time 
steps form the upcoming queries

Data semantics is important

There is usually an inter-dependency among values 
stored in the data blocks accessed together



SeLeP Overview

71

[VLDB’24]

[VLDB’24] SeLeP: Learning Based Semantic Prefetching for Exploratory Database Workloads. F. Zirak, F. 
Choudhury, and R. Borovica-Gajic.



Block encoding
• Block can contain hundreds of values

• Need a concise block representation which captures the distinctive 
characteristics of the data
➢ Encode blocks into vectors and aggregate them to form query encodings



Block partitioning 

• Group blocks frequently accessed together into partitions

• Classification problem: 
Having the sequence of last 𝑙 query encodings, predict and fetch 
blocks that will be accessed next

Large dataset                 Substantial number of labels

Graph partitioning on affinity graph

𝑡𝑏1
𝑡𝑏2
𝑡𝑏3

𝑡𝑏4
Partition encodings



Semantic Learning 

• Learn partition access pattern from a sequence of query encodings 
and fine tune the model with new workloads

𝑘 −Candidate 
partitions

Query encodings 

Accessed partitions contain blocks 
with galaxies and high g average



SeLeP in Action
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Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: multi-table join SQL workloads

95% average hit ratio, outperforming SOTA by 40%

[VLDB’24]



I/O Reduction with SeLeP

76

Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: multi-table join SQL workloads

80% average I/O reduction, outperforming SOTA by 45%

[VLDB’24]



SeLeP Adaptivity

77

Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: Shifts at sequence number = {2000, 4000, 6000} with novel 

query templates and access to unseen data

Graceful adaptation to unpredictable workloads 

[VLDB’24]



SeLeP Summary

• Prefetching can substantially reduce I/O time, but 
the existing SOTA prefetchers ignore data semantics 
and cannot deal with ad hoc workloads

• SeLeP can benefit all types of exploratory workloads 
by leveraging data semantics

• SeLeP improves hit ratio up to 40% and reduces I/O 
time up to 45% compared to SOTA prefetchers

78



https://ai-db-uom.github.io/
 Custom-tailored (AI-driven) databases that automatically learn from user 

interactions with the database to optimize its performance

AI-Powered Databases

1. Queries

2. Data 

3. Hardware

[SIGMOD’12] 
[CACM’15]
[ICDE’21]
[ICDM’21]
[VLDB’23]

[ICDE’15] 
[VLDBJ’18]
[ADC’20] 
[SIGMOD’23]
[ICDE’24]

[VLDB’16]
[ADMS’17]
[CACM’19]

Learn from ….. 

Learn
Adapt 
Refine

Learned Indexes
[ADC’20, SIGMOD’23, ICDE’24, VLDB’25]

• Updateable (on disk) learned indexes
• Indexing via function interpolation
• Spatial learned indexes 

• Semantics driven prefetching
• Tailored for (ad hoc) data exploration 

DBMS

Fast responses

Fast response

Learned Indexes
[ADC’20, SIGMOD’23, ICDE’24, VLDB’25]

Physical design tuning
[ICDE’21, ICDM’21, VLDB’23, TKDE’23]

Caching/prefetching
[DEBS’22, VLDB’24]

• Updateable (on disk) learned indexes
• Indexing via function interpolation
• Spatial learned indexes 

• PD tuning via Multi-Armed Bandits
• Tailored for HTAP, ad hoc workloads
• Provable performance guarantees

• Semantics driven prefetching
• Tailored for (ad hoc) data exploration 

https://ai-db-uom.github.io/


Where to go from here?

83

AI-Powered Databases: From a passive data retrieval 
provider to a co-pilot for insight discoveries

• What makes some data 
interesting?
➢ Measures of interestingness 
➢ Novelty discovery

• Can we predict user intent?
➢ Long term and short-term goal 

recognition

• Can we recommend queries 
that lead to insights?
➢ Query formulation (LMs)
➢ From text to SQL and back

Credit: generated with Gemini



Special thanks to the AI-powered DB team

• My students/postdocs:

– Malinga Perera

– Bastian Oetomo

– Hai Lan

– Farzaneh Zirak

– Guanli Liu 

– David Adams

– Lankadinee Rathuwadu 

– Dinuka de Zoysa

• Collaborators:

– Benjamin Rubinstein

– Zhifeng Bao

– Farhana Choudhury

– Jianzhong Qi

– Lars Kulik

– Nir Lipovetzky 

– Christopher Leckie

– James Bailey

84
And many more (external) collaborators...



Questions?

85
THANK YOU!

Personal website: https://renata.borovica-gajic.com/

Project website: https://ai-db-uom.github.io/

Email: renata.borovica@unimelb.edu.au

Looking for PhD students!

*This work is supported by the Australian Research Council 
Discovery Early Career Researcher Award DE230100366, 
and L'Oréal UNESCO FWIS’23 Fellowship. 

https://renata.borovica-gajic.com/
https://ai-db-uom.github.io/
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