
AI-powered Databases:

Renata Borovica-Gajic
renata.borovica@unimelb.edu.au
https://renata.borovica-gajic.com/

From data deluge to rapid insights

Work supported by:

EPFL, IC Colloquium

L'Oréal FWIS’23

Data proliferation

2

* Amount of data generating daily (Exploding Topics, 2024) ₸ “IDC FutureScape, 2024: Worldwide Future of Digital
Infrastructure 2024 Predictions”

Global data generated annually*
D

at
a

ge
n

er
at

ed
 (

ze
tt

ab
yt

es
)

Year

Data proliferation

3

* Amount of data generating daily (Exploding Topics, 2024) ₸ “IDC FutureScape, 2024: Worldwide Future of Digital
Infrastructure 2024 Predictions”

Global data generated annually*
D

at
a

ge
n

er
at

ed
 (

ze
tt

ab
yt

es
)

Year

“The world’s most valuable resource is no longer oil, but data”
[The Economist, 2017]

Data proliferation

4

* Amount of data generating daily (Exploding Topics, 2024) ₸ “IDC FutureScape, 2024: Worldwide Future of Digital
Infrastructure 2024 Predictions”

Global data generated annually*
D

at
a

ge
n

er
at

ed
 (

ze
tt

ab
yt

es
)

Year

“IDC's 2024 predictions for the future of digital infrastructure point
to greater emphasis on fit-for-purpose platforms and services… By

2025, 70% of companies will invest in alternative computing
technologies to drive business differentiation by compressing time

to value of insights from complex data sets… ”
₸[IDC FutureScape, 2024]

“The world’s most valuable resource is no longer oil, but data”
[The Economist, 2017]

Need for efficient data exploration
Mining data to uncover patterns, and gather insights

5₸ https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598

Need for efficient data exploration
Mining data to uncover patterns, and gather insights

6

“Recently, the brightest and fastest-growing supermassive black hole
of the past 9 billion years was discovered. The researchers have

mentioned that "people have been looking for these kinds of objects
since the 1960s", and "somehow, this one seemed to have escaped

all our previous efforts to find it"”
₸[ABC News, 2022]

₸ https://www.abc.net.au/news/science/2022-06-15/black-hole-fastest-growing-past-nine-billionyears/101149598

From data to insight with databases
typical workflow…

7

User

Database

Select max(a7),
avg(a12) from A join
B where A.a1 > 7 and

B.r = 45;

SQL Query 1

results

a7 a12

45 23.5

Time

insight

data

querying

tuning

Database goal: minimize data to insight time

How do we minimize data to insight time?

8

DBA

DBMS
Observed
Workload

Physical design tuning…

 Indexes

Materialized views

Caching/prefetching

Page Page

17

5

…

MV (NatKey, Name)

Supplier#01

Supplier#02

…

Data exploration properties

• Users are domain experts
but not DB(A) experts

• Ad hoc queries in search
of unknown insights

• Need for interactivity
and adaptivity

9

Credit: generated with Gemini

How do we minimize data to insight time?

10

User

DBMS
Observed
Workload

Indexes

Materialized views

Caching/prefetching

Page Page

17

5

…

MV (NatKey, Name)

Supplier#01

Supplier#02

…

in data exploration
V

Ad hoc
workloads

No DB(A)
knowledge

Research gap

11

Current databases cannot offer support for
(omnipresent) data exploration use cases where users

issue unpredictable queries in search of unknown
insights.

Solution
Custom-tailored (AI-driven) databases can

automatically learn from user interactions with the
database and optimize its performance.

Outline

• Select physical design structures

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]

Outline

• Select physical design structures

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]

Physical design (PD) tuning is hard

14

0.1

1

10

100

1000

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

4

Q
1

6

Q
1

8

Q
1

9

Q
2

1

Q
2

2

N
o

rm
al

iz
ed

 e
xe

c.
 t

im
e

(l
o

g
sc

al
e)

TPC-H Query

Tuned

Original

With indexes

Without indexes

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

400

[VLDBJ’18, ICDE’15, DBTest’12]

[VLDBJ’18] Smooth Scan: Robust Access Path Selection without Cardinality Estimation.
R. Borovica-Gajic, S. Idreos, A. Ailamaki, M. Zukowski and C. Fraser.And results can be unpredictable

Physical design tuning under looking glass

DBA

Physical
Design

Tool

DBMS

Query
Optimizer

“What if”

Estimated
benefit

Representative
Workload

Broken pipeline….

Workloads

ad hoc

Estimates

unreliable

16

Recommended
Physical design

Machine learning to the rescue

Embarking the (M) learning train…

20

Multi-armed bandits (MAB) for PD tuning

21

• Pull an arm (slot machine) observe a reward (win/lose)
• Explore vs exploit
• Find a sequence of arms to maximize reward
• Many variants, but C2UCB most interesting

Optimism in the face of uncertainty

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Index tuning with Multi-Armed Bandits MAB
(C2UCB)

23

Safety guarantees with fast convergence

[ICDE’21]

• UCB guarantees to converge to optimal policy (effectiveness)

• C (contextual) learns benefit of arms without pulling them (efficiency)

• C (combinatorial) pulls a set of arms per round given constraints (efficiency)

DBA

DBMS

Query
Optimizer

“What if”

Estimated
benefit

Observe
Workload

Recommended
indexes

MAB
Try arms (index)
Observe reward

(6) Creation time, Execution time
w/ Index

MAB under looking glass…

24

IX6

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND

A.C3 = 6

(3) Identify Arms

(Learns) 10sec gain, 20sec
creation time, 30MB size

(2) Query details &
Execution time before
tunning

Arms

(4) Materialize IX6

IX1

IX2

IX7

(1) New
Query(5)

Returning
Query

[ICDE’21]

Bandit tuner

[ICDE’21] DBA bandits: Self-driving index tuning under ad-hoc, analytical workloads with
safety guarantees. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

Automated tuning with provable guarantees

MAB to the rescue

25

0

0.2

0.4

0.6

0.8

1

1.2

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0

Q
1

1

Q
1

2

Q
1

3

Q
1

5

Q
1

6

Q
1

7

Q
1

8

Q
1

9

Q
2

0

Q
2

1

Q
2

2

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

TPCH Query

Series1MAB Without indexes_

Setting: TPC-H, SF10, DBMS-X, Multi-armed bandits (MAB) for index tuning

3x Speed up vs. previous 22x slowdown

MAB in action

27

Setting: TPCH, TPCH skew, TPC DS, SSB (10GB); IMDb(6GB) datasets
static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds

Thousands

MAB robust against complex unpredictable workloads
and skew

0

5

10

15

20

25

30

35

40

To
ta

l W
o

rk
lo

ad
 T

im
e

(s
ec

)

No Index

PD Tool

MAB

Workload

SSB TPC-H TPC-H
Skew

TPC-DS IMDb

STATIC

0

5

10

15

20

25

30

35

40

45

To
ta

l W
o

rk
lo

ad
 T

im
e

(s
ec

)

SSB TPC-H TPC-H
Skew

TPC-DS IMDb

Thousands AD HOC

[ICDE’21]

MAB for Index Tuning: An Example

31

MV1

SELECT A.C1 FROM A
WHERE A.C2 = 5 AND

A.C3 = 6

(3) Identify Arms

(6) Creation time, Execution time w/
Index

(Learns) 10sec gain, 20sec
creation time, 30MB size

(2) Query details &
Execution time before
tunning

Arms

(4) Materialize IX6

IX1

IX2

MV2

(1) New
Query(5)

Returning
Query

Physical Design
X

Design too complex, too large action space

Bandit tuner

[VLDB’22] HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design
Tuning. M. Perera, B. Oetomo, B. Rubinstein, and R. Borovica-Gajic.

HMAB: Hierarchical Multi-armed Bandit
Architecture for Integrated Physical Design Tuning

32

L2
Bandit

Bandit for Table
A (indexes)

Bandit for Table
B (indexes)

Bandit for
materialized

views

Physical Design
Configuration

(Indexes +
Views)L1

 B
an

d
it

s

Smaller bandits for faster convergence – divide and conquer
Knowledge sharing via central bandit – global optimality

[VLDB’22]

0

200

400

600

800

1000

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

TPC-H TPC-H
Skew

TPC-DS IMDb

To
ta

l W
o

rk
lo

ad
 T

im
e

(m
in

)

0

10

20

30

40

50

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

N
o

In
d

ex
P

D
To

o
l

H
M

A
B

TPC-H TPC-H
Skew

TPC-DS IMDb

To
ta

l W
o

rk
lo

ad
 T

im
e

(s
ec

)

HMAB in Action
Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad
hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views

Static Ad hoc

34

2914.41

Up to 96% speed-up, and 67% on average

Thousands

[VLDB’22]

~

[TKDE’23] No DBA? No regret! Multi-armed bandits for index tuning of analytical and HTAP
workloads with provable guarantees. M. Perera, B. Oetomo, B. Rubinstein, R. Borovica-Gajic.

MAB with focused updates to support HTAP

Dealing with complexity (HTAP)

37

0

2000

4000

6000

8000

10000

12000

14000

P
D

To
o

l

N
o

In
d

ex

M
A

B

P
D

To
o

l

N
o

In
d

ex

M
A

B

P
D

To
o

l

N
o

In
d

ex

M
A

B

0:1 1:1 2:1 3:1 4:1 5:1

To
ta

l W
o

rk
lo

ad
 T

im
e

(s
ec

)

Transactional to Analytical Ratio (TAR)

Setting: CH-BenCHmark under static workloads, MAB vs. PDTool, 25 rounds

[TKDE’23]

New bandit flavor with better regret bounds

MAB Summary

• (H)MAB is a lightweight MAB solution for (integrated)
physical database design tuning

• HMAB is the first learned solution to work in the
combined space of indices and views

• (H)MAB successfully tackles tuning challenges: optimizer
misestimates, unpredictable and HTAP workloads

• Up to 40% and 70% average improvement for integrated
view and index tuning under static and random settings
compared against a SOTA commercial tuning tool

• Extensions: bandit warm up [ICDM’21], bandits under
latent reward scaling [ICDM’24]

41

Outline

• Select physical design structures

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]

Learned model
Pos = f (key)

Classic vs learned index layout

Learned indexes promise lower memory footprint
and faster lookup

Classic B+ tree

Learned index

key

key

position

position

43

(M) Learned indexes …

44

Are learned indexes disk ready?

45

[SIGMOD’23] Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design
Choices. H. Lan, Z. Bao, S. Culpepper, and R. Borovica-Gajic.

Normalized throughputs on the FB dataset

[SIGMOD’23]

B+tree (still) the best choice when disk resident

Where does time go?

46

#blocks fetched (for reads) Latency breakdown (for writes)

• Challenge 1: A learned index cannot
guarantee to reduce I/O costs when
searching data on disk.

• Challenge 2: Most learned
indexes suffer from large
insertion overheads.

Lookup

Scan

[ICDE’24]

[ICDE’24] A Fully On-disk Updatable Learned Index. H. Lan, Z. Bao, S. Culpepper,
R. Borovica-Gajic and Y. Dong.

Design principles for effective on disk
learned index

47

Challenge 1. A learned
index cannot guarantee to
reduce I/O costs when
searching data on disk.

Challenge 2. Most learned
indexes suffer from large
insertion overheads.

P1. Reducing the Tree Height of the Index

P2. Model-based Operations (Search and Insert)

P3. Lightweight Structure Modification Operations

AULID: an updatable learned index on disk
Simple Yet Effective

P4. Improve Scan Performance

P5. Support Duplicate Index Keys

[ICDE’24]

48

… … ……

…

… …

Metadata node

ℳ

ℳ

…

AULID Index Layout

Bring the best of both worlds

AULID Index Layout

49

Leaf Node Layer

… … ……

AULID Index Layout

50

… … ……

Leaf node
Set the size equal to the block size

Leaf Node Layer

AULID Index Layout

51

Leaf Node Layer

… … ……

Data slot – store the indexed value

Leaf node
Set the size equal to the block size

AULID Index Layout

52

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Leaf node
Set the size equal to the block size

AULID Index Layout

53

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Pointer between siblings Leaf node
Set the size equal to the block size

AULID Index Layout

54

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Pointer between siblings Leaf node
Set the size equal to the block size

Benefits

- Low overhead for scan operations in fetching the next item (P4).

AULID Index Layout

55

Leaf Node Layer

… … ……

Data slot – store the indexed value

Empty slot – hold the new value

Benefits

- Low overhead for scan operations in fetching the next item (P4).

- Low insertion overhead and SMO overhead (P3).

Pointer between siblings Leaf node
Set the size equal to the block size

AULID Index Layout

56

Inner Node Layer

…

… …

ℳ

ℳ

AULID Index Layout

57

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine

which slot to be accessed
next

AULID Index Layout

58

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine

which slot to be accessed
next

Packed inner node
- Hold the pointer to the leaf

node and the maximum key
in the indexed leaf node

AULID Index Layout

60

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine

which slot to be accessed
next

Packed inner node
- Hold the pointer to the leaf

node and the maximum key
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).

AULID Index Layout

61

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine

which slot to be accessed
next

Packed inner node
- Hold the pointer to the leaf

node and the maximum key
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

AULID Index Layout

62

Inner Node Layer

…

… …

ℳ

ℳ

Mixed inner node
- Can hold different slot types
- Use a model to determine

which slot to be accessed
next

Packed inner node
- Hold the pointer to the leaf

node and the maximum key
in the indexed leaf node

Benefits

- Reducing the tree height of the index (P1).

- Model-based operations (search and insert) (P2).

- Low SMO overhead in inner nodes (P3).

AULID in action

64Consistently outperforming baselines across a range of workloads
and data sets

[ICDE’24]

AULID Learned Index Summary

66

• We identify the challenges when applying the learned
indexes on disk and propose new design principles

• AULID adopts the principles with the carefully
designed index layout and operations

• AULID significantly outperforms the SOTA across a
range of workloads and datasets

Outline

• Select physical design structures

• Tune the layout of physical design structures

• Prefetch data ahead of time

[SIGMOD’23, ICDE’24]

[ICDE’21, ICDM’21, VLDB’22, TKDE’23, ICDM’24]

[VLDB’24]

Support interactivity with hands-free semantics-driven prefetching

From data to rapid insights with
interactive data exploration

68

• Need for interactive data exploration with sub-second latency
• Fast retrieval of large amounts of (scientific) data

Prefetching in the current landscape

69

Not suitable for
SQL workloads

Work with block addresses:
No data semantics

Not adaptive

DB
server

Find 𝑞𝑛 blocks

Prefetcher

Yes (cache Hit)

No (cache Miss)
Disk

cache

Is cached?

Response
time

Retrieve from
disk

Predict 𝑞𝑛+1 block access

𝑞𝑛

Historical data
accesses

Prefetching as timeseries forecasting

70

Prefetching time series forecasting

Results observed from the queries in the previous time
steps form the upcoming queries

Data semantics is important

There is usually an inter-dependency among values
stored in the data blocks accessed together

SeLeP Overview

71

[VLDB’24]

[VLDB’24] SeLeP: Learning Based Semantic Prefetching for Exploratory Database Workloads. F. Zirak, F.
Choudhury, and R. Borovica-Gajic.

Block encoding
• Block can contain hundreds of values

• Need a concise block representation which captures the distinctive
characteristics of the data
➢ Encode blocks into vectors and aggregate them to form query encodings

Block partitioning

• Group blocks frequently accessed together into partitions

• Classification problem:
Having the sequence of last 𝑙 query encodings, predict and fetch
blocks that will be accessed next

Large dataset Substantial number of labels

Graph partitioning on affinity graph

𝑡𝑏1
𝑡𝑏2
𝑡𝑏3

𝑡𝑏4
Partition encodings

Semantic Learning

• Learn partition access pattern from a sequence of query encodings
and fine tune the model with new workloads

𝑘 −Candidate
partitions

Query encodings

Accessed partitions contain blocks
with galaxies and high g average

SeLeP in Action

75

Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: multi-table join SQL workloads

95% average hit ratio, outperforming SOTA by 40%

[VLDB’24]

I/O Reduction with SeLeP

76

Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: multi-table join SQL workloads

80% average I/O reduction, outperforming SOTA by 45%

[VLDB’24]

SeLeP Adaptivity

77

Setting: 16GB SDSS DR7, prefetch size = 𝑘 × 128 block, 4GB cache

Queries: Shifts at sequence number = {2000, 4000, 6000} with novel

query templates and access to unseen data

Graceful adaptation to unpredictable workloads

[VLDB’24]

SeLeP Summary

• Prefetching can substantially reduce I/O time, but
the existing SOTA prefetchers ignore data semantics
and cannot deal with ad hoc workloads

• SeLeP can benefit all types of exploratory workloads
by leveraging data semantics

• SeLeP improves hit ratio up to 40% and reduces I/O
time up to 45% compared to SOTA prefetchers

78

https://ai-db-uom.github.io/
 Custom-tailored (AI-driven) databases that automatically learn from user

interactions with the database to optimize its performance

AI-Powered Databases

1. Queries

2. Data

3. Hardware

[SIGMOD’12]
[CACM’15]
[ICDE’21]
[ICDM’21]
[VLDB’23]

[ICDE’15]
[VLDBJ’18]
[ADC’20]
[SIGMOD’23]
[ICDE’24]

[VLDB’16]
[ADMS’17]
[CACM’19]

Learn from …..

Learn
Adapt
Refine

Learned Indexes
[ADC’20, SIGMOD’23, ICDE’24, VLDB’25]

• Updateable (on disk) learned indexes
• Indexing via function interpolation
• Spatial learned indexes

• Semantics driven prefetching
• Tailored for (ad hoc) data exploration

DBMS

Fast responses

Fast response

Learned Indexes
[ADC’20, SIGMOD’23, ICDE’24, VLDB’25]

Physical design tuning
[ICDE’21, ICDM’21, VLDB’23, TKDE’23]

Caching/prefetching
[DEBS’22, VLDB’24]

• Updateable (on disk) learned indexes
• Indexing via function interpolation
• Spatial learned indexes

• PD tuning via Multi-Armed Bandits
• Tailored for HTAP, ad hoc workloads
• Provable performance guarantees

• Semantics driven prefetching
• Tailored for (ad hoc) data exploration

https://ai-db-uom.github.io/

Where to go from here?

83

AI-Powered Databases: From a passive data retrieval
provider to a co-pilot for insight discoveries

• What makes some data
interesting?
➢ Measures of interestingness
➢ Novelty discovery

• Can we predict user intent?
➢ Long term and short-term goal

recognition

• Can we recommend queries
that lead to insights?
➢ Query formulation (LMs)
➢ From text to SQL and back

Credit: generated with Gemini

Special thanks to the AI-powered DB team

• My students/postdocs:

– Malinga Perera

– Bastian Oetomo

– Hai Lan

– Farzaneh Zirak

– Guanli Liu

– David Adams

– Lankadinee Rathuwadu

– Dinuka de Zoysa

• Collaborators:

– Benjamin Rubinstein

– Zhifeng Bao

– Farhana Choudhury

– Jianzhong Qi

– Lars Kulik

– Nir Lipovetzky

– Christopher Leckie

– James Bailey

84
And many more (external) collaborators...

Questions?

85
THANK YOU!

Personal website: https://renata.borovica-gajic.com/

Project website: https://ai-db-uom.github.io/

Email: renata.borovica@unimelb.edu.au

Looking for PhD students!

*This work is supported by the Australian Research Council
Discovery Early Career Researcher Award DE230100366,
and L'Oréal UNESCO FWIS’23 Fellowship.

https://renata.borovica-gajic.com/
https://ai-db-uom.github.io/

	Slide 1: AI-powered Databases:
	Slide 2: Data proliferation
	Slide 3: Data proliferation
	Slide 4: Data proliferation
	Slide 5: Need for efficient data exploration
	Slide 6: Need for efficient data exploration
	Slide 7: From data to insight with databases
	Slide 8: How do we minimize data to insight time?
	Slide 9: Data exploration properties
	Slide 10: How do we minimize data to insight time?
	Slide 11: Research gap
	Slide 12: Outline
	Slide 13: Outline
	Slide 14: Physical design (PD) tuning is hard
	Slide 16: Physical design tuning under looking glass
	Slide 20: Embarking the (M) learning train…
	Slide 21: Multi-armed bandits (MAB) for PD tuning
	Slide 23: Index tuning with Multi-Armed Bandits MAB (C2UCB)
	Slide 24: MAB under looking glass…
	Slide 25: MAB to the rescue
	Slide 27: MAB in action
	Slide 31: MAB for Index Tuning: An Example
	Slide 32: HMAB: Hierarchical Multi-armed Bandit Architecture for Integrated Physical Design Tuning
	Slide 34: HMAB in Action
	Slide 37: Dealing with complexity (HTAP)
	Slide 41: MAB Summary
	Slide 42: Outline
	Slide 43: Classic vs learned index layout
	Slide 44: (M) Learned indexes …
	Slide 45: Are learned indexes disk ready?
	Slide 46: Where does time go?
	Slide 47: Design principles for effective on disk learned index
	Slide 48: AULID Index Layout
	Slide 49: AULID Index Layout
	Slide 50: AULID Index Layout
	Slide 51: AULID Index Layout
	Slide 52: AULID Index Layout
	Slide 53: AULID Index Layout
	Slide 54: AULID Index Layout
	Slide 55: AULID Index Layout
	Slide 56: AULID Index Layout
	Slide 57: AULID Index Layout
	Slide 58: AULID Index Layout
	Slide 60: AULID Index Layout
	Slide 61: AULID Index Layout
	Slide 62: AULID Index Layout
	Slide 64: AULID in action
	Slide 66: AULID Learned Index Summary
	Slide 67: Outline
	Slide 68: From data to rapid insights with interactive data exploration
	Slide 69: Prefetching in the current landscape
	Slide 70: Prefetching as timeseries forecasting
	Slide 71: SeLeP Overview
	Slide 72: Block encoding
	Slide 73: Block partitioning
	Slide 74: Semantic Learning
	Slide 75: SeLeP in Action
	Slide 76: I/O Reduction with SeLeP
	Slide 77: SeLeP Adaptivity
	Slide 78: SeLeP Summary
	Slide 82: AI-Powered Databases
	Slide 83: Where to go from here?
	Slide 84: Special thanks to the AI-powered DB team
	Slide 85: Questions?

