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Computing systems have undergone a tremendous change in the last few decades with several inflexion
points. While Moore’s law guided the semiconductor industry to cram more and more transistors and logic
into the same volume, the limits of instruction-level parallelism (ILP) and the end of Dennard’s scaling drove
the industry towards multi-core chips. More recently, we have entered the era of domain-specific architectures
and chips for new workloads like artificial intelligence (AI) and machine learning (ML). These trends continue,
arguably with other limits, along with challenges imposed by tighter integration, extreme form factors and
increasingly diverse workloads, making systems more complex to architect, design, implement and optimize
from an energy efficiency perspective. Energy efficiency has now become a first order design parameter and
constraint across the entire spectrum of computing devices.
Many research surveys have gone into different aspects of energy efficiency techniques implemented in
hardware and microarchitecture across devices, servers, HPC/cloud, data center systems along with improved
software, algorithms, frameworks, and modeling energy/thermals. Somewhat in parallel, the semiconductor
industry has developed techniques and standards around specification, modeling/simulation, benchmarking
and verification of complex chips; these areas have not been addressed in detail by previous research surveys.
This survey aims to bring these domains holistically together, present the latest in each of these areas, highlight
potential gaps and challenges, and discuss opportunities for the next generation of energy efficient systems.
The survey is composed of a systematic categorization of key aspects of building energy efficient systems -
(1) specification - the ability to precisely specify the power intent, attributes or properties at different layers
(2) modeling and simulation of the entire system or subsystem (hardware or software or both) so as to be
able to experiment with possible options and perform what-if analysis, (3) techniques used for implementing
energy efficiency at different levels of the stack, (4) verification techniques used to provide guarantees that the
functionality of complex designs are preserved, and (5) energy efficiency benchmarks, standards and consortiums
that aim to standardize different aspects of energy efficiency, including cross-layer optimizations.
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1 INTRODUCTION
The computing industry has gone through tremendous change in the last few decades. While
Moore’s law [179] drove the semiconductor industry to cram more and more transistors and
logic into the same volume, the end of Dennard’s scaling [72] limited how much we could shrink
voltage and current without losing predictability, and the Instruction Level Parallelism (ILP) wall
(David Wall et al. [253]) defined the start of the multi-core and tera-scale era [128]. As the number
of cores and threads-per-core increased, energy efficiency and thermal management presented
unique challenges. We soon ran out of parallelizability as well, both due to limits imposed by
Amdahl’s law [14] and a fundamental lack of general purpose parallelizable applications and
workloads. Fig 1, referenced from Karl Rupp [210] shows 42 years of microprocessor trends taking
into account transistor density, performance, frequency, typical power and number of cores. The
figure is based on known transistor counts published by Intel, AMD and IBM’s Power processors
and it also overlays the key architectural inflexion points detailed by Henessey and Patterson in
[120]. The graph, as well as studies such as Fagas et al. [92], illustrate that as transistor count
and power consumption continues to increase, frequency and the number of logical cores has
tapered out. Furthermore, as Moore’s Law slows down, while energy efficiency has improved,
power density continues to raise across the spectrum of computing devices (Mack et al. [166]).
With multi-core architectures reaching its limits, the last few years have seen the emergence of
domain specific architectures to attain the best performance-cost-energy tradeoffs for well defined
tasks. Systems also evolved from multi-chip packages to system-on-a-chip (SOC) architectures
with accelerators like Graphics Processing Units (GPU), imaging, Artificial Intelligence (AI)/deep
learning and networking, integrated with high-bandwidth interconnects. Workloads such as deep
learning require massive amounts of data transfer to/from memory, leading to the memory wall,
which is the bottleneck imposed by the bandwidth of the channel between the CPU and memory
subsystems. Recent memory technologies like Non-Volatile Random Access Memory (NVRAM),
Intel’s Optane, Spin Transfer Torque RAM (STT-SRAM), and interfaces such as Hybrid Memory
Cube (HMC) [113] and High Bandwidth Memory (HBM) [150] that enable high-performance RAM
interfaces have pushed the boundaries of the memory wall. Standards such as PCIe [198] and the
more recent Compute Express Link (CXL) [56] are industry standards for integrating accelerators,
memory and compute elements. Deep learning has also triggered looking at the traditional von-
Neumann architectural model and its limits thereof and several non-von Neumann models have
now gained popularity, such as those based on dataflow, spiking neural networks, neuromorphic
computing and bio-inspired computing (Ganguly et al. [101]).

The nature of computing systems has transformed across the spectrum of devices, from being pure
compute-based to being a mixture of CPUs, GPUs, accelerators and Field Programmable Gate Arrays
(FPGA). Heterogeneous computing capabilities are now also available on "edge devices" such as the
Raspberry PI, Google’s Coral Tensor Processing Unit [135] and Intel’s Movidius [58]. As devices
have shrunk, the industry is struggling to eliminate the effects of thermodynamic fluctuations,
which are unavoidable at lower technology nodes (sub-10nm scale). Even as architectures become
more energy efficient, recent research has shown that workloads such as deep learning consumes
significant energy (Schwartz et al. [215]). Ironically, deep learning was inspired by the human brain,
which is remarkably energy efficient. Shrinking and extreme form factors, diverse workloads and
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Fig. 1. Microprocessor trend data during 1972-2020. Hennessey and Patterson, Turing Lecture 2018 [120],
overlaid with "42 Years of Processors Data" [210]

computing models have thus greatly accelerated the limitations imposed by fundamental physics
and architectural, power and thermal walls.
Designing energy efficient systems present unique challenges due to the domain-specific pro-

cessing capabilities required, heterogeneous nature (workloads that can run on CPUs, GPUs or
specialized chips), system architecture (high bandwidth interconnects for the enormous amounts
of data transfer required) and extreme form factors (with devices capable of doing Tiny ML, which
is the ability to do machine learning in less than 1 mW of power [237]). Systems have become
complex to architect, design, implement and verify, with energy efficiency transforming into a
multi-disciplinary art requiring expertise across hardware/circuits, process technology, microarchi-
tecture, domain-specific hardware/software, firmware/micro-kernels, operating systems, schedulers,
thermal management, virtualization and workloads, only to name a few. While specific end systems
(IoT, wearables, servers, HPC) need some techniques more aggressively than others due to the
constraints, the underlying energy efficiency techniques tend to overlap across systems and hence
we need to take a holistic view as we look to improve and architect next generation systems.

1.1 Related Surveys
Several research surveys have looked at energy efficiency techniques used in hardware, circuits/RTL,
microarchitecture and process technology, across the spectrum of computing systems. Another area
of active research has been around modeling and simulation of power, performance and thermals
for individual hardware components (processors, memory, GPUs, and accelerators), system-on-
a-chip (SOC) and the entire system. In parallel, techniques and standards have evolved in the
semiconductor and Electronic Design and Automation (EDA) industry around specification and
verification of large, complex chips. The industry has also collaborated to build highly optimized
software/system level techniques and has defined energy related benchmarks, regulations and
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Table 1. Summary of Energy Efficiency Related Surveys

Topic Key survey or book

Energy efficiency/sustainability, metrics in cloud Mastelic et al. [170], Gill et al. [104]
Energy efficiency techniques in hardware, circuits Venkatachalam et al. [248]

Hardware techniques for energy efficiency in CPUs, GPUs Mittal et al. [176]
Energy Efficiency of compute nodes Kaxiras and Martonosi [141]
Energy efficiency at data center level Barroso and Hoelzle [29]

standards. This survey brings the domains together and presents the latest in each area, highlights
potential gaps/challenges, and discusses opportunities for next generation energy efficient systems.
Some current related research surveys are listed in Table 1 - this list is, by no means exhaustive,
but merely points to some key surveys or books in respective areas.

1.2 Need for a holistic approach to energy efficiency
Designing energy efficient systems is now a virtuous cycle and cannot be done in hardware
or software alone, or in isolation of other domains or components due to diverse architectures,
hardware/software interactions and varied form factors. Power-related constraints have to be
imposed through the entire design cycle in order to maximize performance and reliability. In the
context of large and complex chip designs, reliability and minimizing power dissipation have
become major challenges for design teams, which have dependencies on software as well. Creating
optimal low-power designs involves making trade-offs such as timing-versus-power and area-
versus-power at different stages of the design flow. Additionally, trade-offs that are applied at a
certain phase of the chip have implications on future software techniques that push the boundaries
of what the chip has been designed to do. In many cases, if certain design choices are known ahead
of time, specific workloads will benefit from them with respect to energy efficiency.
Feedback from running real workloads on current generation systems is used in architecting

next generation systems. Architects need to perform "what-if" analysis using different algorithmic
knobs at different stages as illustrated in Figure 2. For example, it is important to simulate different
techniques of frequency state selection, their transition latencies and the impact of these states
on different workloads. Adding or removing power efficiency features can make or break the chip
launch timeline, which could have market implications and could impact the company’s future itself.
The ability to model power consumption of different hardware components across generations of
hardware in a standardized manner has become a key focus of industry efforts such as the IEEE
P2416 standard for power modeling [24]. As another example, the ability to run a real workload
on a simulated future design and making use of new power/performance features is an important
to expose bugs in the underlying hardware. If these bugs are found later in post-silicon, it could
cause unacceptable delays due to a hardware re-spin. Such scenarios need information exchange
across layers of the hardware-software stack - such as new frequency states being exposed, how
the OS and higher layers can make use of it and the ability to model performance gain therein. The
goal of the recent IEEE P2415 [23] is to build cross layer abstractions such as this to facilitate easier
information exchange across different layers of the stack as well as different phases of architecture,
modeling and verification.

Energy efficiency in HPC systems has also become important of late. The Energy Efficient HPC
(EEHPC) [107] Consortium is a group focused on driving implementation of cross layer energy
conservation measures and energy efficient designs HPC systems. The working groups cover several
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Fig. 2. Phases of energy efficient system design

aspects of energy efficient HPC - infrastructure (cooling, highly efficient power sources), algorithms
and runtime (energy and power aware job scheduling), and specifications (Power API). Similarly,
the Global Extensible Open Power Manager (GEOPM) (Eastep et al. [83]) is an open source runtime
HPC framework for enabling new energy management strategies at the node, cluster and data
center level.

Holistic energy efficiency across layers and across phases of evolution is crucial and cannot ignore
any of the platform components; neither can it be done in hardware or software alone and must
encompass all aspects of energy efficient system design - from architecture to modeling/simulating
to implementing and optimizing each component as well as the system as a whole.

1.3 Contributions of This Survey
Previous surveys have looked at energy efficiency in hardware/microarchitecture, at different layers
(software and algorithms) and at different systems (devices, servers, cluster and cloud). In such
surveys, it is assumed that hardware architectures and features of energy efficiency in hardware
evolve on their own, and software then takes the best possible approach by designing energy aware
algorithms. Additionally, several industry trends, benchmarks, standards and consortiums related to
energy efficiency have not been surveyed in detail. As systems become complex, energy efficiency
considerations must be imposed across the entire cycle - from hardware/system architecture, design,
specification, modeling/simulation, to higher layers of software algorithms that use these features to
optimize the system. With that goal in mind, this survey is composed of a systematic categorization
of the following energy efficiency methods across the wide spectrum of computing systems:
(1) Energy Efficiency Techniques: This could be at different levels of the hierarchy - circuit/RTL,

microarchitecture, CPU, GPU or other accelerators, and/or at software/system level.
(2) Specification of the energy efficiency technique: This involves specifying the technique

in a standardized manner, and includes cross-layer abstractions and interfaces (hardware,
hardware-firmware, firmware-OS, and OS-applications).

(3) Modeling and Simulation: Given a set of techniques for energy efficiency, this involves
modeling/simulating the functionality/technique of the component or set of components,
and run real workloads (or traces of a real workload).

(4) Verification: Given each of the above, this involves verifying the energy efficiency of the
entire system with different thermal constraints, real workloads and different form factors.

(5) Energy Efficiency Benchmarks, Standards and Consortiums: Recent trends at standardizing
different aspects of energy efficiency at IEEE and other industry consortiums is an important
area of research/industrial collaboration.

1.4 Organization of this Paper
The rest of the paper is organised as follows:

, Vol. 1, No. 1, Article . Publication date: January 2021.



6 Rajeev, et al.

(1) In Section 2, we discuss the basics of power and energy, thermal dissipation, and fundamental
techniques used to build energy efficient systems.

(2) Section 3 elaborates on recent architectural inflexion points, evolution of energy efficiency
features and upcoming trends.

(3) Section 4 discusses microarchitectural techniques used in CPUs, GPUs, memory and domain-
specific accelerators.

(4) Section 5 discusses specification of power management techniques. Being able to capture
the power intent in a formal description is key to design, modeling/simulation as well as
verification of the system as a whole. This is also fundamental to the Electronic Design
Automation (EDA) industry, IP-reuse and building complex ssytems. We survey specifications
and abstractions at different levels of the hierarchy.

(5) Section 6 covers modeling and simulation of power, performance and thermal dissipation
across processors, GPUs, accelerators, SOC and complete systems. We describe some state of
the art modeling and simulation tools and technologies in use today.

(6) In Section 7, we cover system and software techniques used for energy efficiency. In this, we
cover energy efficiency techniques implemented in firmware, device drivers, and operating
systems such as Linux and Windows. Where relevant, we also provide methods used across
different classes of designs, like mobile processors, data centers, servers, etc.

(7) Section 8 discusses recent advances in system level energy efficiency implemented across real
products from Intel, AMD, ARM, including the emergence of custom-built high performance
ARM designs such as AWS Graviton2, Apple M1 and ARM in HPC.

(8) Section 9 covers verification of power management design and techniques in large SOCs and
systems.

(9) In Section 10, we survey energy efficiency related benchmarks, standards and consortiums that
are trying to address energy efficiency through regulations, standardization of abstractions,
energy/performance models and cross-layer optimizations.

(10) In Section 11, we will discuss the road ahead for next generation of energy efficient systems
and in Section 12, we offer our summary and conclusions.

2 BASICS OF POWER/THERMAL DISSIPATION, ENERGY EFFICIENCY TECHNIQUES
This section provides a very brief background of the basics of power dissipation and how process
technologies impact power. The different components of power dissipation in CMOS devices are
exhaustively covered in Kaxiras and Martonosi [141]. A short summary is provided here.

2.1 Energy Metrics
Energy: Energy, measured in Joules, is one of the most fundamental metrics, and is of wide interest
across all kinds of computing systems today, but especially so in mobile, wearable or IoT platforms
where energy usage relates closely to battery lifetime. This metric is now of significant importance
in larger systems as well. Energy consumption ranks as one of the leading operating costs across
the world today and thus reducing energy usage is crucial for all kinds of computing systems.
Power : Power is the rate of energy dissipation. The unit of power is watts (W), which is Joules

per second. A related metric, power density, is power per unit area. This is useful for thermal studies
and optimization as power spread over a smaller area can be quite challenging, especially without
active cooling, which is the case with most IoT, wearables or smartphones.
Another useful metric is Energy-per-Instruction (EPI), which is used more in the architectural

context. It describes the energy required to execute an instruction.
Energy-Delay Product (EDP) is an important metric that combines energy and performance and

is used for measuring overall energy-performance of workloads. Since EDP is a product of energy
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consumed and the time taken to execute a workload, if either energy or delay increase, the EDP
will increase. Hence, lower EDP is desirable.

2.2 Power Consumption and Dissipation
The primary sources of power dissipation in CMOS devices are:

(1) Switching power or dynamic power
(2) Leakage power

There are other sources as well - short circuit power and static power, however we will stick to
these two major sources as they relate the most to energy efficiency techniques discussed in this
paper. The book by Kaxiras and Martonosi [141] discusses other sources of power dissipation in a
lot more detail.

Thus, the average power is equal to the sum of the dynamic and leakage power.

Pavg = Pdynamic + Pleakage
Pdynamic = 𝐴𝐶𝑉 2 𝑓

The first term dynamic power, or switching power, depends on supply voltage V, clock frequency
f, node capacitance C (which in turn, depends on wire lengths), and switching activity factor A
(how frequently wires transition from 0 to 1, or from 1 to 0). Dynamic power can be lowered by
reducing switching activity and clock frequency, which affects performance; and also by reducing
capacitance and supply voltage.

Leakage power is a function of the supply voltage V, the switching threshold voltage, temperature
and the transistor size. While dynamic power is dissipated only when switching, leakage power is
continuous. Of the different leakage components (reverse bias current, gate oxide leakage, etc.),
sub-threshold leakage power is the most dominant one and it represents the power dissipated by a
transistor whose gate is intended to be off. The main reason behind this leakage is that transistors
do not have ideal switching characteristics, and thereby leak a non-zero amount of current even
for voltages lower than the threshold voltage. In smaller geometries, leakage power has become
the dominant consumer of power. Leakage energy now represents 20–40% of the power budget of
microprocessors in current and near-future fabrication technologies. Techniques such as LTEC (Low
Temperature Effect Compensation) are used to compensate for low/high temperature scenarios
[129].
Techniques such as clock gating are used to save energy by reducing activity factors during a

hardware units idle periods. The clock frequency f, in addition to influencing power dissipation,
also influences the supply voltage. Typically, higher clock frequencies will mean maintaining a
higher supply voltage. Thus, the combined (V, f) portion of the dynamic power equation has a cubic
impact on power dissipation. Strategies such as dynamic voltage and frequency scaling (DVFS) try
to exploit this relationship to reduce power accordingly.

2.3 Thermal Dissipation
Thermal behavior depends on power dissipation and density, since temperature is essentially a
function of how much power is dissipated in a region versus how that region is cooled. On the
other hand, power also depends on temperature. As described in Kaxiras and Martonosi [141],
thermal models can be built on analogies between heat transfer and electrical phenomena. Power
dissipation results in heat, and this heat flows through regions based on their thermal resistance
(R). The amount of heat flow can be analogized to current (I), and the heat difference between two
regions on a chip is analogous to voltage (V ). Because there are time dependencies in both the
power dissipation and in its relationship to heat flow and thermal impedance, a capacitance (C) is
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also modeled. Thus, time-dependent RC models remain the best way to model localized thermal
behavior on a chip. These models are used heavily in building complex thermal models of complete
SOCs and form factors.

2.4 Basic Energy Efficiency Techniques
The basic dynamic power equation

Pdynamic = 𝐴𝐶𝑉 2 𝑓

clearly shows that power consumption can be reduced by reducing the activity factor (A), supply
voltage (V), and operating frequency (f). The fundamental techniques that are used to accomplish
this are clock gating, power gating and dynamic voltage frequency scaling (DVFS).

2.4.1 Clock and Power Gating. Clock gating works by removing the clock signal when the circuit
is not in use, at the cost of adding more logic to a circuit. The key idea is to disable portions of the
circuitry so that the flip-flops in them do not have to switch states (which contributes to dynamic
power). When not being switched, the switching power consumption goes to zero, and only leakage
currents are incurred. The goal here is to reduce or eliminate excess activity that does not have any
effect on the computation being performed. This activity could be at any granularity - from the
tiniest circuits and individual flip-flops, to whole functional units, or even larger structures and
whole subsystems (for example, memory, I/O, CPU).

Power Gating, or gated Vdd approach, is used for larger functional units. In this, the voltage
to the functional unit is shut off. The key idea is as follows: power gating is achieved by using a
suitably sized header or footer transistor for a circuit block that is deemed to be a power-gating
candidate. When the logic detects the onset of a sufficiently long idle period of the target circuit
block, a “sleep” signal is applied to the gate of the header or footer transistor to turn-off the supply
voltage to the circuit block. Similarly, once it is determined that the circuit block is being requested
for use, the “sleep” signal is de-asserted to restore the voltage at the virtual Vdd. Hu et al. [124]
describes several different techniques used in microarchitecture.

2.4.2 Dynamic Power Management. Largely, system level techniques employ either race-to-halt or
crawl-to-idle philosophy. Race-to-halt attempts to reduce dynamic power consumption by proposing
that the highest frequency is used to complete the task as fast as possible, and once finished, drop
back to very low power modes - often turning off or power gating the cores. Race-to-halt attempts
to reduce the delay in completing a task as much as possible in order to reduce the static power
consumption, thereby consuming significantly less power overall. Similarly, crawl-to-idle technique
aims to execute the workload(s) as slowly as possible so that the battery usage is reduced slowly.
Most systems today use a combination of these two philosophies.

System level power and thermal management techniques fall into these broad categories:
(1) Idle power management is essentially doing nothing, efficiently. Idle power management is

used at all levels of hierarchy - from the smallest part of the circuit or microarchitecture
to processor(s), memory controller, hard drives / SSD, network engine, input/output (IO)
subsystems and fabrics/interconnects. OS components - typically device drivers that look
at scheduler load, next expected interrupts, and other heuristics guide the system to lowest
possible idle state through fine grained orchestration among software and hardware.

(2) Active power management is the energy efficient operation of the entire system during active
workloads. This is used for all parts of the logic that use a dynamic operating voltage range
- microprocessors, GPUs, memory subsystem, etc. Many system components run at fixed
voltage, hence this does not apply to them; however, dynamic frequency scaling (DFS) can
be used if that feature is supported. There are several parts of the OS across kernel, device
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drivers, firmware that coordinate DVFS based on the current workload, utilization of the
hardware, and other heuristics.

(3) Duty Cycling - A duty cycle or power cycle is the fraction of one period in which a signal or
system is active. In the context of a computing system, or a specific logic block, duty cycling
can be used to cycle components on/off based on several considerations - currently executing
workload, runtime counters that indicate usage (or expected usage), etc.

(4) Race-to-idle - The concept here is to keep the system in its highest operating state (fre-
quency/voltage) in order to complete the workload as fast as possible and then go to sleep or
its lowest operating state (frequency/voltage).

(5) Crawl-to-halt - Sometimes, depending on the nature of the workload (or phases of the
workload), it may not be ideal to run at the highest operating state. For example, in a battery-
powered device (IoT/wearable), in order to conserve battery for as long as possible, several
system components are kept at lower operating states to maximize usage of the device. This
could mean the workload (or system as a whole) will run slower but battery life is extended
as much as possible.

(6) Thermal management is active or passive cooling based on the form factor, workloads, and
environmental variables. Usually devices operate until the Thermal Design for Power (TDP)
point is breached (or close to being breached), at which point, thermal throttling algorithms
kick in and attempt to reduce the overall temperature of the device by taking specific actions
to reduce the heat dissipation.

2.4.3 Software Guided Power Management. Software and operating systems have evolved over
time to provide complex, configurable policies and mechanisms for power and performance control
of processors and other subsystems.
For idle power management, OSes such as Linux and Windows detect idleness of the CPU,

interconnects, and peripherals to trigger hardware idle states through architectural interfaces. In
Linux, for example, the CPU idle subsystem monitors the CPU and rest of the system for idleness,
next expected interrupt and system QOS requirements to trigger low power states for the CPU and
entire SOC through the MWAIT x86 instruction. In ARM processors, the equivalent interface is the
WFI instruction.

For active power management, current operating systems provide sophisticated control policies
and mechanisms for controlling the CPU, GPU, and some peripherals as well. In Linux, CPUFreq is
a standard framework used for CPU Dynamic Voltage and Frequency Scaling (DVFS). Processors
have a range of frequencies and corresponding voltages over which they may operate. The CPUFreq
framework allows for control of these voltage-frequency pairs according to the load, and user
controllable policies, through components called governors. There are several different governors
based on how the algorithm can be controlled and implemented - performance governor, power-save
governor, user-mode governor, etc. The on-demand governor is one of the most popular governors
[194], which, as the name indicates, controls the CPU DVFS based on the load. The interactive
governor is suited for touchscreen-based mobile devices that require optimized burst performance
for on-screen usages. The Intel P-state driver can operate in two different modes, active or passive.
In the active mode, it uses its own internal performance scaling governor algorithm or allows the
hardware to do performance scaling by itself, while in the passive mode it responds to requests
made by a generic CPUFreq governor implementing a certain performance scaling algorithm. All
of these are described in detail in the Linux kernel documentation [75] and the Intel P-state driver
is described in more detail in [142].
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3 ARCHITECTURAL TRENDS AND SYSTEM LEVEL ENERGY EFFICIENCY
John Hennessy and David Patterson, in their recent ACM Turing award lecture and publication
[120] trace the history of computer architecture and touch upon some of the recent trends, including
domain-specific architectures (DSA), domain-specific languages (DSL) and open instruction set
architectures such as RISC-V (Patterson et al. [196]). In this section, we elaborate on some of the key
observations highlighted in Hennessey and Patterson [120], look at how the underlying architecture
of computing systems has transformed in the last couple of decades due to several fundamental
laws and limits, and focus on system level energy efficiency. Markov [169] discusses some of these
trends as well, specifically with regard to limits on fundamental limits to computation. We will look
at the trends, inflexion points and their respective impact on system level energy efficiency detailed
in Table 2. This list is, by no means exhaustive, however it aims to illustrate the influence of key
inflexion points on energy efficiency.

3.1 Moore’s Law, Dennard Scaling and Instruction-Level Parallelism
Moore’s Law [179] has enabled the doubling of transistors on chips approximately every 18 months
through innovations in device, process technology, circuits and microarchitecture, and this has
in turn spurred several innovations in system software, applications, thermal management, heat
dissipation, advanced packaging and extreme form factors. It is interesting to note that Gordon
Moore had himself predicted a slowdown in 2003 as CMOS technology approached fundamental
limits (Moore [180]). In addition to this, there have been other important laws that have shaped
computer systems. One such is Dennard Scaling [72]. Robert Dennard observed in 1974 that power
density stays constant as transistors get smaller. The key idea was that as the dimensions of a
device go down, so does power consumption. For example, if a transistor’s linear dimension shrank
by a factor of 2, that gives 4 times the number of transistors. If both the current and voltage are
also reduced by a factor of 2, the power it used would fall by 4, giving the same power at the
same frequency. While this law held, smaller transistors ran faster, used less power, and cost less.
During the last decade of the 20th century and the first half of the 21st, computer architects made
the best use of Moore’s Law and Dennard scaling to increase resources and performance with
sophisticated processor designs and memory hierarchies that exploited instruction level parallelism
(ILP). Dennard scaling, however, soon ended because current and voltage could not keep dropping
while remaining dependable. Recently, near-threshold and sub-threshold voltage technologies [189]
are attempting to push these boundaries.
Instruction Level Parallelism (ILP) can be implemented through several different techniques,

and the amount of ILP in programs can be application specific. Scientific computing, graphics
applications may exhibit high ILP whereas workloads such as cryptography may not. Micro-
architectural techniques that are used to exploit ILP include:

(1) Instruction pipelining: Here the execution of multiple instructions can be partially overlapped
thereby reducing the overall Clocks-per-instruction (CPI).

(2) Superscalar execution, Very Long Instruction Word (VLIW), Explicitly Parallel Instruction Com-
puting (EPIC): In these, multiple execution units are used to execute multiple instructions
in parallel. In superscalar designs, multiple instructions can be executed in a clock cycle by
dispatching multiple instructions to different execution units on the processor (Palacharla et
al. [192]). There were several variations of this architecture as well, such as the Ultrascalar
(Henry et al. [121]) and Multiscalar processors (Sohi et al. [226]). In Very Long Instruction
Word (VLIW) designs, one VLIW instruction encodes multiple operations with at least one
operation for each execution unit. Efficiency of VLIW architectures relies heavily on com-
pilers to correctly schedule operations (Fisher [95]). EPIC architectures evolved from VLIW
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Table 2. Trends in system architecture and energy efficiency

Architectural Trends Energy Efficiency Features

Moore’s Law[179], ILP wall (David Wall
[253]), Dennard Scaling[72]

Increased performance via superscalar,
VLIW arch, Clock/power gating, proces-
sor, cache, memory sleep states, Dynamic
Voltage Frequency Scaling (DVFS), power
delivery improvements

Multi-cores[128], Amdahl’s limit (Amdahl
[14], Hill et al. [122])

OS guided / controlled sleep states, fine
grained clock/power gating, per-core, per-
module DVFS, on-die voltage regulators

Memory wall, Phase Change Memory
(PCM) [149], Magneto-resistive RAM
(MRAM)[105], Spin Transfer Torque RAM
(STT-RAM)[147], Resistive RAM (ReRAM)
[208]

Memory DVFS (Deng et al. [71], David et al.
[67]), system level techniques for memory
power management[16]

Domain-specific architectures such as pro-
grammable network processors (Li et al.
[155]), deep learning chips (Jouppi et al.
[135]), Intel Mobileye[188]

Chip/IP-level clock/power gating, DVFS

Dark silicon challenges (Esmaeilzadeh et
al. [89]) Fine grained power domains and islands

High bandwidth interconnects Standards like CXL[56] and PCIe [198]
Non von-Neumann architectures (David
Culler [66], SpiNNaker[200], Thakur et al.
[235])

Energy-aware dataflow architectures

Combining von Neumann and non-von
Neumann chips (Nowatzki et al. [187]) Emerging area, mix of different techniques

Power delivery miniaturization
On-die/chip voltage regulators, software
control, reconfigurable power delivery (Lee
[152])

Programmable architectures - FPGAs Energy-aware FPGAs, still in nascent stage

Energy Proportional Computing[30] Energy-aware data centers, system compo-
nents

Near/sub-threshold voltage
designs[96][178], 3D stacking[161],
and chiplets[63]

Ultra low voltage designs, Thermal algo-
rithms

Thermodynamic computing [57], Landauer
Limit [148] and Quantum Computing [109]

Emerging areas, system architectures un-
clear / evolving

(Schlansker and Rau [213]), but retained many concepts of superscalar architectures, and
formed the foundation of many generations of Intel processors, including Itanium. While
VLIW and EPIC architectures did not gain popularity in mainstream processors, some domain-
specific chips have used VLIW architectures. For example, AMD’s TeraScale GPU [1] was
based on VLIW and more recently, Intel’s Movidius [58] is a VLIW-based low power inference
chip.
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(3) Out-of-order execution: In this, instructions execute in any order as long as they do not violate
data dependencies. This can be implemented on any of the above architectures (pipeline-based
on superscalar).

(4) Register renaming is used to avoid unnecessary serialization of program operations when
hardware registers are used to store program operands. This technique, originally devised as
Tomasulo’s algorithm [238], is widely used in almost all processor architectures today.

(5) Speculative execution: This allows the execution of instructions before being certain whether
the instruction would be executed, and is implemented by using techniques such as control
flow speculation, memory dependence prediction, etc.

(6) Branch prediction: This is used to avoid stalling, and is heavily used with speculative execution.
While some of these ILP improvement techniques ran out of steam due to various reasons

[253], many of these techniques are still used today in modern processors. Even as ILP limits were
worked around through afore mentioned techniques, the industry started to switch from single
energy-hogging processors to multiple efficient processors or many cores per chip, ushering in the
many/multi-core era. Recent times have also seen hybrid designs that combined low power/low
performance and high power/high performance cores, like ARM’s BIG.LITTLE architecture [246]
and the recent Intel Lakefield chip [63]. Hameed et al. [117] explore the sources of performance and
energy overheads of common workloads on a general purpose CMP system, and look into methods
to eliminate these overheads by customizations to CPU cores. The general approach is that as ASICs
are significantly more energy efficient than general purpose CMP systems, achieving comparable
energy reduction requires algorithm-specific optimizations, such as specialized functional units.
Even as Moore’s Law slows down, transistor density scaling has continued to be exponential, as
illustrated in Figure 1. Etiemble [91] describes evolution of CPUs over the last 45 years.

3.2 Multi-core era, Amdahl’s law
There were limits to the multi-core era too, as dictated by Amdahl’s law [14], which states says
that the theoretical speedup from parallelism is limited by the sequential part of the task; so, for
example, if 1

8 th of the task is serial, the maximum speedup is 8 times the original performance, even
if the rest is easily parallelizable and we add any number of processors. Hill et al. [122] elaborate
on the impact of this law on multi-core chips.
Let speedup be the original execution time divided by an enhanced execution time. Amdahl’s

law states that if we enhance a fraction f of a computation by a speedup S, the overall speedup is:

Speedupenhanced (𝑓 , 𝑆) =
1

(1 − 𝑓 ) + 𝑓

𝑆

More specifically, if we are using n processor cores:

Speedupparallel (𝑓 , 𝑛) =
1

(1 − 𝑓 ) + 𝑓

𝑛

3.3 The Problem of Dark Silicon
For decades, Dennard scaling permitted more transistors, faster transistors, and energy efficient
transistors with each new process node, justifying the costs required to develop each new process
node. Dennard scaling’s failure led the industry to race down the multicore path, which for
some time permitted performance scaling for parallel and multitasking workloads, permitting the
economics of process scaling to hold. The next problem that all chips have had to deal with over the
last decade is that of dark silicon. Several studies, like Esmaeilzadeh et al. [89] show that regardless
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of chip organization, architecture or topology, the runtime software (at OS/firmware/hardware
levels) must essentially shut off several parts of the silicon due to fundamental power and thermal
limits. This part of the hardware is termed as dark silicon.

Due to dark silicon, even if the increased number of transistors is used to implement additional
processor cores, not all available cores can be powered at the same time, to avoid overloading the
thermal budget of the chip. Recent designs, especially in power-constrained devices, use dedicated
co-processors to run particular tasks in a power-optimized fashion that can be turned off when
not in use. These designs rely heavily on aggressive power gating, dynamic voltage and frequency
scaling and are organized into fine-grained power and voltage domains. Software and operating
system guided energy efficiency is all the more paramount since higher layer of intelligent software
should devise strategies for aggressively powering on/off different components of the system based
on the usage scenario.

Other techniques are being explored as well to mitigate the effect of dark silicon. Asynchronous
circuits is one such technique. While synchronous circuits use a single global control signal, which
is active at times even when there is no processing needed in a particular pipeline, asynchronous
circuits are only active when workloads are in local pipelines. Techniques like desynchronization
are used to convert a synchronous circuit into an asynchronous one. Boundary synchronization
is another technique that is used to perform synchronization of signals as they cross clock and
voltage domains. Krstic et al. [146] provide a detailed survey of Globally Asynchronous, Locally
Synchronous (GALS) circuits. Another method for reducing power consumption in asynchronous
circuits is energy modulated computing (Yakovlev [258]). Here, asynchronous logic uses the power
available to it and adjusts the performance to meet that energy level.

3.4 Memory wall, improved memory technologies
Dynamic Random Access Memory (DRAM) has been the mainstay of memory systems over the
last few decades across almost all computing systems. As applications/workloads evolve, the data
set sizes have rapidly grown, along with an increase in the need for rapid analysis of such data.
Moving data from memory to the processing unit and back turned out to be a limiting factor for
both performance and power consumption, especially for workloads such as deep learning that
involve repetitive operations on large data sets. This limiting factor is termed the von Neumann
bottleneck, or memory wall, which is essentially the bottleneck imposed by the bandwidth of the
channel between the CPU/GPU or accelerator and the memory subsystem. While GPUs were a good
fit for the computational elements of deep learning algorithms, the limitations from the memory
wall proved to be the next obstacle to overcome. For these real-time big data workloads, DRAM
was not big enough and traditional storage was not fast enough.

DRAM scaling faces significant challenges; Mandelman et al. [167] describe how the scaling
techniques used in earlier generations are encountering limitations that require major innovations.
Mutlu [183] describes in detail the demands and challenges faced by the memory system, and
examines some recent research and industrial trends to overcome these challenges, primarily
around new DRAM architectures, better integration of DRAMwith the rest of the system, designing
new memory systems that employ emerging memory technologies and providing predictable
performance and QoS as workloads become more data-movement intensive.

Improvements in memory technology over the last two decades has focused on newer memory
technologies, improving energy efficiency of the memory systems, and more recently, embedding
logic closer to, or along with, memory. Each of these are now briefly described.

3.4.1 Newer Memory Technologies. Phase Change Memory (PCM) (Lee et al. [149]) is an alternative
to DRAM and provides a nonvolatile storage mechanism that scales well. Raoux et al. [206] discuss
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the critical aspects that may affect the scaling of PCM-based RAM, including material properties,
power consumption during programming and read operations, thermal cross-talk between memory
cells, and failure mechanisms. Wong et al. [256] survey the electrical and thermal properties of
phase change materials with a focus on the scalability of the materials and their impact on device
design. The authors also provide an in-depth review of innovations in device structure, memory
cells, strategies for achieving 3D high-density memory arrays. Scalability implies lower main
memory energy and greater write endurance. In the original PCM architecture, during writes, an
access transistor injects current into the storage material and thermally induces phase change,
which is detected as a programmed resistance during reads. Since PCM relies on analog current
and thermal effects, it does not require control over discrete electrons. As technologies scale and
heating contact areas shrink, programming current is expected to scale linearly. Starting with
a 32nm device prototype, this has now led to generations of products in the industry including
Numonyx, Western Digital, Samsung and Intel/Micron’s 3D Xpoint memory. Intel, for example,
has developed two different ranges of mass volume products based on PCM [16] - standards-based
PCIs Optane Solid State Drives (SSD)s that are broadly compatible with a wide range of systems,
and as an on-board memory caching/acceleration device.

While PCM-based technologies like Intel Optane have started seeing deployments in datacenters,
magneto-resistive RAM (MRAM) has shown promise for low power IoT devices. Data in MRAM
is not stored as electric charge or current flows, but by magnetic storage elements formed from
two ferromagnetic plates, each of which can hold a magnetization, separated by a thin insulating
layer. One of the two plates is a permanent magnet set to a particular polarity; the other plate’s
magnetization can be changed to match that of an external field to store memory. This configuration
is known as a magnetic tunnel junction and is the simplest structure for an MRAM bit. A memory
device is built from a grid of such "cells". MRAMs are non-volatile like PCM, very fast with read/write
latencies of around 35 nanoseconds, reliable at different temperatures, consume very low power
and can be manufactured at leading process nodes - IBM recently announced a 14nm MRAM node
[208]. However, due to its lower density, MRAMs is expected to be more applicable to smaller IoT
devices.

Non-volatile Spin Transfer Torque Random Access Memory (STT-RAM) (Chen et al. [49]) com-
bines the capacity and cost benefits of DRAM, the fast read and write performance of SRAM and the
non-volatility of Flash memory with improved endurance. STT-MRAM is a variation of MRAMs and
it works by controlling electron spin with a polarizing current, requiring less switching energy than
MRAMs, thereby bringing power consumption down. It has near-zero leakage power, lower active
power consumption scalability and simpler manufacturing beyond 45nm. Kültürsay et al. [147]
showed that an optimized, equal capacity STTRAM main memory can provide performance compa-
rable to DRAM main memory, with an average 60% reduction in main memory energy. STT-RAM
can be added to memory controllers to improve caching performance and power-loss protection, and
can be scaled with technology nodes - Intel recently announced their production-ready STT-RAM
array integrated with 22nm process [105].

Resistive RAM (ReRAM) (Bhattacharjee et al. [35]) is another type of non-volatile memory that
works by changing the resistance across a dielectric solid-state material, also known as memristor.
It consumes low power, exhibits high density, and a performance profile that makes it amenable to
structure it in between DRAM and flash-based storage. While MRAM’s characteristics make it more
suitable for IoT devices, ReRAM bridged the gap between server memory and SSDs thereby making
it a candidate for datacenters. Another interesting facet of ReRAMs (and memristors in general)
is that they mimic the human brain’s biological computation at the neuron and synaptic level.
Mehonic et al. [172] describe how memristor technology has the potential to scale computation
beyond traditional von-Neumann computing models and can help with energy-efficient deep
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learning accelerators and spiking neural network based architectures. Wong et al. [255] describe the
physical mechanism, material properties and electrical characteristics behind binary metal-oxide
resistive RAM. Due to the improvements in endurance, retention, multi-bit operation and scalability,
large-scale RRAM arrays are now possible.

3.4.2 Energy Efficiency Techniques for Memory Systems. Several techniques to optimize DRAM-
based systems have been explored and implemented in research and commercial systems, a few
of which are highlighted here. Lee et al. [151] describe the power and performance relationship
of modern DRAM devices. In [110] and [111], Ha et al. provide an exhaustive analysis of state-of-
the-art DRAMs, LPDDR4, HBM and describe the design and implementation of several energy
reduction techniques by optimizing accesses (Half page DRAM technique reduces energy by 38%)
and refresh cycles (Charge Recycling Refresh technique conserves 32% energy and Smart Refresh
improves this even further). Similarly, Liu et al. [164] propose RAIDR (Retention-Aware Intelligent
DRAM Refresh), a mechanism that can identify and skip unnecessary refreshes using knowledge
of cell retention times. This is done by grouping DRAM rows into retention time bins and applying
a different refresh rate to each bin, thereby reducing the refresh cycles of less frequently used
bins/cells. This technique achieves an impressive 74% refresh reduction leading to a DRAM power
reduction of 16%. Chang et al. [46] explore reducing the DRAM supply voltage more aggressively to
reduce energy consumption by studying about 125 real LPDDR3 DRAM chips. They find that while
reducing supply voltage introduces bit errors, they can be avoided by increasing the latency of key
DRAM operations such as activation, restoration and precharge. They also propose a technique
called Voltron, which uses a performance model to determine how much the supply voltage can be
dropped without errors. These improvements outperform previous DRAM DVFS algorithms for
memory intensive workloads.
Going beyond the DRAM subsystem itself, several approaches to using DVFS have been re-

searched and implemented, both for the memory subsystem itself, as well as coordinated DVFS
across CPU, memory and other subsystems. The advent of Memory DVFS, which is the ability
to dynamically scale the voltage and frequency of the memory subsystem, independent of CPU
DVFS, allowed for optimizing the system as a whole from an energy efficiency perspective. There
have been several approaches to this. One of the earliest approaches was to adjust CPU DVFS
based on memory accesses, so that the memory subsystem could enter idle low power states if
the CPU was busy executing computations and there were no pending memory operations. For
example, Liang et al. [160] demonstrated how performance monitoring counters could be used
to alter CPU DVFS and help lower system energy consumption in an embedded device. Howard
et al. [67] was one of the earliest works in memory DVFS that demonstrated a simple control
algorithm that adjusts memory voltage and frequency based on memory bandwidth utilization, and
was implemented on a real system. Deng et al. [71] describe MemScale, a technique that leverages
dynamic profiling, performance and power modeling, DVFS of the memory controller, and DFS of
the memory channels and DRAM devices, all done independent of CPU DVFS. MemScale is guided
by an operating system policy that determines the DVFS/DFS mode of the memory subsystem based
on the current need for memory bandwidth, the potential energy savings, and the performance
degradation that applications are willing to withstand. Bianchini et al. [70] describe CoScale, for
coordinating memory and CPU DVFS in server systems. CoScale relies on execution profiling of
each core through performance counters, and models of core and memory performance and power
consumption. It uses fixed-size epochs (matching an OS time quantum). In each epoch, there is
a system profiling phase followed by the selection of core and memory subsystem frequencies
that minimize total system energy while maintaining performance within the target bound. The
advent of GPUs and memory bandwidth hungry workloads extended this concept to coordinated
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CPU, GPU and memory DVFS using performance and power monitoring counters. Chau et al. [47]
describe a scheduling algorithm that optimizes the CPU and GPU DVFS states based on currently
running workloads and their predicted runtime. Most recent systems from Intel, AMD, NVIDIA,
etc. support independent DVFS for CPU, GPU, memory, along with techniques such as dynamic
memory throttling (inserting idle cycles between reads and writes). Mittal and Vetter [177] present
a survey of these CPU-GPU coordination techniques.

3.4.3 Processing In Memory (PIM). With recent advances in existing memory systems, and the
advent of newer memory techniques, integration of memory and logic, an old idea, has re-emerged.
Mutlu et al. [184] describe this in exhaustive detail and we use the same terminology here. Broadly
this is called processing-in-memory and it involves placing computation mechanisms in or near
where the data is stored (memory chips, or the logic layer, or the memory controllers, etc.), so
that data movement is reduced or eliminated. Processing-In-Memory (PIM) is also called Near-Data-
Processing. PIM involves the following categories of techniques:
(1) Processing using memory - In this category, the idea is to improve overall energy effi-

ciency and performance. Boroumand et al. [39] analyze the energy and performance impact
of data movement for several widely-used Google consumer workloads such as Chrome
browser, TensorFlow Mobile (Google’s ML framework) and video playback/capture. The
authors observe that data movement accounts for almost 63% of the total energy consumed.
Further, as most of the data movement is generated from simple functions/primitives (such
as memcopy, memset), implementing these primitives in PIM hardware reduces the system
energy by almost 55% with a corresponding 54% increase in system performance. Shuangchen
et al. [157] propose DRISA, a DRAM-based Reconfigurable In-Situ Accelerator architecture
that uses DRAM memory arrays that can be reconfigured to compute various Boolean logic
functions. They also optimize for high performance by simultaneously activating multiple
rows and sub-arrays, thereby providing massive parallelism and unblocking internal data
movement bottlenecks, leading to improved performance and energy consumption at the
system level as compared to ASICs and GPUs. Similarly, Seshadri et al. [218] and [219]
propose two different techniques that can be used in existing DRAM systems with minium
modifications. Seshadri et al. [218] propose RowClone, a mechanism to perform bulk copy
and initialization completely within DRAM by optimizing copy operations between rows
and also by using the shared internal bus of a DRAM chip to copy data between two banks.
These techniques yield a 11X latency reduction and 75X energy reduction for typical copy
operations. Seshadri et al. [219] propose Ambit, an easy to implement architecture for ex-
isting DRAM systems to optimize bulk bitwise operations, which are the major component
of database, websearch and neural network workloads. Ambit is an acclerator-in-memory;
with minimum changes to the DRAM sense amplifiers, existing DRAM can perform bulk
bitwise operations. With these modifications, Ambit shows a 32x performance improvement
and 35X energy reduction. Integration with HMC improves the bulk bitwise operations by
10X as well. For accelerating deep neural network workloads (CNNs and DNNs), Shafiee et
al. [220] propose ISAAC, an In-Situ Analog Arithmetic in Crossbars. The key idea in this
technique is to use the memristor crossbar array not only to store input weights, but also
to perform dot-operations in an analog manner. They design a pipelined architecture, with
some crossbars dedicated to each neural network layer, and eDRAM buffers that aggregate
data between pipeline stages. ISAAC demonstrates a 15X improvement in throughput and
a 5X reduction in energy consumption. Exploring similar ideas for non volatile memories,
Shuangchen et al. [158] propose Pinatubo, a PIM architecture for bulk bitwise operations
in non volatile memories. In this technique, they redesign the read circuitry so that it can
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compute bitwise logic of two or more memory rows efficiently and can perform one-step
multi-row operations. Pinatubo demonstrates a 500X speedup and 28000X energy savings
as compared to conventional systems. Prezioso et al. [203] discuss similar techniques for
crossbar architectures for neuromorphic metal-oxide memristor circuits. They make the
observation that the extreme complexity of the human cerebral cortex makes the hardware
implementation of neuromorphic networks with a comparable number of devices exception-
ally challenging. CrossNets based on hybrid CMOS/memristor circuits, where CMOS stack
is augmented with crossbar layers, seem promising, even though each crosspoint requires
an additional transistor. Ping et al. [51] propose using ReRAM for main memory. Given
ReRAM’s crossbar array structure, ReRAM-based memory can perform matrix operations
efficiently and is therefore interesting for neural network workloads. The authors propose
a novel PIM architecture called PRIME, where a portion of ReRAM crossbar arrays can be
configured as accelerators for NN applications or as normal memory for a larger memory
space, along with a hardware/software interface to optimize neural workloads. Their results
demonstrate a 2360X improvement in performance with a 895X improvement in energy con-
sumption, when compared with a state-of-the-art neural processing unit design. Ambroglio
et al. [12] describe an analogue non-volatile memory implementation for accelerated neural
network training. Analogue non-volatile memory can accelerate the neural-network train-
ing algorithm known as backpropagation by performing parallelized multiply–accumulate
operations in the analogue domain at the location of the weight data. The authors demon-
strate mixed hardware–software neural-network implementations that combine long-term
storage in phase-change memory, near-linear updates of volatile capacitors and weight-data
transfer with ‘polarity inversion’ to cancel out inherent device-to-device variations. The
techniques demonstrate a 2X improvement of energy efficiency and performance as compared
to traditional GPUs.

(2) Processing near memory - The idea behind this technique is to take advantage of computa-
tion capability in conventional memory controllers or the logic layer(s) of 3D-stacked memory
technologies. This can be done with current memory and packaging technologies such as 3D
stacking. 3D stacking technology is becoming an instrument for scaling system performance
and densities because of increased inter-layer bandwidth, reduced inter-layer latency and
ability to integrate dies from different process technologies as a means of customization
(Knickerbocker et al. [145]). 3D-stacking technology enables the integration of DRAM and
logic offering high bandwidth and reduced energy consumption. Architectures such as High
Bandwidth Memory (HBM) (Lee et al. [150]) and Hybrid Memory Cube (HMC) (Hadidi et al.
[113]) are some of the recent near-memory compute systems built with 2.5D/3D stacking.
HMC is a 3D-stacked DRAM device and comprises of several DRAM dies with a logic layer
connected vertically with Through-Silicon-Vias (TSVs) (Hadidi et al. [113], Pawlowski et al.
[197]). Energy efficiency is achieved by offloading tasks onto bandwidth-rich processing
units embedded in the logic layer of the 3D-stacked memory. It has a memory hierarchy that
enables large number of simultaneous memory accesses. Each DRAM layer in HMC is divided
into a number of equal partitions. Vertically aligned partitions of all layers form a vault.
All vaults are functionally and operationally independent from each other and are further
divided into banks. Such a hierarchical architecture allows high memory level parallelism
(MLP) in the hardware which can be exploited well by applications that require it. Also, HMC
layers are connected through TSV links which are equivalent to shortened interconnection
paths with reduced connectivity impedance allowing higher data movement rates with lower
energy-per-bit. Additionally, there are controllers placed in the memory system itself giving
HMC the freedom to interact with the memory array more efficiently based on data location

, Vol. 1, No. 1, Article . Publication date: January 2021.



18 Rajeev, et al.

(device, vault, bank, row and column) and memory-device timing parameters. Thus, HMC
is a promising solution for achieving high energy efficiency for memory-intensive applica-
tions. Junwhan et al. [8] propose Tesseract, a programmable PIM accelerator for large scale
graph processing using 3D integration. Tesseract is composed of new hardware, an efficient
method of communication between different memory partitions and a programming interface
to exploit the unique hardware design. They achieve 10X performance improvement and
87X energy reduction over conventional systems across state-of-the art graph processing
workloads with large real-world graphs.

Taking a completely new approach,Mohamed et al. [211], describe N3XT, a completely re-architected
system using new logic and memory technologies, 3D integration with fine-grained connectivity
and new architectures for computation in memory. N3XT uses 1D carbon nanotubes, ReRAMs,
STT-MRAM, 3D integration of computing and memory, embedded cooling techniques and new
microarchitectures and system runtimes. The authors demonstrate the effectiveness of N3XT by
using system-level energy-delay product (EDP) - the product of total energy consumption and total
execution time. Experimental prototypes of the N3XT technologies demonstrate 10-100X EDP
benefits.

3.5 Domain Specific Architectures and the limits of chip specialization
Domain Specific Accelerators (DSA) are architectures that are tailored to a specific problem domain
and offer significant performance and efficiency gains for that domain. Some examples are GPUs,
neural network processors for deep learning and programmable network processors for high speed
packet forwarding in software-defined networks (SDNs).
DSAs for high speed packet processing accelerators have been implemented over the decades

starting with ASICs/DSPs to FGPAs and dedicated programmable network processors. In these core
internet routers and switches, data plane algorithms must be implemented in hardware in order
to do packet processing at line rate of 100s of Gigabits/sec, and they must also be programmable.
Several generations of such programmable networking devices form the internet backbone today.
Li et al. [155] discuss P4GPU for high speed packet processing. The P4 language is an emerging
domain-specific language for describing the data plane processing at a network device. P4 has been
mapped to a wide range of forwarding devices including NPUs, programmable Network Interface
Chips (NICs) and FPGAs. In Sivaraman et al. [224], the authors show how to program data-plane
algorithms in a high-level language and compile those programs into low-level microcode that can
run on emerging programmable line-rate switching chips using the notion of packet transactions,
an atomic packet-processing sequence of code.
Domain specific accelerators for camera/imaging, deep learning, amongst others, have been

implemented in several industrial devices in the last 15 years. For example, Qualcomm’s Snapdragon
SOC contains a Hexagon cores [133] for AI processing in camera, voice, VR and gaming applications.
PowerVR’s Neural Net Accelerator (NNA) [234] is used in several phones/devices. Similarly, Apple’s
Neural Engine is an AI accelerator core within the Apple recent Bionic SoC [233]. Google has
built the Tensor Processing Unit (TPU) (Jouppi et al. [135]) that is an ASIC optimized for machine
learning and is specifically designed for its TensorFlow framework, which is extensively used for
CNNs. Similarly, Intel’s Myriad 2 [58] is a many-core VLIW AI accelerator complemented with
video fixed function units and is reported to be capable of operating in the sub-1W range and
delivering 300 GOPS or just over 1 TOPS per watt [59]. Intel’s Mobileye’s EyeQ [188] is a processor
specialized for vision processing for self-driving cars.
The trend of domain specific architectures continues especially in the areas of AI/ML, edge

computing for vision/recognition, low power audio processing, and several others. However, much
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of the benefits of chip specialization stem from optimizing a computational problem within a given
chip’s transistor budget. As detailed in Fuchs and Wentzlaff [97], for 5nm CMOS chips, the number
of transistors can reach 100 billion; however not all of them can be utilized due to the challenge
of dark silicon. Chips will be severely limited by thermal budgets. This will also cause stagnation
of the number of useful transistors available on a chip, thereby limiting the accelerator design
optimization space, leading to diminishing specialization returns, ultimately hitting an accelerator
wall in the near future.

3.6 SOC Integration, evolution of software power management
Computing systems have transformed from predominantly CPU-based systems to more complex
system-on-a-chip (SOC) based ones with highly integrated single/multi-core CPUs, newer memory
technologies/components, domain-specific accelerators for graphics, imaging, deep learning, high
speed interconnects/ peripherals and multi-comms for connectivity. The more recent Compute
Express Link (CXL) [56] is an industry standard to integrating accelerators, memory and compute
elements. Similarly, PCI [198] have emerged as standards for high bandwidth, low power intercon-
nects between CPU cores, memory and accelerators. As systems have become more capable in terms
of their performance and capabilities, their energy consumption and heat production has also grown
rapidly. The explosion of highly powerful and complex SOCs across all kinds of computing systems
have surpassed the rate of evolution of software thereby presenting unique challenges to meet
the power and thermal limits. From a systems perspective, such platforms present wide ranging
issues on SOC integration, power closure/verification, hardware/software power management and
fine-grained thermal management strategies. This is perhaps a unique phase in the semiconductor
industry which has always prided on a specific cadence of hardware growth and the assumption
that software will always be ready to meet the requirements of the hardware. In order to meet the
needs of complex SOCs, operating system and software-guided power management infrastructures,
frameworks, and algorithms have evolved different hardware/software techniques. Embedded real
time operating systems and open source operating systems such as Linux have developed several
software techniques and frameworks to perform aggressive system level power, performance and
thermal management such as tickless scheduling (Siddha et al. [231]), DVFS frameworks [75],
idle power management (Pallipadi [193]), active/runtime power management [80], and various
energy efficient system standby states. Windows has also standardized Connected Standby, Modern
standby [65] and several more energy efficiency strategies and algorithms to manage idle and
active workloads. Both Linux and Windows kernel device drivers also implement aggressive energy
management techniques at the system level through workload aware PCI link power management
(to put internal PCI links in low power state dynamically), network/communications power man-
agement, only to name a few. Thus, software guided and software controlled energy efficiency have
gained significant importance for complex SOCs and systems.

3.7 Advent of non-von Neumann architectures
Traditional architectures have largely followed the von Neumann computing model. One of the
major deviations from von Neumann architectures, dataflow machines were proposed a couple of
decades ago (Culler [66]) and Veen [247]. However, they were severely limited by the availability
of data movement infrastructures, effective software parallelism and functional units in hardware
(Gurd et al. [108]). Thus, dataflow machines did not see commercial deployment for general
purpose computing. However, dataflow architectures have been used significantly in implementing
specialized hardware for digital signal processing (DSP), graphics processing, imaging/video engines,
etc.
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More recently, dataflow or near-dataflow architectures have been applied to AI/ML workloads.
Deep learning workloads are largely free of control flow and are instead steered by availability of
data for executing a predetermined set of operations. Embodying this algorithmic characteristic,
dataflow based systems are being developed which are completely controlled by data flow and not by
control. The algorithmic parallelism that such workloads exhibit makes them perfect candidates for
dataflow modeling which has the potential of reducing energy consumption by orders of magnitude
as compared to their execution on control flow based systems. Most architectures for deep learning
acceleration work towards optimizing the data size or the number of operations to be performed
which may hold relevance for better performance but do not necessarily translate into energy
efficiency. As discussed in Yang et al. [259], there are two reasons to this, data movement and not
the computation requires more energy and that the flow of data along with the levels in memory
hierarchy have a major impact on energy efficiency.
Chen et al. [50] propose Eyeriss, an optimized algorithmic dataflow for CNNs by exploiting

local data reuse and optimization of intermediate data movement. Tetris (Gao et al. [102]) uses the
dataflow model of Chen et al. [50] along with scheduling and partitioning in software to implement
CNN acceleration in HMC. In Farabet et al. [93], the authors present Neuflow, a compiler that
transforms high level dataflow graphs into machine code representations. Li et al. [154] present
SmartShuttle, a framework that adaptively switches among different data reuse schemes and the
corresponding tiling factor settings to dynamically match different convolutional layers. Its adaptive
layer partitioning and scheduling scheme can be added on existing state-of-the-art accelerators to
enhance performance of each layer in the network. The industry has also seen some innovative
products in this space. Wave Computing (Chris Nichol [186]), Chaudhuri et al. [48]) present an
implementation of a dataflow architecture as an alternative to train and process DNNs for AI
especially when models require a high degree of scaling across multiple processing nodes. Instead
of building fast parallel processors to act as an offload math acceleration engine for CPUs, Wave
Computing’s dataflow machine directly processes the flow of data of the DNN itself.
Spiking Neural networks (SNN) are another form of brain-inspired networks that takes a step

closer in mimicking the working of the brain. The pulse width and timing relationship between
signals adds to the value of the data being computed and SNNs precisely work with these kind of
network parameters. Thus, implementations of such neuromorphic loads fall in the larger circle of
non-von Neumann computing that are largely asynchronous event-driven systems.

Some of the implementations of the SNN computing acceleration include IBM TrueNorth (Merolla
et al. [9]), SpiNNaker from the University of Manchester (Plana et al. [98]), Intel’s Loihi (Davies et al.
[68]) and many more. IBM TrueNorth (Merolla et al. [9]) is a many-core processor network on a chip
design, with 4096 cores, each one having 256 programmable simulated neurons for a total of just over
a million neurons. In turn, each neuron has 256 programmable “synapses" that convey the signals
between them. Since memory, computation, and communication are handled in each of the 4096
neurosynaptic cores, TrueNorth circumvents the von Neumann architecture bottleneck and is very
energy-efficient, consuming 70 milliwatts with a power density that is 1/10,000th of conventional
microprocessors. SpiNNaker (Plana et al. [98]) is a digital neuromorphic neural array designed for
scalability and energy efficiency by incorporating brain-inspired communication methods. It can
be used for simulating large neural networks and performing event-based processing for other
applications. Each node is made of 18 ARM968 processor cores, each with 32 kilobytes of local
instruction memory, 64 kilobytes of local data memory, packet router, and supporting circuitry. A
single node consists of 16,000 digital neurons consuming 1W of power per node. Ganguly et al.
[101] discuss these and other non-von Neumann architectures in more detail with respect to their
energy efficiency.
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3.8 Architectures mixing von Neumann and non-von Neumann chips
With non-von Neumann computing models gaining traction, mixing von Neumann and non-von
Neumann architectures/computational models is also being explored. Nowatzki et al. [187] discussed
that if both out-of-order and explicit-dataflow were available in one processor, the system can
benefit from dynamically switching during certain phases of an application’s lifetime. They present
analysis that reveals that an ideal explicit-dataflow engine could be profitable for more than half of
instructions, providing significant performance and energy improvements. More recently, Intel’s
Configurable Spatial Accelerator (CSA) [62] is an effort to mix von Neumann and non-von Neumann
processors. The core idea is that there is basic control of data flow (the traditional von Neumann
model) but there is also a configurable way to program dataflow parts of the computations. The
system takes the dataflow graph of a program (created by compilers) before it is translated down
to a specific processor’s instruction set, data storage, and lays down that data flow directly on a
massively parallel series of compute elements and interconnects between them. The architecture
presents very dense compute and memory, and also very high energy efficiency because only the
elements needed for a particular dataflow are activated as a program runs, with all other parts
of the chip going idle. The configurable part is that the system will have many different CSA
configurations tuned to the dataflows of specific applications (single precision, double precision
floating point, mixture of floating point and integer). This is intended to be the first exascale
machine deployed in the USA by 2021. It is largely expected that future architectures will be a mix
of CPUs, GPUs and domain-specific accelerators, each optimized for a specific function, as shown
in Figure 3. Such diverse architectures also make it imperative for the industry and academia to
come together and define uniform interfaces across hardware and software to model, estimate,
measure and analyze power, performance and energy consumption across layers. Efforts such as
the IEEE Rebooting Computing initiative [126] could be extended to consider this aspect as well in
addition to its existing charter.

Fig. 3. Future heterogeneous architectures [221]

3.9 Power delivery miniaturization, reconfigurable power delivery networks
From a power delivery perspective, voltage regulators have shrunk and SOCs today have on-die
voltage delivery that can deliver fine grained power to different parts of the chip, all of which are
controlled through hardware and firmware (and in some architectures, to the OS level as well).
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SOCs are organized into "power domains" or "voltage islands", which allow for several individual
areas of the chip to be powered on/off or run at different clock frequencies/voltage. Haj-Yahya et al.
[115] review on-chip, integrated voltage regulator (IVRs) and presents a thorough and quantitative
evaluation of different power delivery networks for modern microprocessors. Miniaturization
of power delivery has led to another important area - reconfigurable power delivery networks
(Lee [152]). This comprises of a network of voltage/frequency converters, a switch network and a
controller that can dynamically route power to different areas of the chip to realize fine-grained
(zone-specific) voltage/frequency scaling. This is an emerging area across circuit, architecture, and
system-level approaches to optimize power delivery to parts of a chip or the entire system based
on the current workload(s).

3.10 Programmable architectures
Field Programmable Gate Arrays (FPGAs) were once applicable to very specific domains and
industries. This has changed in the last few years with FPGAs now being a critical component of
data center and cloud systems, as well as edge computing systems (Ovtcharov et al. [90]). FPGAs
are highly programmable in nature as they contain an array of programmable logic blocks, and a
hierarchy of "reconfigurable interconnects". The blocks can be "wired together", like many logic
gates that can be inter-wired in different configurations, thus making them ideal candidates for
reconfigurable computing systems that can run highly diverse workloads. However, energy efficiency
of such systems is still in its infancy with no easy or standard ways of hardware/software power
management across traditional compute and FPGA subsystems.

3.11 Energy Proportional Computing
In 2007, the concept of energy proportional computing was first proposed by Google engineers
Luiz André Barroso and Urs Hölzle [30]. Energy proportionality is a measure of the relationship
between power consumed in a computer system, and the rate at which useful work is done (its
utilization, which is one measure of performance). If the overall power consumption is proportional
to the computer’s utilization, then the machine is said to be energy proportional. Up until recently,
computers were far from being energy proportional for three primary reasons. The first is high
static power, which means that the computer consumes significant energy even when it is idle.
High static power is common in servers owing to their design, architecture, and manufacturing
optimizations that favor high performance instead of low power. The second reason is that the
various hardware operating states for power management can be difficult to use effectively due
to complex latency/energy tradeoffs. This is because deeper low power states tend to have larger
transition latency and energy costs than lighter low power states. For workloads that have frequent
and intermittent bursts of activity, such as cloudmicroservices, systems do not use deep lower power
states due to significant latency penalties, which may be unacceptable for the application(s). The
third reason is that beyond the CPU(s), very few system components are designed with fine grained
energy efficiency in mind. The fact that the nature of the data center has changed significantly
from being compute bound to being more heterogeneous has now exacerbated the problem and
energy proportionality of all components will be an important area of research.

3.11.1 Data center energy efficiency. One of the biggest challenges for large server farms and data
center operators is the increasing cost of power and cooling. Over the past decade, the cost of
power and cooling has increased tremendously, and these costs are expected to continue to rise.
As reported in 2015, (Hamilton [118]), power distribution and cooling accounts for 18% of costs in
data centers. The Green Grid consortium [106] defines Power Usage Effectiveness (PUE) a metric
used to capture the efficiency of a data center’s cooling and power delivery mechanisms. PUE is
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defined as the ratio of total amount of energy used by a computer data center facility to the energy
delivered to computing equipment.

PUE =
Total_Power_Consumption
IT_Power_Consumption

An ideal PUE is 1.0. Any energy consumption that goes towards a non computing device in a
data center falls in the category of facility energy consumption, or IT power consumption. PUE
has become the most commonly used metric for reporting energy efficiency of data centers, with
many public cloud vendors like Google, Microsoft and Facebook reporting PUE regularly. However,
one problem with this metric is that PUE does not account for the climate in the region the data
center is built in. In particular, it does not account for different normal temperatures outside the
data center. So, a data center running in a tropical region may have a higher PUE than one running
in Alaska, but it may actually be running more efficiently.
PUE was published in 2016 as a global standard under ISO/IEC [191] as well as a European

standard [190].
Recent research has looked at the impact of the recent explosion in the range of cloud workloads

in data centers. In Gan and Delimitrou [99], the authors investigate the architectural implications
of microservices in the cloud, specifically system bottlenecks and implications to server design.
Gan et al. [100] present an open source benchmark for microservices, DeathStarBench, that can
measure hardware-software implications for data center systems. In Ayers et al. [25], the authors
present asmDB, which looks at the source of front end stalls (cache misses, instruction cache
misses, etc.) in large warehouse-scale computers, and present some optimizations that can help
mitigate such system bottlenecks. Mirhosseini et al. [174] explore killer microseconds - microsecond-
scale "holes" in CPU schedules caused by I/O stalls or idle periods between requests in high
throughput microservices that are typical in data centers. They then propose enhancements to
server architectures to help mitigate such effects. At a system level, Ilager et al. in [127] explore
using ML techniques for thermal prediction for energy efficient management of cloud computing
systems.

3.12 Advanced Packaging, 3D stacking, chiplets
While Moore’s Law has slowed down, we have found ways to continue the scaling towards lower
process nodes (sub-10nm) using technologies like 3D stacking and Through-Silicon-via (TSV - a via
being a vertical chip-to-chip connection) (Lim [161]), Near and sub Threshold Voltage (NTV) designs
(Borkar et al. [140]), newer memory integration technologies, and more recently chiplets. Intel’s
Foveros (chiplets) [63] is a new silicon stacking technique that allows different chips to be connected
by TSVs so that the the cores, onboard caches/memory and peripherals can be manufactured as
separate dies and can be connected together. By picking the best transistor for each function –
CPU, IO, FPGA, RF, GPU and accelerator – the system can be optimized for power, performance
and thermals. Additionally, by stacking chiplets vertically Intel expects that it will be able to get
around a major bottleneck in high-performance system-in-package design – memory proximity.
While these technologies provide advanced packaging capabilities, cooling methods for such chips
is currently a crucial area of development in the industry and will be an ongoing challenge.

3.13 Thermodynamic computing, Landauer Limit andQuantum Computing
Richard Feynman, in his classic work [94] laid down the foundations of thermodynamic and quantum
computing, which are now on the horizon. As detailed in the recent report on thermodynamic
computing (Conte et al. [57]), in today’s "classical" computing systems that are based on transistors,
quantum mechanical effects of sub-7/sub-5 nm are addressed by “averaging them” by appropriate
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tools and technologies. In such systems, components such as transistors are engineered such that
their small-scale dynamics are isolated from one another. In the quantum computing domain,
quantum effects are avoided by “freezing them” at very low temperatures. In the thermodynamic
domain, fluctuations in space and time are comparable to the scale of the computing system and/or
the devices that comprise the computing system. This is the domain of non-equilibrium physics
and cellular operations, which is highly energy efficient. For example, proteins fold naturally into a
low-energy state in response to their environment. The scale of these computing systems is shown
in Figure 4. In the figure, spatial and temporal fluctuation scales are estimated in terms of thermal
energy (kT) and corresponding electronic quantum coherence times and lengths.

Fig. 4. Comparing scales of classical, quantum and thermodynamic computing [57]

Rolf Landauer, motivated by John von Neumann’s considerations of entropy involved in compu-
tation, reasoned that when a bit of information is irreversibly transformed (erased, for example), or
when two bits combine logically to yield a single bit (logic operations, for example), some informa-
tion is lost, thereby resulting in a change in entropy of the system. Landauer’s principle [148] asserts
that there is a minimum possible amount of energy required to erase one bit of information, known
as the Landauer limit. Some recent work [236] has demonstrated nanomagnetic logic structures
that operate near the Landauer Limit, thereby raising the possibility of developing highly energy
efficient computing systems in the future.
Quantum computing is another important architectural trend with different kinds of quantum

hardware being built along with varying systems architectures, languages, runtime and workloads,
as reported in Bertels et al. [34] and Gyongyosi et al. [109]. Getting such systems to work is the
immediate focus across research and industry, and energy efficiency will be an important topic for
the future. These topics are however, beyond the scope of this survey.
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4 MICROARCHITECTURAL TECHNIQUES
The fundamental techniques for energy efficiency involve fine-grained clock/power gating, dy-
namic frequency scaling (DFS) and dynamic voltage frequency scaling (DVFS). The basics of these
techniques and thermal dissipation/management are described in exhaustive detail in Kaxiras and
Martonosi [141]. Given the vast amount of work done in the area of energy efficiency techniques
implemented in microarchitecture, we do not attempt to survey them all here. Instead, we focus only
on those techniques that are visible and controllable by higher layers of the firmware/OS/software
stack.

In this section, we focus on such microarchitectural techniques for energy efficiency across CPU,
caches, memory and domain specific accelerators like GPUs and deep learning chips.

4.1 Microarchitectural techniques for CPUs
Power management for microprocessors can be done over the whole processor, or in specific
areas. CPUs can have their execution suspended simply by stopping the issuance of instructions
or by turning off their clock circuitry. Deeper power states successively remove power from the
processor’s caches, translation lookaside buffers (TLBs), memory controllers, and so on. Deeper
power states incure higher latency, and therefore extra energy is required to save and restore the
hardware contents, or restart it. Modern processors support multiple low power states that can
be exploited either by hardware (hardware idle detection) or through hints from the operating
system scheduler based on heuristics such as next expected timer/interrupt, transition latency of
different low power states, and current QoS setting dictated by other kernel components. As CPUs
have evolved over the generations from single monolithic cores to multi-domain, multi-module
and hybrid many core architectures, energy efficiency has been incorporated into different aspects.
CPUs employ the following energy efficiency techniques:
(1) Clock gating: In this, the clock distribution to an entire functional unit in the processor is

shutoff, thus saving dynamic (switching) power.
(2) Power gating: Here, entire functional units of the processor are disconnected from the power

supply, thus consuming effectively zero power.
(3) Multiple voltage domains: Different portions of the chip are powered by different voltage

regulators, so that each can be individually controlled for DVFS scaling power gating. Recent
designs use on-die and on-chip voltage regulators that can do fine-grained powermanagement
through CPU microcode or low level firmware (Haj-Yahya et al. [115]).

(4) Multi-threshold voltage designs: Different transistors in the design use different threshold
voltages to optimize delay and/or power (Hemantha et al. [119]).

(5) Dynamic frequency scaling (DFS): The clock frequency is adjusted statically or dynamically
to achieve different power/performance trade-offs.

(6) Dynamic voltage scaling (DVS): The supply voltage of the processor is adjusted statically or
dynamically to achieve different power/performance and reliability trade-offs.

(7) Dynamic voltage and frequency scaling (DVFS): Both voltage and frequency are varied dy-
namically to achieve better power/performance trade-offs than either DFS or DVS alone can
provide.

Beyond the CPU cores, uncore components like caches, translation lookaside buffer and others,
also implement energy efficiency techniques as embedded microprocessors devote nearly 40%
of their power budget to uncore/caches. Current cache implementations use several techniques.
Smart sizing caches is done by the micro code in the processor core. In Varadarajan et al. [244],
the authors define application specific cache partitions, called cache molecules, that are resized to
address performance targets for applications. Some other examples include drowsy caches, dynamic
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clock gating based on operand width and instruction compression, among others; these are detailed
in the book Kaxiras and Martonosi [141].

4.2 Microarchitectural techniques for Memory
Memory technology has evolved across DDR3/4/5, LPDDR, and more recently non-volatile memory
(NVM) and these have enabled different levels of performance and power management with features
such as clock frequency control and varying degrees of shallow/deep self-refresh. Newer memories
like non volatile memory (NVM) exhibit different power and energy efficiency characteristics
across reads, writes and self-refresh states. Recent system design, application, and technology
trends that require more capacity, bandwidth, efficiency, and predictability out of the memory
system make the memory system an important system bottleneck. At the same time, DRAM and
flash technologies are experiencing technology scaling challenges that make the maintenance
and enhancement of their capacity, energy efficiency, performance, and reliability significantly
expensive with conventional techniques.

Energy efficiency in memory is important in the context of workloads like deep neural networks
(DNNs). System designs that enable accelerated processing of DNNs with improved energy effi-
ciency but without trading off accuracy or increasing hardware costs have become indispensable.
Computing of such applications is governed by data movements rather than the execution of
algorithmic or logical functions. Hence, dependence of system performance on the efficiency of
processor-memory interaction is seeing an all-time high as we have striven to push beyond the
memory wall (Radulovic et al. [257], McKee [171]). With memory technologies like 3D-stacked
memories (Liu et al. [163]) and non-volatile memories (Zhang et al. [262]), the memory wall issue
is being addressed to some degree. However, the high bandwidth and greater storage capacity of
such alternatives to conventional DDR systems for main memory can be helpful only if they are
intelligently utilized by the system. This requires a synergy of the resource requirement of the
workload with the available bandwidth, parallelism and data access hierarchy of the underlying
memory system via hardware-software techniques. Micron’s Hybrid Memory Cube (HMC) has
made a compelling case for realization of a high throughput and low energy solution for massively
parallel computations with their extensive bandwidths (Pawlowski [197]) facilitated by through
silicon via (TSV) technology (Lim [161]) and near-data processing (NDP) (Balasubramonian et al.
[28]) in the logic layer. An apt architectural design of memory layers as well as the logic layer
of HMC can enable the effective bandwidth to be as close as possible to the maximum available
bandwidth (Hadidi et al. [113]), Radulovic et al. [204]).

Some systems use partial array self-refresh (PASR), where memory is divided into banks, each of
which can be powered up/down independently. If any of those banks of memory are not needed,
that memory (and its self- refresh mechanism) can be turned off. The result is a reduction in power
use, but data stored in the affected banks is also lost. Correspondingly, this requires operating
system support for intelligent memory allocation.

4.3 Microarchitectural techniques for GPUs
Modern GPUs consume a significant amount of power - anywhere from 5̃0-300W (or even more).
However, GPUs provide better performance-per-watt than CPUs for specific workloads. The
techniques for improving energy efficiency of GPUs largely overlap with those used for CPUs, with
some variations and additions. A detailed survey is presented in Mittal et al. [176] and some of the
key techniques are highlighted here:
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(1) GPU DVFS: Many current GPUs have separate clocks and voltage domains, thereby making
them ideal candidates for clock/frequency scaling, voltage scaling, or both through hard-
ware/software orchestration. Typically, in low power GPUs (in handhelds, for example),
the chip is divided into three power domains - vertex shader, rendering engine, and RISC
processor, and DVFS is individually applied to each of the three domains, thereby allowing
for finer orchestration of the power domains.

(2) CPU-GPU orchestration: Instead of using a single GPU with each CPU, using multiple
GPUs with each CPU enables achieving speedup in execution time and improving the usage
of the CPU, thereby improving the energy efficiency of the system. Further, since during
the execution of the CUDA kernel the host CPU remains in the polling loop without doing
useful work, the frequency of the CPU can be reduced for saving energy while ensuring
that CPU frequency is optimal for the bus between the CPU and GPU. Since the range
of CPU frequencies is generally larger than that of the bus, CPU frequency can be scaled
without affecting GPU performance. Also, for specific workloads, using CPU DVFS can be
employed while it stays in busy-waiting for the GPU to complete computations, thereby
achieving energy savings with little performance loss. Most of these can be orchestrated
through hardware and software components.

(3) Energy efficiency in GPU components: GPU components such as caches, global memory,
pixel and vertex shader can all be managed through dynamic clock and power gating. Since
GPUs employ a large number of threads, storing the register context of these threads requires
a large amount of on-chip storage. Also, the thread scheduler in the GPU needs to select
a thread to execute from a large number of threads, access large register files, etc. which
consumes substantial energy. Similarly, instruction pipeline, shared registers, last-level caches
can also be made more energy efficient through hardware and microarchitectural techniques.

4.4 Microarchitectural techniques for AI accelerators
An AI accelerator chip has three main elements — a large amount of data, algorithms to process the
data (configurable by software), and the physical architecture where data processing/calculation
is carried out. Such accelerators tend to have regular architectures - large arrays with hundreds
or thousands of processors, arranged in clusters repeated across the chip and consuming power
in the order of tens or even hundreds of watts. The key energy efficiency techniques for such
chips comprise of hardware/software partitioning of the workload, mapping of data structures into
on-chip and off-chip memory, grouping of components into power domains, power management
policy (race-to-halt typically), and enter idle states when parts of the chip are idle. Designs typically
also include many temperature sensors across the die — for example, one per processing cluster, to
aid in aggressive thermal management.
Given the data-intensive nature of CNN algorithms (ML performance and power is dominated

by data movement, not compute), several implementations have looked at accelerating the memory
subsystem. Recent works like Tetris (Gao et al. [102]), Neurostream (Azarkhish et al. [26]), Neu-
rocube (Kim et al. [143]) have proposed CNN accelerator implementation in the logic layer of Hybrid
Memory Cube (HMC). Here, in order to alleviate the bandwidth pressure on the data-path between
the processor chip and the main memory chip, and to get rid of the large on-chip local memory
that occupy more than 50% of the chip (Eyeriss - Chen et al. [50]), an array of processing elements
and register files (as and where needed) are incorporated in the logic layer of the 3D-stacked
DRAM module. Azarkhish et al. [26] use HMC as a co-processor for CNN acceleration through
synchronization free parallelism while Kim et al. [143] embed Neurocube, which are specialized
state-machines within the vault controllers of HMC to drive data into the processing elements
in the logic layer. Some accelerators use strategies such as optimized memory use and the use
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of lower precision arithmetic to accelerate calculations and increase throughput of computation,
however, they tend to be designed for specific use cases and markets. Most of the accelerators
support traditional clock and power gating; some of them support DFS / DVS / DVFS, making them
amenable to standard energy efficiency algorithms through hardware software orchestration.
The data-intensive nature of CNN algorithms is in contrast with von Neumann execution

models and this has motivated non-von Neumann models of computation like dataflow, spiking
neural networks, and other forms of brain-inspired computing. Chen et al. [50] propose Eyeriss,
an optimized algorithmic dataflow for CNNs by exploiting local data reuse and optimization of
intermediate data movement. Tetris (Gao et al. [102]) uses the dataflow model of Eyeriss along with
scheduling and partitioning in software to implement CNN acceleration in HMC. In Farabet et
al. [93], the authors present a compiler that transforms high level dataflow graphs into machine
code representations. Another work SmartShuttle (Li et al. [154]) adaptively switches among
different data reuse schemes and the corresponding tiling factor settings to dynamically match
different convolutional layers. Its adaptive layer partitioning and scheduling scheme can be added
on existing state-of-the-art accelerators to enhance performance of each layer in the network. The
industry has also seen some innovative products in this space. Wave Computing [186] presents
an implementation of a dataflow architecture as an alternative to train and process DNNs for
AI especially when models require a high degree of scaling across multiple processing nodes.
Instead of building fast parallel processors to act as an offload math acceleration engine for CPUs,
Wave Computing’s dataflow machine directly processes the flow of data of the DNN itself. Energy
efficiency of deep learning accelerators is covered in more detail in Ganguly et al. [101].

5 SPECIFICATION
Energy efficiency techniques at hardware / RTL level (clock gating, multi-voltage design, power
gating and DVFS) are specified using industry standards like IEEE 1801 Unified Power Format (UPF).
At the microarchitectural level, techniques described in Section 4 are used and are specified using
proprietary methods. At the hardware-firmware-OS level, a different set of specifications are used
to describe underlying hardware, power, performance and thermals. Further up the stack, the OS
and applications use these abstractions to implement various energy efficiency techniques, such as
the Linux Idle and Runtime PM framework, DVFS governors, thermal management algorithms and
Windows Connected Standby. The specifications and abstractions used at, and across, each levels
are now described and are illustrated in Figure 5 (the different colours are to delineate different
layers and components).

5.1 Accellera Unified Power Format
In 1991, Open Verilog International and VHDL International were formed to encourage open col-
laboration, portability and interoperability in electronic design automation (EDA). Recognizing the
need for a wider impact across the whole industry of IP designs, vendors, integrators, ODMs/OEMs,
the Accellera Systems Initiative was formed in 2000 as a merger of Open Verilog International and
VHDL International. The goal was to build a standards organization to support interoperability
and open interfaces for EDA and IC design/manufacturing and testing [6]. Accellera then merged
with the SPIRIT Consortium, which was a standards group composed of vendors and users of EDA
tools focusing on SOC level information. SPIRIT stood for "Structure for Packaging, Integrating
and Re-using IP within Tool-flows". The SPIRIT Consortium had defined IP-XACT, an XML schema
for vendor-neutral description of design components, and SystemRDL, a language for describing
registers in components. Accellera formalize several other EDA standards such as:

• Universal Verification Methodology (UVM)
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Fig. 5. Specifications and abstractions at different levels

• Open Verification Library (OVL)
• Standard Co-Emulation Modeling Interface (SCE-MI)
• Unified Coverage Interoperability Standard (UCIS)
• IP-XACT - Update of IEEE 1685 and Recommended Vendor Extensions
• Intellectual Property (IP) Tagging
• SystemC
• SystemRDL
• Open Core Protocol (OCP)

Accellera is less constrained than the (IEEE) and is therefore the starting place for many standards,
interest groups, study groups to evaluate different ideas in the areas of EDA. Once mature and
adopted by the broader community, the standards are usually transferred to the IEEE. The Unified
Power Format (UPF) or the IEEE 1801 standard was born in this manner. A Unified Power Format
technical committee was formed by the Accellera organization, and UPF 1.0 was approved and
published and this was donated to the IEEE as a basis of this standard in 2006.

5.2 IEEE 1801: Unified Power Format
The microarchitectural techniques for energy efficiency translate to hardware through a some
important concepts at the RTL or lower levels:
(1) Power domains: These are independently powered domains, enabling the application of

different power reduction techniques in each domain.
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(2) State retention: It is important to save essential state when power is off, and to restore it
when the power is turned back on. For this, special state-retention elements can be added to
keep a minimal amount of power available to registers whose contents must be preserved
during power shutdowns.

(3) Isolation: This is to ensure correct logical and electrical interactions between domains
belonging to different power states. To do this, a tool can insert isolation cells on signals
coming from regions that are turned off.

(4) Legal power states: Only legal power state transitions must be allowed across components.
(5) Level shifters: To ensure communication between domains powered by different voltage

levels, level shifters are added to signals crossing between regions with different voltages
and different switching thresholds.

Across all these techniques, it is crucial to have a common, unambiguous representation of low
power design intent across designers, verification engineers, design and verification tools.

IEEE 1801 Standard for the Design and Verification of Low Power Integrated Circuits, also called
the Unified Power Format (UPF), is a standard for specifying the power intent and low power
methods in early phases of design. UPF allows for specifying hardware systems with power as a
key consideration and UPF scripts help describe power intent, or power management constructs /
features. For example - which power rails are to be routed to individual blocks, when are blocks
expected to be powered up or shut down, how voltage levels should be shifted between two different
power domains and the type of measures taken for retention registers if the primary power supply
to a domain is removed. Additionally, specifying power features in a standard format allows for
several design and verification tools to validate the complex design. Beyond the obvious importance
of using standardized formats across all phases of design, the other importance of using UPF arises
from the fact that often large blocks of hardware IP are re-used either in different systems-on-chip
designs or several different generations of a particular system or even for porting a proven system
to a different target technology. This is, therefore, a particularly important problem for hardware IP
suppliers who need to be able to supply descriptions of power intent for products to their customers
without having any information about what implementation-specific decisions might be taken by
the customer, or how their IP is integrated into a different hardware / SOC design.
The latest standard, UPF 3.0, released in 2016, has improved capabilities for adding bottom-up

implementation flow, power models, and high-level power analysis. The ability to develop energy-
efficient platforms, including the hardware, software and system power management components
of the platform, requires the ability to use appropriate levels of design abstraction for the task
at hand. With UPF 3.0, architects can now model the salient power related characteristics of a
piece of IP for use at the system level, thereby providing a foundation for building complex system
level power models in a standardized manner. Using UPF-based hardware designs as reusable
components in other SOCs is an important area for power/performance projections using power
models of individual hardware comopnents leading up to system level power models. This is an
important area of cross industry collaboration and standardization in the IEEE P2416 [24] working
group.

5.3 ACPI and DeviceTree
UPF is a design time specification for low power and it is disconnected from runtime management
by system software. Over the years, several proprietary and industry consortiums have attempted
to define abstractions for runtime management, which we will now describe.

5.3.1 Advanced Configuration and Power Interface (ACPI). ACPI [240] is a standard for runtime
management of hardware. The scope of ACPI comprises system run-time configuration, power
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and thermal management as well as hardware error handling support. ACPI is, essentially, a
standardized way to enable the operating system to discover, configure and initialize the system’s
hardware. It provides runtime tables for power management (among other things) - power states
supported by the CPU(s), CPU hierarchy, DVFS states supported and associated transition latencies,
thermal sensors supported on the platform, thermal states supported and thermal throttling order.
The important thing to note is that UEFI is not tied to ACPI and will work with any firmware
description. Similarly, ACPI does not depend on UEFI, and can work with any other low level device
initialization framework as well such as U-Boot or BIOS. ACPI is a very active industry working
group and is constantly being updated and this is the primary OS power management technique
used across different segments of computing - laptops, desktops, HPC, data center systems and
supercomputers.

5.3.2 Device Tree (DT). While ACPI was historically created for x86 platforms, the ARM ecosystem
developed Device Tree to describe the same information for ARM-based devices. Thus, ACPI and
DT overlap in that they both provide mechanisms for enumerating devices, attaching additional
configuration data to devices (which can be used by higher layers of software). Rafael Wysocki
[205] goes into details of the commonalities between ACPI and Device Tree and the convergence
between the two standards.
The biggest difference between DT and ACPI is that DT is effectively a somewhat structured

mechanism for passing arbitrary data, while ACPI tends to provide standardised data.

6 MODELING AND SIMULATION
The main goal of simulation is to model new research ideas for parts of a system (processor,
memory, accelerator and others) or a complete system (SOC or server) and estimate metrics
such as performance and energy. While initial generation of tools catered to building functional,
timing/cycle-accurate models for performance estimation, subsequent tools incorporated power,
energy and thermal modeling, simulation and estimation/projections and also the ability to run
real, or close-to real workloads as well as full operating systems. Some key modeling/simulation
tools across different kinds of hardware are illustrated in Table 3. In this section, we focus primarily
on power, energy and thermal modeling/estimation tools for multicore processors, domain-specific
accelerators, and SOC/full chip systems.

6.1 Processor and full system Simulators
The first processor power simulators, such as Wattch [44], were introduced around 2000, with the
last decade seeing more multiprocessor / hetero-core simulators, complete with OS and runtime
system so that entire workloads can be simulated.
The book by Eeckhout [84] details the state-of-the-art in computer architecture performance

evaluation. The book focuses on fundamental concepts and ideas for obtaining accurate performance
data and covers various topics in performance evaluation. Some of the most popular x86 processor
simulators used currently are: gem5 [36], Multi2sim [239], MARSSx86[195], PTLsim [260] and
ZSim [212]. gem5 [36] is an event-driven full-system simulation tool, which is extensively used in
both academia and industry. It is an event driven simulator, and can also keep track of events on a
cycle-by-cycle basis, which makes its accuracy comparable to a cycle-level simulator. It supports
many instruction set architectures (ISA)s: ARM, x86, MIPS, SPARC, ALPHA, Power and RISC-V.
Multi2Sim [239] is a simulator that mainly targets GPUs and simulates CPU-GPU architectures.
It supports many ISAs - x86, MIPS, ARM and AMD Evergreen ISA. MARSS [195] is an open
source, full system simulation tool built on QEMU [2], to support cycle-accurate simulation of
homogeneous and heterogeneous multicore x86 processors. It includes detailed models of coherent

, Vol. 1, No. 1, Article . Publication date: January 2021.



32 Rajeev, et al.

Table 3. Summary of Modeling and Simulation tools

Domain Key work, surveys or books

Processor and multiprocessor simulators
gem5 [36], Multi2sim [239], MARSSx86
[195], PTLsim [260] and ZSim [212],
Akram et al. ([10], [11]), Eeckhout [84]

Cache Simulators gem5 [36], CACTI [222], Brais et al. [41]

Memory Simulators

DRAMPower [139], DRAMSim2 [209],
VAMPIRE [103], Ramulator [144],
NVMain [202], NVM Streaker memory-
sim/nvmstreaker, DRAMSim3 [159]

GPU Simulators
GPUWattch [153], GPGPU-Sim [27], MG-
PUSim [230], AccelWattch [136], Bridges
et al. [42]

Accelerator Simulators Alladin [221], Minerva [207], FireSim [138],
Akram et al. [10]

SOC and full system simulators PARADE [55], gem5 [36], McPAT [156],
SoftSDV [241]

Power and Energy Simulators

Wattch [44], SimplePower [249], IBM Pow-
erTimer tool [43], McPAT [156], PowerAn-
alyzer [181], FPGA Simulators (Anderson
et al. [20])

Power Delivery Simulators VoltSpot [261]

Thermal Simulators

Kaxiras and Martonosi [141], TEMPEST
[73], Hotspot [225], SESCTherm [185],
Power Blurring [263], Intel Docea [61], Sul-
tan et al. [229]

caches, interconnections, chipsets, memory and IO devices. It also simulates the execution of all
software components in the system, including unmodified binaries of applications, OS and libraries.
PTLsim [260] is a cycle-level simulator that has the ability to simulate complete OS using Xen
hypervisor. It makes use of co-simulation and is capable of modeling a superscalar out-of-order core.
ZSim [212] is a parallel application-level timing simulator for x86-64 architectures. It focuses more
on simulating memory hierarchies and many core heterogeneous (single-ISA) systems. It supports
modeling both out-of-order (OOO) and in-order (IO) pipelines. Akram and Sawalha [10] discuss
these in detail and Akram et al. [11] discuses power and performance comparisons of different
processor architectures and ISAs.
Wattch [44] was one of the first tools to provide accurate power estimation of processors.

It developed a framework for analyzing and optimizing microprocessor power dissipation at
the architecture-level thereby allowing architects to make high-level analysis of power tradeoffs.
SimplePower [249] was introduced as ameans of doing detailed whole processor analysis of dynamic
power. It focused on in-order five-stage pipelines, with detailed models of integer ALU power as well
as other regions of the chip. TheWattch tool built on cache modeling from Cacti [222], and provided
parameterized activity factor-based estimates as well. Both SimplePower [249] and Wattch [44]
were both based on analytic power modeling techniques. The IBM PowerTimer tool [43] provides a
processor simulator based on empirical techniques — one can estimate the power consumption of a
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particular architectural module by using the measured power consumption in an existing reference
processor, and applying appropriate scaling techniques for design and process technology. This tool
thereby allows architects to estimate power of future generation designs early in the design phase.
McPAT [156] can simulate timing, area and power of multicore processors. PowerAnalyzer [181] is
a power evaluation tool suitable for calculating power consumption for complete computer systems.
Power consumption of FPGAs is also an important area, hence modeling the power consumption
of FPGA-based systems has also gained importance in recent years. Anderson et al [20] provide
a survey of power estimation techniques for FPGAs. The authors formulate empirical prediction
models for net activity for FPGAs.
In addition to such architectural power simulators, the other important area is the simulation

of the on-chip power delivery system itself. With the end of Dennard’s scaling, as transistor
densities increased, threshold and supply voltages could no longer decrease fast enough to prevent
an exponential growth in on-chip power densities (Mack [166]). With the continued growth of
tighter device integration, sophisticated power delivery networks (PDNs) are required to not only
deliver sufficient current to switching transistors, but also to remove the heat generated by silicon
chips. A modern PDN usually consists of several voltage regulator modules (VRM) and decoupling
capacitors. VoltSpot [261] is an architecture-level model of the on-chip power delivery network that
can be integrated with a performance simulator (such as Gem5) and power estimation tool (such as
McPAT), thus providing architects with the tools necessary to explore the effect of PDN design,
exploration of run-time IR drop and noise prediction, avoidance, and mitigation. VoltSpot Version
2.0 extends VoltSpot’s modeling capability to cover 3D-ICs and Through-Silicon-Vias (TSV) as well.
Vaisband and Friedman [243], the authors introduce the concept of power network-on-chip (PNoC)
as a general scalable platform for modern power delivery networks. PNoCs form the foundation
of modern on-chip power delivery for SOCs to enable enhanced power control and real-time
management of resource sharing for scalable management of heterogeneous integrated circuits.

6.2 Cache Simulators
The memory technology used in a cache determines the power, performance and reliability of the
cache. SRAM is typically used to build caches, but DRAM has also been used for last-level caches
in processors. Most cache simulators have no inherent notion of memory technology; rather they
take the characteristics of the desired technology as inputs. Newer memory technologies such
as non-volatile caches and 3D caches can be abstracted similarly. CACTI 3.0 (Shivakumar and
Jouppi [222]) is one of the most popular cache simulators - it integrates cache access time, cycle
time, area, aspect ratio, and power model. By integrating all these models together users can have
confidence that tradeoffs between time, power, and area are all based on the same assumptions
and hence are mutually consistent. Area, Power and Timing (APT) models are usually integrated
into the simulator. McPAT [156] includes the Cacti-P modeling tool for SRAM, DRAM, and 3D
stacked DRAM caches. gem5 [36], Multi2Sim [239] are available with integrated McPAT models.
From a power/energy perspective, simulators should also provide support for dynamic voltage and
frequency scaling (DVFS). This involves maintaining separate clock domains and capturing the
interactions between them. Many simulators like gem5 [36] provide support for DVFS. Brais et al.
[41] provide a detailed discussion on 28 CPU cache simulators, including recent simulators.

6.3 Memory Simulators
Due to the constant gap between processor and memory speeds, evaluating memory-system designs
before they are implemented in hardware is extremely important. Older techniques using analytical
methods [7] and trace-driven memory simulation [242] to predict memory system performance
have now been replaced with accurate simulators of real memory systems/controllers.
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Newer memory simulation techniques have largely replaced trace driven techniques. DRAM-
Power [139] is an open source tool for fast and accurate DRAM power and energy estimation for
DDR2/DDR3/DDR4, LPDDR/LPDDR2/LPDDR3 and Wide IO DRAM memories. The tool can be
employed at both command level and transaction level. Users employing DRAM memory con-
trollers in their existing system setup can log the DRAM command traces and employ DRAMPower
at the command-level. Users without access to DRAM memory controllers can make use of the
optional DRAM command scheduler, which dynamically schedules and logs DRAM commands,
corresponding to the incoming memory transactions, as if it were a regular memory controller.
The generated DRAM command schedule is analyzable for real-time applications. DRAMSim2
[209] is a cycle-accurate DDR2/DDR3 simulator. In order to effectively model the dynamics of
CPU and memory subsystems, DRAMSim2 is integrated with MARSSx86 [195], a full x86 system
simulation environment. The default fixed memory latency in MARSSx86 is replaced with calls
to add requests to DRAMSim2; a callback function within MARSSx86 sends these requests back
through the cache hierarchy to the CPU when they are complete. Ghose et al. [103] observed
that state-of-the-art DRAM power models are often highly inaccurate, as these models do not
reflect the actual power consumed by real DRAM devices. The authors conducted a comprehensive
experimental characterization of the power consumed by 50 modern real-world DRAM (DDR3L)
modules and based on the observations, developed VAMPIRE - Variation-Aware model of Memory
Power Informed by Real Experiments [103]. VAMPIRE is a new, accurate power consumption model
for DRAM that takes into account module-to-module and intra-module variations, and power
consumption variation due to data value dependency.

Given the rapid adoption of newmemory technologies such as GDDR5, High Bandwidth Memory
(HBM), Wide IO 1/2 as well as others that are in research phase, there is a growing need for an
extensible DRAM simulator that can be used to model many different memory systems. Ramulator
[144] is a fast and cycle-accurate DRAM simulator that is built from the ground up for extensibility.
Unlike existing simulators, Ramulator is based on a generalized template for modeling a DRAM
system, which is only later infused with the specific details of a DRAM standard. Thanks to such
a decoupled and modular design, Ramulator is able to provide out-of-the-box support for a wide
array of DRAM standards: DDR3/4, LPDDR3/4, GDDR5, WIO1/2, and HBM. It is also released as an
open source tool under BSD license. 3D packaging of DRAM and the integration of CPU and DRAM
on the same die allows for higher density, better performance and also lower power consumption.
However, accurate simulation tools have not kept up with DRAM technology, especially for the
modeling of 3D DRAMs. DRAMSim3 [159] is a cycle accurate DRAM simulator that offers thermal
modeling along with performance modeling.
In order to simulate emerging non-volatile memory (NVM) technologies such as PCRAM and

STT-RAM, NVMain was developed. NVMain [202] is an architectural level simulator that can
model memory design with both DRAM and emerging non-volatile memory technologies. Similarly,
NVM Streaker [123] is a fast and reconfigurable simulator and it simulates NVM access costs using
disturbed DRAM accesses and commonly configurable hardware parameters.

6.4 GPU Simulation
Architecturally, modern GPUs contain anywhere from a few dozens to several thousands of small
processors called streaming processors (SPs). Depending on the GPU specific architecture, 8̃ to 64
SPs are organized into a streaming multiprocessor (SM) along with a few special function units
(SFUs), which handle the more complex math operations. It is important to note that SMs do not
have a branch unit, unlike CPUs. Each SM includes a multi-thread instruction fetch and issue
unit, a L1 cache as well as a shared L2 cache shared by all SMs. GPU’s complex internal memory
hierarchy and thousands of processors make them challenging candidates for power modeling.
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Internal hardware events were not observable in earlier generations, this has changed in recent
architectures.
GPUWattch [153] is a tool for modeling the power consumption of GPU architectures, but it

was designed to model (and was validated against) older architectures with fewer energy efficiency
optimizations. As reported in [136], attempts to model recent GPUs such as NVIDIA’s Pascal, Volta
and Turing using the methodology employed by GPUWattch produces significant inaccuracies,
both in terms of absolute numbers and in terms of the relative power consumption of individual
hardware components. Event-driven cycle-accurate simulators such as GPGPU-Sim [27], Multi2Sim
[239] andMGPUSim [230] have been used for GPU architecture research. All of these also lacked the
ability to power model native machine ISA. AccelWattch [136] is a recent GPU power modeling tool
that is configurable, capable of cycle-level calculations in emulation and trace-driven environments,
and supports DVFS. AccelWattch is the only power model capable of modeling both virtual ISA and
native machine ISA instructions, and is the only open-source tool capable of modeling closed-source
workloads — it only needs a binary. In addition,AccelWattch is perhaps the only GPU power model
that can be driven by either pure software performance models (e.g., Accel-Sim [20]), or hardware
performance counters commonly found in modern GPUs (thereby capturing execution on real
silicon), or a combination of the two. These AccelWattch variants allow researchers to balance
the trade-off between power model accuracy and performance modeling effort. Bridges et al. [42]
present a detailed survey of GPU power and performance estimation and modeling across different
GPU architectures, estimation and projection methodologies.

6.5 Thermal Modeling
The ability to model thermal behavior is important especially for small form factor devices like
smartphones and handhelds where the heat flows are critical in determining the usage of the device
(and restrictions therein). Thermal modeling is also heavily used in large server farms and data
centers to be able to administratively monitor and manage load across servers. Thermal modeling
has several aspects ranging from designing thermals for a microprocessor alone to provisioning
thermal sensors, and cooling of larger systems or data centers. In the past, the focus was on CPU
thermal modeling, estimation and analysis; the focus has now moved to platform level thermal
modeling, estimation and control mechanisms. Kaxiras and Martonosi [141] describe in detail the
relationship between power and temperature and show the exponential dependence of power on
temperature and the cyclic relationship — thermals depend on power dissipation and density; on
the other hand, power also depends on temperature.
𝑇𝐸𝑀2𝑃2𝐸𝑆𝑇 [73] was one of the first thermal models, where temperature was modeled based on

power dissipation and density values. It is a flexible, cycle-accurate microarchitectural power and
performance analysis tool based on SimpleScalar [45]. The simulator generates power estimates
based on either empirical data or analytical models and supports dynamic and leakage power and
process technology scaling options as well as effects of clock throttling. The main drawback was
that it modeled only the CPU, but not other regions or other architectural units. Skadron et al.
[225] proposed and validated the HotSpot approach, a compact RC model for localized heating in
high-end microprocessors. This was a complex model that considered both the lateral relationships
between units on chip, as well as the vertical heating/cooling relationships between the active
portion of the silicon die and the attached heat spreader and heat sink layers that seek to even out
temperature and draw heat away from the active silicon. In recent SoCs, thermal modeling has
taken up even higher prominence given that some of these smaller devices have no active cooling
mechanisms like fans. Platform architects build hardware prototypes with heat generators that
are modeled on actual physical components, and then test the prototypes in thermal chambers
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to analyze heat flow. SESCTherm [185] is a novel temperature modeling infrastructure that of-
fers accurate thermal characterization. This framework is based on finite difference methods and
equations. Power Blurring [263] is another temperature calculating model, which is developed
based on a matrix convolution approach to reduce computation time as compared to the finite
difference method. Power blurring (PB) uses a technique analogous to image blurring for calculating
temperature distributions. Sarangi et al. [229] presents one of the most comprehensive and updated
surveys of thermal estimation and modeling tools. The semiconductor industry has also developed
several comprehensive thermal modeling and estimation tools. While many of these tend to be
proprietary, some like Intel Docea [61] tool is available for experimental evaluation. Thermal simu-
lation algorithms for calculating the on-chip temperature distribution in a multilayered substrate
structure rely on Green’s function and discrete cosine transforms (DCT). Varshney et al. [245]
present NanoTherm, a solution to compute Green’s function using a fast analytical approach that
exploits the symmetry in the thermal distribution. Additionally, conventional methods fail to hold
at the nanometer level, where it is necessary to solve the Boltzmann transport equation (BTE)
to account for quantum mechanical effects, without which, there can be errors in temperature
calculation of upto 60%. NanoTherm also provides a fast analytical approach to solve the BTE for
nanometer chip designs.

6.6 Accelerator Simulators
With the rise of domain-specific accelerators, the need for power and performance modeling of
such chips has become an important area of research. Accelerators could be GPUs, application
specific integrated circuits (ASICs), digital signal processors (DSP), field programmable gate arrays
(FPGA), near-data and in-memory processing engine, or any other similar component optimized
for fixed functions.
Alladin [221] is a pre-RTL power and performance modeling framework for accelerators. The

framework takes high-level language descriptions of algorithms as inputs, and uses dynamic data
dependence graphs (DDDG) as a representation of an accelerator without having to generate RTL.
Starting with an unconstrained program DDDG, which corresponds to an initial representation of
accelerator hardware, Aladdin applies optimizations as well as constraints to the graph to create a
realistic model of accelerator activity and then overlays power and performance estimation. To
accurately model the power of accelerators, Aladdin uses precise activity factors, accurate power
characterization of different DDDG components, characterizes switching, internal, and leakage
power from design compilers for each type of DDDGnode (multipliers, adders, shifters) and registers.
Minerva [207] is a highly automated co-design approach across the algorithm, architecture, and
circuit levels to optimize DNN hardware accelerators. It allows for the modeling and simulation of
ultra-low power DNN accelerators (in the range of tens of milliwatts), making it feasible to deploy
DNNs in power-constrained IoT and mobile devices. More accelerator simulators are described in
detail in Akram et al. [10].

7 SYSTEM LEVEL TECHNIQUES FOR ENERGY EFFICIENCY
In this section we look at how underlying architectural and microarchitectural techniques are used
at higher levels of the software hierarchy (firmware, operating system and applications) and how
energy efficiency is implemented at the entire system. Depending on the constraints of the system
(IoT, wearable, smartphone, or server) several of these techniques may be used to fine tune the
system for specific workloads. Since it is hard to discuss system level techniques without being
specific about the underlying system architecture, we elaborate on ARM and x86 systems. We
will first cover the system level techniques implemented in these systems and then discuss how
software uses these features to optimize for energy efficiency.
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7.1 ARM System Architecture and Energy Efficiency Features
7.1.1 Clock Gating, Dormant Mode and Power Collapse. ARM processors implement clock gating
for the CPU using the Wait-For-Idle (WFI) instruction. Most ARM cores also provide the capability
to clock gate the L2 cache, debug logic, and other components using co-processor instructions.
Dormant Mode allows for cache controller and CPU to be powered down with the cache memories
remaining powered on. The cached RAMs may be held in a low-power retention state where they
keep their contents but are not otherwise functional. This mode helps achieve power savings by
turning off the cache masters at the same time preventing any performance hit due to invalida-
tion/flush of the caches. Power gating a core results in the context having to be reset at resume.
ARM based platforms may have multiple clusters of cores, with each cluster having a shared L2.
Power collapse of all CPU cores in a cluster results in a cluster power down which includes disabling
cache snoops and power gating the L2 cache. A System Control Processor (SCP) provides several
PM functions and services – (a) Managing clocks, voltage regulators to support DVFS (b) Power
state management for SoC domains and (c) Maintain/enforce consistency between device states
within the system.

7.1.2 DVS/DVFS/AVFS. All modern ARM SoCs usually support software controlled DVFS. Apart
from a maximum sustained frequency, several ARM SoC vendors add a boost mode where the CPU
can be overclocked if required. For Symmetric Multi Processors (SMP) and Hetergeneous Multi
Processor (HMP) systems with multiple (hetero) cores, the most common configuration is having a
single voltage rail for all the cores in a cluster. Per-core voltage rail implementations are rare due
to design complexity. Per-core clock lines are available on some SoCs allowing for independent
control of core frequency with glue logic handling the voltage synchronization for the common
voltage rail. ARM11 introduced a new Intelligent Energy Manager (IEM) that could dynamically
predict the lowest voltage. This is Adaptive Voltage Frequency Scaling (AVFS) - a closed-loop system
which continuously monitors system parameters through sensors. The IEM lowers the voltages
below the values of the stock voltage tables when silicon characteristics reported by sensors permit
it. Some ARM-based SOCs use power-efficient and high performance hetero cores in a single SoC
as separate clusters, called BIG.LITTLE systems. The standard pattern of usage on mobile devices
is that of periods of high processing and longer periods of light load. The core idea is that with
appropriate task placement and packing on the HMP clusters, performance and power criteria both
can be met. The recent DynamIQ is similar - it bundles both high performance big CPUs and high
efficiency LITTLE CPUs into a single cluster with a shared coherent memory. All task migrations
between big and LITTLE CPUs take place within a single CPU cluster through a shared memory,
with the help of an upgraded snoop management system, resulting in improved energy efficiency.
The transfer of shared data between BIG and LITTLE cores takes place within the cluster reducing
the amount of traffic being generated and in turn the amount of power spent.

7.1.3 Device PM and Power Domains. ARM SoCs are typically partitioned into multiple voltage
domains allowing for independent power control of devices and independent DVFS. Additionally
voltage regulators are organized hierarchically so that the Linux Regulator framework can be
used by software to indicate when components are idle and do not need clock/power. This allows
for system level power collapse. Power collapse of an IP or group of IPs is made possible by this
partitioning and hierarchical clock and voltage framework. The focus is always to reduce the
number of always-on power domains on a platform and allow as many domains as possible to
be turned off. Software orchestrates these dynamic power plane management based on the usage
scenario - device drivers manage the clock and power to respective hardware and OS software
manages system level power domains. The common system low power states on ARM SoCs are:
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• S2R: Here the entire system is off except for components like wake-up logic and internal
SRAMs

• Low Power Audio: Most SoCs support a special low power audio state to minimize power
consumption for use cases like “screen off user listening to music”. The internal audio SRAM,
DRAM, DMA and I2S Controller are only active (audio power domain is ON). CPU/dedicated
DSP wakes up periodically to process the audio data and the display remains off.

• Low Power Display: Another common use case is when the modem, display and audio are
only active during a voice call. This is handled by a low power display state.

Several other similar low power states are supported based on the low power usage scenario
(low power sensing, low power voice call). Suspend-to-Disk, which is a common feature in larger
laptops and desktops, is generally not supported on ARM based tablets/mobiles due to large resume
latencies.

7.2 Intel x86 Power Management
Intel x86 SOCs provide fine-grained knobs for device and system level power management. OS
Power managers like ACPI traditionally directs the platform to various power states (S3/S4, for
example) depending on different power policy set by the user. Intel SOCs have components in OS
and firmware that guide the power states for the CPU, devices, other subsystems and the system
as a whole. A combination of hardware (dedicated power management units) and software (OS,
kernel drivers, software) orchestrate the transition of the system into low power states. The overall
power management architecture is built around the idea of aggressively turning off subsystems
without affecting the end user functionality and usability of the system. This is enabled by several
platform hardware and software changes:

• On die clock/power gating - applicable to all subsystems, controllers, fabrics and peripherals.
• CPU C-states - C-states are the CPU cores’ low power states and a state Cx, means one or
more subsystems of the CPU is at idle, powered down. For example, C1 is a AUTOHALT
state, C3 means that the processor caches are flushed and the processor clocks are shutoff. In
C6, the CPU core voltage can be shut off. More details are in the Intel x86 developer manual
[64]. Higher levels of software (operating system) can initiate entry into some of these states
and monitor residencies in different states.

• CPU P-states - CPU P-states are performance states, and each Px state represents a specific
operating frequency and a corresponding voltage it needs to run at. More details are in
the Intel x86 developer manual [64]. Selecting an appropriate P-state can be done through
architectural registers, and there are several software and hardware-software techniques to
do this, which we will describe shortly.

• Subsystem active idle states – applicable to all OS/driver controlled components. These states,
called D0ix, are managed either in hardware or using the Linux Runtime PM framework (in
the kernel) and the device drivers (in the OS).

• Platform idle states - extending idleness to the entire platform when all devices are idle. These
are termed S0ix states. In these states, many platform components are transitioned to an
appropriate lower power state (CPU in low power sleep state, memory in self refresh, and
most components are clock or power gated).

• Microcontrollers for power management of north (CPU, GPU) and south complex IPs (periph-
erals) respectively. The microcontrollers coordinate device and system transitions, voltage
rail management, and system wake processing.
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• Integrated Voltage Regulators (IVR): On-die and on-chip voltage regulators provide fine-
grained power delivery to different parts of the chip and this is managed by hardware and/or
firmware/software.

Many Intel SoCs have CPU cores organized in a hierarchical structure, which has three levels:
core, module, and package. A package contains two modules, each of which groups two cores
together. This topology allows two levels of task consolidation: in-package and in-module. With
in-package consolidation, the workload runs on either the first module or both modules, i.e., all
of the four cores. Intel CPUs support DVFS or performance states (or P-states) for OS controlled
management of processor performance. The P-states are exposed via ACPI tables to the OS. OS
Software requests a P-State based on performance needs of the application (in Linux/Android, this
is via the cpufreq-based governors). Atom cores also support Turbo frequencies akin to boost on
ARM SoCs. Turbo allows processor cores to run faster than the “guaranteed” operating frequency
if the processor is operating below rated power, temperature, and current specification limits of the
system. Turbo takes advantage of the fact that the rated maximum operating point of a processor
is based on fairly conservative conditions which occur infrequently.

7.2.1 System low power states. Intel SoCs support the following transient low power system states:
(1) S0ix: Shallow idle state for the entire SOC
(2) S0ix-Display: display can be kept in a shallow low power state, with display controller

periodically waking up to feed the contents of the display panel and the rest of the SOC fully
powered off.

(3) S0ix-Audio: SOC in low power state except audio block.
(4) S0ix-Sensing: SOC in low power state except sensor hub to support several low power sensing

modes such as pedometer
(5) S0i3: Entire SOC is in low power state, except for wake logic/sequencing and a small amount

of memory to store code for restoring the SOC back to operating state.
All these states are transparent to applications and are entered/exited by close orchestration

between operating system, firmware, microcontrollers and hardware and have different entry/exit
latencies. In addition to these, systems generally support Suspend-to-RAM, where the entire
system is off except for minor exceptions such as wake-up logic, internal SRAMs etc. and Suspend-
to-Disk, that has larger entry/exit latencies but also deeper power savings.

7.3 OS and Software Techniques
Linux [162] has developed several energy efficiency features in the last two decades and the
following have been among the most important ones:
(1) Timers and Tickless Scheduling: The scheduler allocates CPU time to individual processes

via interrupts. Programmable timer interrupts keep track of, and handle future events. In
traditional systems we had a periodic tick i.e. the scheduler runs at a constant frequency. This
resulted in periodic wake-ups and poor energy efficiency. Linux evolved to use three primary
mechanisms, as described in Siddha et al. [231] and [78] - (a) Dynamic tick - program the next
timer interrupt to happen only when work needs to be done, (b) Deferrable timers - bundle
unimportant timer events with the next interrupt (c) Timer migration - move timer events
away from idle CPUs. Some CPUs also support power-aware interrupt redirection (PAIR), that
ensures that interrupts are directed to already-awake CPU cores, rather than wake up a
sleeping core.

(2) CPUFreq: This is a standard Linux framework used for CPU Dynamic Voltage and Frequency
Scaling (DVFS). Processors have a range of frequencies and corresponding voltages over which
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they may operate. The CPUFreq framework allows for control of these voltage-frequency
pairs according to the load through components called governors. There are several different
governors based on how the algorithm can be controlled and implemented. The performance
governor is used for optimizing CPU performance whereas the power-save governor aims
to conserve energy. The user-mode governor allows a user space application to control the
DVFS states. The on-demand governor was one of the most popular governors, described in
Pallipadi et al. [194]. More recently, the interactive governor was developed for mobile devices
that require optimized burst performance for on-screen usages. The Intel P-state driver is
slightly different - it can operate in two different modes, active or passive. In the active mode,
it uses its own internal performance scaling governor algorithm or allows the hardware to
do performance scaling by itself, while in the passive mode it responds to requests made by
a generic CPUFreq governor implementing a certain performance scaling algorithm. All of
these are described in detail in the Linux kernel documentation [75] and the Intel P-state
driver is described in more detail in [142].

(3) CPU Idle: This is a Linux kernel subsystem that manages the CPU when it is idle and
the core idea is to do nothing, efficiently (Pallipadi et al. [193]). Usually, several idle states,
known as C-states, are supported by the processor. The convention for C-state naming is
that 0 is active state and a higher number indicates a deeper idle state e.g. C1-Clock Gating.
Deeper idle states mean larger power savings as well as longer entry/exit latencies. The
inputs required by the framework for C-state entry are – CPU idleness, next expected event,
latency constraints, break-even time and exit latency. Based on the inputs, a specific C-state
is entered via architecture specific instructions such as MWAIT in x86.

(4) PM Quality of Service: PM QOS is a latency and performance control framework in Linux
[79]. It provides a synchronization mechanism across power managed resources with a
minimum performance need as expressed by a device. The kernel infrastructure facilitates the
communication of latency and throughput needs among devices, system, and users. QoS can
be used to guarantee a minimum CPU frequency level to meet video playback performance
or to limit the max device frequency to reduce skin temperature, and similar constraints.

(5) Voltage Regulator framework is a standard kernel interface to control voltage/current
regulators [77]. It is mostly used to enable/disable a regulator output or control the output
voltage and or current. The intention is to allow systems to dynamically control regulator
power output in order to save power and prolong battery life. This applies to both voltage
regulators (where voltage output is controllable) and current sinks (where current limit is
controllable). Many drivers use this framework to enable/disable voltage rails or control the
output of low drop out oscillators (LDOs) or buck boost regulators.

(6) Runtime PM framework is a widely used framework in the Linux kernel [80] to reduce the
individual device power consumption when the device is idle through clock gating, gating the
interface clock, power gating or turning off the voltage rail. In each of the cases we need to
ensure that before we move the device to a low power state, any dependent devices are also
considered. The framework allows for understanding and defining this tree for hierarchical
control.

(7) Devfreq framework is used for handling DVFS of non-CPU devices such as GPU, memory
and accelerator subsystems [76]. Devfreq is similar to cpufreq but cpufreq does not allow
multiple device registration and is not suitable for heterogeneous devices with different
governors. It exposes controls for adjusting frequency through sysfs files which are similar
to the cpufreq subsystem.

(8) System sleep states provide significant power savings by putting much of the hardware
into low power modes. The sleep states supported by the Linux kernel are power-on standby,
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suspend-to-RAM (S2R), suspend to idle (S2I) and suspend to disk (hibernate) [81]. Suspend
to idle is purely software driven and involves keeping the CPUs in their deepest idle state
as much as possible. Power-on standby involves placing devices in low power states and
powering off all non-boot CPUs. Suspend to RAM goes further by powering off all CPUs and
putting the memory into self-refresh. Lastly, suspend to disk gets the greatest power savings
through powering off as much of the system as possible, including the memory. The contents
of memory are written to disk at suspend, and on resume this is read back into memory.

(9) Power Capping Framework: The Linux power capping framework provides a consistent
interface between the kernel and the user space that allows power capping drivers to expose
the settings to user space in a uniform way [74]. Power zones represent different parts of the
system, which can be controlled and monitored using the power capping method determined
by the control type the given zone belongs to. They each contain attributes for monitoring
power, as well as controls represented in the form of power constraints. With the power
capping framework, it is possible to apply power capping to a set of devices together. Intel
RAPL [Section 8.1.5] is one form of a power capping framework.

(10) Multi-cluster PM and Energy Aware Scheduler: The Multi Cluster PM (MCPM) layer
supports power modes for multiple clusters. It implements powering up/down transitions of
clusters including the necessary synchronization. The Linux scheduler traditionally placed
importance on CPU performance and did not consider the different power curves if disparate
cores exists in one system. The Energy Aware Scheduler (EAS) links several otherwise
independent frameworks such as CPUFreq, CPUIdle, thermal and scheduler to be more
energy efficient even for disparate cores. A scheduler directed CPUFreq governor called
schedutil has been introduced which takes optimal decisions regarding task placements, CPU
idling, frequency level to run, among other parameters. Based on a SoC specific energy model,
EAS realizes a power efficient system with minimal performance impact. This is commonly
implemented today on several ARM based systems [168].

7.4 System and OS Techniques for Energy Efficiency in GPUs
The techniques for improving energy efficiency of GPUs overlaps with those used for CPUs and a
detailed survey is presented in Mittal et al. [176]. Some key techniques are highlighted here:

(1) Workload-based dynamic resource allocation: This is based on the observation that
the power consumption of GPUs is primarily dependent on the ratio of global memory
transactions to computation instructions and the rate of issuing instructions. The two metrics
decide whether an application is memory intensive or computation intensive respectively.
Based on the metrics, the frequency of GPU cores and memory is adjusted to save energy.
Some systems use an integrated power and performance prediction system to save energy in
GPUs. For a given GPU kernel, their method predicts both performance and power and then
uses these predictions to choose the optimal number of cores that can lead to the highest
performance per watt value. Based on this, only the desired number of cores can be activated,
while the remaining cores can be turned off using power gating.

(2) CPU-GPUWorkdivision: Research has shown that different ratios of work division between
CPUs and GPUs may lead to different performance and energy efficiency levels. Based on this
observation, several techniques have been implemented that dynamically choose between
CPU and GPU as a platform of execution of a kernel based on the expected energy efficiency
on those platforms.

(3) CPU-GPU Power Sharing: In several recent CPU-GPU systems, dynamic power sharing is
implemented at the firmware, microkernel and/or OS level to dynamically balance the power
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Table 4. Summary of recent energy efficiency techniques in Intel and AMD x86 processors

Technique Processor/SOC family

Per Core P-States, Uncore Frequency Scal-
ing, Integrated Voltage Regulator (IVR),
Running Average Power Limiting (RAPL)

Intel Haswell (22nm) [112]

Intel Speedshift (Hardware P-states),
Energy-aware Race to Halt (EARtH),
Energy Performance Bias (EPB) / Energy
Performance Preference (EPP), Hard-
ware/SOC Duty Cycle, Memory DVFS,
enhanced RAPL, IccMax/Peak current
management

Intel Skylake (14nm) [82]

Dynamic Tuning (ML-based Turbo) Intel Ice Lake (10nm) [15]
Autonomous Fabric and Memory DVFS, in-
dependent clock and power domains for
Graphics, Memory, PCIe, USB, Thunder-
bolt

Intel Tiger Lake (10nm) [19]

Heterogeneous x86 cores Intel Lakefield [63]
Locally Efficient Application Power
Management (LEAPM), Globally Efficient
APM (GEAPM), Core Bound Boost (CBB),
Memory-Bound Boost (MBB)

AMD (28nm) [37]

being consumed by the CPUs and GPUs. For example, in [60], the power sharing framework
is used to balance the power between high performing processors and graphics subsystem. It
helps to manage temperature, power delivery and performance state in real time and allows
system designers to adjust the ratio of power sharing between the processor and graphics
based on workloads and usages.

8 RECENT ADVANCES IN SOC AND SYSTEM LEVEL ENERGY EFFICIENCY
The last few years have seen rapid innovations in SOC design/microarchitecture and system level
power/performance optimizations across x86 and non-x86 architectures, including the rise of
custom-designed ARM chips by different companies such as Apple, Amazon, Google, Ampere, etc.
In this section, we review some of the key technologies across these architectures and systems.

8.1 Energy Efficiency in Intel Processors/SOCs
Starting with the Broadwell, Intel architectures implemented several system level techniques for
energy efficiency while pushing the performance envelopes for newer workloads and all-day battery
life for active scenarios. Similarly, AMD processors also evolved several techniques across client
and server processors. Some of the most important features and techniques are described here and
are summarized in Table 4.

8.1.1 Intel Speed Shift Technology (Hardware P-States). Skylake (Doweck et al. [82]) is a SOC
consisting of 2-4 CPU cores, Graphics, media, a ring interconnect, an integrated system system,
and a Power Control Unit (PCU) that houses the power management firmware logic and provides
interfaces to higher power management hierarchies (BIOS, OS, device drivers, etc.). Speed Shift is
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a faster response vehicle to frequency requests and race to sleep by migrating the control from
the operating system back down to the hardware. Current implementation of OS-guided P-states
can take up to 30 milliseconds to adjust, whereas if they are managed by the processor, it can be
reduced to about 1 millisecond. At any time the OS can demand control of the states back from the
hardware if specific performance is needed. The key concept behind autonomous processor level
control is to find the power state that uses the least total system system power, and stay in that
state as often as possible.

8.1.2 Workload Aware Power Balancer. For active workloads, Intel Skylake looks to balance the
power across CPU cores, Graphics, and other subsystems (memory and uncore). A feedback-based
control system monitors the different units (CPU, Graphics, memory, uncore, imaging/camera
subsystem) and uses that information to understand the nature of the workload. That information
is used to split the available system power between CPU, Graphics and other subsystems. By
default, such power budget allocation could be fixed, corresponding to worst-case performance
demands/workloads, even if the domains are under utilized. This unfair allocation is sub-optimal and
can hamper overall system performance and throughput. In SysScale [114], the authors introduce
an algorithm to predict the performance demands (bandwidth, latency) of the SOC domains and
implements a new DVFS algorithm to distribute SOC power based on predicted performance
demands. Furthermore, in addition to a global DVFS mechanism, SysScale optimizes the DVFS of
each domain from an energy efficiency perspective.

8.1.3 SOC/ Hardware Duty Cycling. One of the fundamental concepts for saving power is race to
idle or sleep - get the job done as soon as possible, and put the CPU into an idle state. As process
technology starts encountering fundamental physics limits, and due to the fact that transistors
cannot operate reliably below a certain threshold voltage, idling the processor at lower frequencies
starts providing diminishing returns once we get closer to the threshold voltage. Intel Broadwell
and Haswell processors introduced the idea of Duty Cycling Control (DCC) for the integrated
graphics unit, which meant that the GPU would be cycling between on and off states. Skylake
introduced this concept for the CPU cores as well, and rapidly transitions the CPU cores between on
and off states. This technique has shown to save large amounts of power for a range of workloads.

8.1.4 Energy Aware Race to Halt. Intel Skylake also introduced a new algorithm called Energy
Aware Race to Halt (EARtH) as described in Deweck et al. [85]. The motivation behind this is based
on the observation that controlling CPU power has limited impact on the overall energy efficiency
of the computing platform due to energy consumption of other platform components. When the
CPU power dominates total power, the minimum energy is achieved when the CPU operates at
the lowest frequency mode (LFM). When the rest of the platform consumes significantly higher
power than the CPU, the most energy efficient policy is Race To Halt (RtH). In many real systems,
however, power is balanced between CPU and the rest of the platform for different workloads. In
such systems the minimum energy point may happen at some intermediate frequency. The authors
in this paper demonstrate this observation in real systems and with real production workloads and
present an Energy Aware Race to Halt (EARtH) algorithm that identifies that minimum energy
point at run time. Starting with Skylake, this algorithm (with some enhancements) is now available
in most Intel Core processors including the latest Ice Lake and Tiger Lake SOCs.

8.1.5 Running Average Power Limiter (RAPL). Intel’s RAPL provides a set of counters providing
energy and power consumption information using a software power model that estimates energy
usage by using hardware performance counters and I/O models [131]. The key idea behind RAPL
is that of Thermal Design Power (TDP). The TDP of a system represents the maximum amount
of power the cooling system in a computer is required to dissipate. For example, for a processor
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with TDP of 35W, Intel guarantees the OEM that if it implements a chassis and cooling system
capable of dissipating that much heat, the chip will operate as intended. This is the power budget
under which the system needs to operate. But this is not the same as the maximum power the
processor can consume. It is possible for the processor to consume more than the TDP power for a
short period of time without it being “thermally significant”. Using basic physics, heat will take
some time to propagate, so a short burst may not necessarily violate TDP. RAPL provides a set of
counters providing energy and power consumption information. RAPL is not an analog power
meter, but rather uses a software power model. This software power model estimates energy usage
by using hardware performance counters and I/O models.
RAPL provides a way to set power limits on processor packages and DRAM. This will allow a

monitoring and control program to dynamically limit max average power, to match its expected
power and cooling budget. In addition, power limits in a rack enable power budgeting across the
rack distribution. By dynamically monitoring the feedback of power consumption, power limits
can be reassigned based on use and workloads. Because multiple bursts of heavy workloads will
eventually cause the ambient temperature to rise, reducing the rate of heat transfer, one uniform
power limit can’t be enforced. RAPL provides a way to set short term and longer term averaging
windows for power limits. These window sizes and power limits can be adjusted dynamically.

8.1.6 Intel P-state driver. Starting with Intel’s Sandybridge, this driver provides an interface to
control the P-State selection for the processors. The underlying driver in the kernel is essentially a
Proportional Integral Derivative (PID) controller with software-tunable interfaces to control each
of the P, I, and D parameters [142]. The driver decides what P-State to use based on the requested
policy from the OS’s cpufreq core. If the processor is capable of selecting its next P-State internally,
then the driver will offload this responsibility to the processor (Hardware P-States). If not, the
driver implements algorithms to select the next P-State. The P-state driver is primarily supported
only for Linux based platforms.

8.1.7 Dynamic Current Management, peak current and thermal protection. Intel processors have
two modes of current and thermal protection: throttling,and automatic shutdown. As described
in [130] and [214], when a core exceeds the set throttle temperature, it will start to reduce power
to bring the temperature back below that point. The throttle temperature can vary by processor
and BIOS settings, and the throttling actions can be different (turning down display, turning off
charging for example). Peak current violations are handled similarly. If the conditions are such that
throttling is unable to keep the temperature down, such as a thermal solution failure or incorrect
assembly, the processor will automatically shut down to prevent permanent damage. The peak
current and peak thermal limits respectively are controlled by Processor Core IccMax and Thermal
Limit PL1/PL2/PL3 settings in the BIOS.

8.1.8 Connected Standby. Connected Standby is a feature used in laptops, tablets, and smartphones
in order to reduce energy consumption when the device is fully idle, while remaining connected to
communication channels. A mobile device enters the deepest-runtime-idle-power state (DRIPS),
which minimizes power consumption and retains fast wake-up capability. Haj-Yahya et al. [116]
look at ways to increase battery life in the connected-standby mode and implement an optimized
DRIPS (ODRIPS) mechanism. ODRIPS is based on 2 key ideas: (1) offload wake event monitoring
to low-power off-chip circuitry, which enables turning off most of the SOC 2) offload processor
context to off-chip storage (DRAM), thus eliminating the need for on-chip high-leakage SRAMs
and thereby reducing leakage power.

8.1.9 Thermal Management - Intel DPTF and ARM Intelligent Power Allocator. Smart system level
thermal management has improved over the last decade as form factors and workloads have
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impacted platform thermals significantly. Platforms today encompass several thermal sensors -
per-CPU, per-GPU, for the connectivity radios, USB subsystem, etc. An intelligent thermal manager
needs to comprehend the data from thermal sensors, estimate possible platform level impact (skin
temperature of a device needs to be calculated using different equations based on the individual
thermal sensor readings), and then impose policies (such as throttling the CPU, dim the display, or
disable charging) to ensure the system can continue to function.

The Intel Dynamic Platform and Thermal Framework (Intel DPTF) is implemented on both Linux
and Windows platforms [3]. It includes the DPTF Framework Manager, Policies, and Participants.
The DPTF manager is responsible for all communication into the user space code, and serves as
the interface to Eco-System Independent Framework (ESIF). It manages events and notifications
to/from the ESIF layer and is responsible for high level arbitration of policies to ensure system level
thermal management. DPTF policies are the intelligent plug-in glue that determines what needs
to be done to address specific thermal situations. DPTF participants are the entities that expose
telemetry (CPU temperature, for example) and provide controls (throttling the CPU P-states).
Similarly, ARM’s Intelligent Power Allocator (IPA) [21] performs proactive power and thermal

management by continuously adapting response based on power consumption and thermal head-
room. It implements a closed-loop Proportional Integral Derivative (PID) controller for accurate
temperature control. The Dynamic Power Partitioning component optimally allocates power to
CPU and GPU based on the current workload based on a SoC power model, which is composed of
voltage/frequency operating point for each key IP block (e.g. CPU, GPU). IPA thus maps between
runtime power consumption (measured through on-chip monitoring counters) and theoretical
operating points of each component.

8.2 Energy Efficiency in AMD Processors/SOCs
AMD processors and SOCs support several energy efficiency features including clock and power
gating, DFS, DVS, DVFS, link level power management, etc. Some of the recent advances are noted
here.
AMD SOC’s power management is described in detail in Bircher et al. [37]. Here the authors

describe several aspects of AMD’s SOC/system level power management. The power manager is
implemented on an on-die microcontroller that uses power and thermal feedback from the SOC
through digital power monitors. The power monitor accounts for fluctuations in dynamic power
caused by the workload and also accounts for the effects of voltage, frequency and temperature
using built-in models. To provide consistent repeatable performance, the models are calibrated for
each version/model of the SOC. The power manager contains three performance controllers: Global
Efficient Application Power Management (GEAPM), Core-Bound Boost (CBB) and Memory-Bound
Boost (MBB). Another feature, called Locally Efficient APM (LEAPM) is also implemented for
IP-level power management.

(1) GEAPM optimizes the balance of power between CPU and GPU within an SOC. It is global
in the sense that it seeks to maximize the SOC-level performance rather than the individual
(local) performance of either CPU or GPU.

(2) The CBB and MBB features improve performance of CPU-centric workloads. CBB increases
CPU performance by shifting power from the memory subsystem to the CPU for core-bound
workloads (with little memory dependence).

(3) TheMBB feature detects memory latency-sensitive workloads and shifts power to thememory
controller.
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(4) LEAPM works on the premise that some power management decisions can be made using
only information local to the IP and it essentially uses different ways of tracking IP-level
utilization to determine when to shift power away from an IP.

All of these features shift power from other parts of the system that have less impact on perfor-
mance to those with more power requirements thus providing higher performance in a constrained
environment. AMD also optimizes power consumption for different workloads through different
processor/SOC settings based on die temperature, expected leakage (as leakage depends on temper-
ature), part-to-part variations in the die itself, as documented in Suggs et al. [228], Arora et al. [22]
and [13].

8.3 The rise of ARM in enterprise, HPC and the Cloud
The last couple of years has also seen the rise of ARM architectures in data center and cloud systems
that were traditionally x86-based, which was primarily due to the unmatched performance of Intel
and AMD processors.
Amazon Web Services have released custom-build high performance ARM processors for the

cloud, named Graviton, Graviton 2, and more recently, Graviton 3. These are available as AWS’s
EC2 instances. Graviton is an ARM64 processor based on A72 microarchietcture. In [134], the
authors perform detailed performance analysis of AWS’s Graviton A1 against similar class of Intel
Xeon processors and observe that the A1 achieves almost similar performance in web services, with
significant cost savings across various video and database workloads. Graviton2 improves on this
and delivers enhanced price-performance by 40% in comparison to present generation x86-fueled
processors. At the time of this writing, Graviton 3 is touted to be 25 percent faster than Graviton 2,
with 2x faster floating-point performances, and a 3x speedup for machine learning workloads, with
a 60X energy reduction [201].
With its highly improved power/performance/cost benefits, ARM architectures and processors

have also made a big headway to HPC and supercomputing systems [254].

9 VERIFICATION
Verifying energy efficiency features of complex SOCs is a big challenge from hardware as well as a
system level perspective, since power management flows span the entire platform. Ideally, each
system component (hardware, firmware, software) needs to be verified for its power management
capability both individually as well as how they work in relation to other components, and with
real workloads. In addition, system-level power flows (low power idle/standby states) also need to
be verified before silicon tape-in is achieved. Power management brings a host of new types of bugs
which are not in the class of traditional functional bugs. Table 5 shows the different classes of bugs
and the new verification techniques required, some of which are hard to verify in pre-silicon (for
example, voltage sequencing, due to lack of integrated power delivery models into SOC emulation
models) or thermal runways (these are usually verified on form factor devices in thermal chambers
that simulate different thermal conditions and heat flows). At a high level, verification can be done
at either the gate level, RTL/architectural level or at SOC/system level.

9.1 Verification of Low Power transformations at gate level
Formal verification, especially equivalence checking, has achieved considerable success in the
context of low power verification. Combinational equivalence checking checks two acyclic, gate-
level circuits. Combinational equivalence checkers can also be used to check equivalence of two
sequential designs, provided the state encodings of the two designs are the same. Although this
technique has widespread use in many commercial tools, the real challenge of sequential verification
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Table 5. Summary of Power Related Bugs

Power Related Issue Verification techniques required

Isolation/level shifting bugs Verify connection, placement, isola-
tion/level shifting

Control sequencing bugs Include power intent files like UPF
Electrical problems like memory corrup-
tion Reach good power state coverage

Power/voltage sequencing bugs Verify FW/SW control sequences

Power gating collapse/dysfunction, Clock
domain/crossover bugs

Verification at each stage of design, not just
RTL; verify netlist at each handoff, power
switch/rail connectivity

Power-on/reset bugs Wide coverage of test cases across power-
on/reset flows

Thermal runways/cooling inefficiencies Verify thermal conditions, thermal model-
ing for different form factors/designs

Bugs due to concurrent access from multi-
ple IPs during end-to-end use cases

Verify end to end system level power se-
quences, including FW, SW, drivers to un-
cover race conditions

is in verifying two designs with different state encodings. Sequential satisfiability engines, like the
one in Lu et al. [165] and sequential ATPG engines (Abraham et al. [5]) solves this problem to a
large extent by unrolling the circuit until a given time frame. However, these techniques operate at
the gate level, where they reason in the Boolean domain.

9.2 Verification of Low Power transformations at RTL/architectural level
Given the nature of power management and the hardness of the problem at lower levels of design,
more verification is usually focused on RTL and higher levels of abstraction. In Silveira et al.
[223], the authors describe methods to verify RTL power gating through transaction level models.
Some attempts have been made to apply sequential equivalence checking to the behavioral RTL
descriptions of designs. Semeria et al. [216] describe a methodology for checking the combinational
equivalence between C and RTL is described. In Viswanath et al. ([250] and [252]), the authors
present dedicated rewriting, a rewriting methodology to automatically prove the correctness of low
power transformations at the RTL-level. They propose a highly automated deductive verification
technique which is fine tuned for low power transformations. They prove the equivalence of two
Verilog RTL designs, one derived from the other after the application of a low power transformation.

9.3 Verification of Low Power features at Platform / System level
In order to accomplish this, typically companies use a combination of pre-silicon simulation, emula-
tion techniques including complex FPGAs to emulate the entire chip/SoC RTL, and build platform
level validation/verification tools that can include the ability to boot entire operating system on
such FPGA systems. SoftSDV [241] from Intel, for example, is a pre-silicon functional verification
tool. However, this does not allow for detailed power estimation, modeling and verification. Several
internal, proprietary (and costly) validation systems are used typically for validation of power
management features. Viswanath et al. [251] present a comprehensive of system level verification
techniques.
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Industrial designs rely heavily on ensuring that once the silicon arrives, power management can
be validated as soon as possible, and thermal solutions can be built accurately for the specific form
factors in consideration. In order to accomplish this, companies typically use FPGAs to emulate the
SoC RTL, and build platform level validation/verification tools that can include the ability to boot
entire operating system on such FPGA systems. Kapoor et al. [137] present a good overview of the
different techniques used in system level low power verification, the importance of using power
intent specifications like UPF and simulation tools/methodologies that can accurately model power
states/sequences. Mischkalla et al. [175] describe System-C based virtual prototyping techniques
to perform power intent/sequence validation, and also propose using system level low power
abstractions as possible extensions to UPF. This includes abstract definition of voltage relationships
and dynamic aspects such as operating conditions. Muralidhar et al. [182] discuss about HW-SW
co-design and verifying energy efficiency features in pre-silicon, and the need for simulating
end-to-end use cases in such verification methodologies. Targeted verification of each IP block,
including CPU cores, GPUs, memory, and others can be done using traditional silicon verification
techniques through a combination of random, targeted and functional PM tests. Since SOCs typically
integrate third party IP blocks, specific PM related tests are needed for such IPs. Beyond the IPs,
and going into the system level, a combination of different platforms and environments are used for
different aspects of pre-silicon verification. These include Virtual Platforms (VP, where an entire
OS can be booted quickly on a simulated system model), FPGAs (for specific hardware), Hybrid
Virtual platforms (VP plus FPGA), System Level Emulation (SLE) platforms that is a complex FPGA
that simulates parts of the chip or the entire chip. Each environment is best suited for a specific
set/category of pre-silicon verification. Some of them can support production OS boot in reasonable
times for SW development/co-design/debug. For thermal validation, different form factor devices
are built early on and are analyzed in heat chambers. Based on the thermal hot spots, appropriate
thermal control algorithms are defined and fine tuned. This is a costly, but accurate way of ensuring
that thermal management on the devices are validated effectively. Usually, a multi-pronged strategy
is used that could be a combination of all or some of these environments and techniques.

10 ENERGY EFFICIENCY STANDARDS, BENCHMARKS AND CROSS LAYER ENERGY
EFFICIENCY

In this section, we will discuss important industry consortiums, standards, benchmarks and regula-
tions for energy efficient and sustainable computing.

10.1 Consortiums
The Green Grid [106] is a global consortium dedicated to advancing energy efficiency in data
centers founded by many companies like AMD, Dell, HP, IBM, Intel, VMware and many others.
The Green500 [4] list rates supercomputers by energy efficiency, encouraging a focus on efficiency
(megaflops/watt) rather than absolute performance. The Energy Efficient HPC (EEHPC) [107] is
a group that is focused on driving implementation of energy conservation measures and energy
efficient design of HPC systems. The working groups cover several aspects of EE HPC systems -
infrastructure, cooling, efficient power sources, systems architecture, energy aware job scheduling,
specifications (Power API) and benchmarks. The key motivation for Power API is that achieving
practical exascale computing will require massive increases in energy efficiency across hardware
and software. With every generation of new hardware, more power measurement and control
capabilities are exposed, with in-chip monitoring rapidly increasing as there are more sensors
to track process, voltage, and temperature across the die [87]. EEHPC’s Power API is a portable
API for power measurement and control; it provides multiple levels of abstractions, and allows
algorithm designers to add power and energy efficiency to their optimization criteria at the system
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level like energy-aware scheduling. Finally, such systems may not be able to operate all components
at full capability for a range of reasons including temperature, power delivery or battery limitations,
thereby requiring software to make appropriate choices about how to allocate the available power
budget given many, and sometimes conflicting considerations.

10.2 Benchmarks
The Transaction Processing Performance Council (TPC) Energy specification [33] augments existing
TPC benchmarks with energy metrics. The metric is calculated as the ratio of the energy consumed
by all components of the benchmark system (typically measured in watts-seconds) to the total
work completed (typically measured as a number of transactions). The benchmark system (system
under test) includes servers, storage systems, and also network components like switches.
SPECpower [32] is perhaps the first industry standard benchmark that measures power con-

sumption in relation to performance for server-class computers. The workload exercises the CPUs,
caches, memory hierarchy and the scalability of shared memory processors (SMPs) as well as the
implementations of the JVM (Java Virtual Machine), JIT (Just-In-Time) compiler, garbage collection,
threads and some aspects of the operating system. Other benchmarks which measure energy
efficiency include SPECweb, SPECvirt, and VMmark and EEMBC’s ULPMark [31].

10.3 Standards
The Energy Star [227] program sets regulations around energy efficiency requirements for computer
equipment, along with a tiered ranking system for approved products for mostly idle, and some
active workloads. It is run by the U.S. Environmental Protection Agency and U.S. Department of
Energy to promote energy efficiency across all categories of computing and electronic systems
using different standardized methods.

10.3.1 California Energy Commission (CEC). The California Energy Commission’s [54] goal is
to lead the state to a 100 percent clean energy future. As the state’s primary energy policy and
planning agency, the Energy Commission plays a critical role in creating the energy system of the
future. CEC has been driving some of the most stringent energy regulatory standards for computing
systems and other electronic appliances via Energy Star and related programs that have now been
adopted in different countries around the world.

10.3.2 IEEE P2416 Standard for Power Modeling of Electronic Systems. IEEE P2416 [24] defines a
framework for the development of parameterized, accurate, efficient, and complete power models
for hardware IP blocks and the entire system that can be used for power modeling and analysis. It
is based on process, voltage, and temperature (PVT) independence and defines power and thermal
management interfaces for hardware models and also workload and architecture parameterization.
Such models are suitable for use in software development and hardware design flows, as well as for
representing both pre-silicon estimates and post-silicon data. The working group recently released
a version of this standard [125].

10.3.3 IEEE P2415 Unified HW Abstraction and Layer For Energy Proportional Systems. IEEE P2415
standard [23] intends to define the syntax and semantics for energy oriented description of hardware,
software and is expected to be compatible with the IEEE 1801 (UPF) and IEEE P2416 standards
to support an integrated flow across architecture, design, estimation and system software. The
standard complements functional models in VHDL/Verilog/SystemVerilog/ SystemC by providing
an abstraction of the design hierarchy and the design behavior with regard to power/energy usage
in order to fill a key gap - current IEEE P1801 (UPF) is focused on the voltage distribution structure
in design at RTL and below, has minimal abstraction for time, but depends on other hardware
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oriented standards to abstract events, scenarios, clock or power trees that are required for energy
proportional design, verification, modeling and management of electronic systems.
It is aimed at enabling specifying, modeling, verifying, designing, managing, testing and mea-

suring the energy features of the device, covering both the pre- and post-silicon design flow.
On the hardware side, the description aims to cover enumeration of components (SOC, board,
device), memory map, bus structure, interrupt logic, clock and reset tree, operating states and
points, state transitions, energy and power attributes; on the software side the description aims
to cover software activities and events, scenarios, external influences (including user input) and
operational constraints; and on the power management side the description aims to cover activity
dependent energy control. This is quite an ambitious goal indeed, but a very important one for
future energy proportional systems. The necessary abstractions of hardware, as well as layers
and interfaces in software are not yet defined by any existing standards. This standard aims to
address energy proportionality through tight interplay between energy-efficient hardware and
energy-aware software. It provides new design, verification, modeling, management and testing
abstractions and formats for hardware, software and systems to model energy proportionality, and
enables the design methodology that naturally follows the top-down approach – from the system
and software down to the hardware. Unfortunately, this standard seems to be inactive in recent
times [86].

10.4 Cross Layer Optimizations for Energy Efficiency
10.4.1 Geo PM. The Global Extensible Open Power Manager (GEOPM) (Eastep et al. [83]) is an
open source runtime framework with an extensible architecture enabling new energy management
strategies in HPC systems. Different plugins can be tailored to the specific performance or energy
efficiency priorities of each HPC center. It can be used to dynamically coordinate hardware settings
across all compute nodes used by an application in response to the application’s behavior and
requests from the resource manager. The dynamic coordination is implemented as a hierarchical
control system for scalable communication and decentralized control. The hierarchical control
system can optimize for various objective functions including maximizing global application
performance within a power bound or minimizing energy consumption.

10.4.2 Software-defined Power Meters: Power API, WattsKit. Software-defined power meters are
configurable software libraries that can estimate the power consumption of software in real-time.
PowerAPI (Colmant et al.[40], [53]) and WattsKit [52] are some of the middleware toolkits for build-
ing software-defined power meters. PowerAPI takes an interesting approach to energy consumption
measurements. It does not require any external device to measure energy consumption and is a
purely software approach where the estimation is based on analytical models that characterize the
consumption of various hardware components (CPU, memory, disk, etc.). PowerAPI is based on
a highly modular architecture where each module represents a measurement unit for a specific
hardware component. Power API is a novel toolkit that uses a learning technique to automatically
learn the power model of a CPU, independently of the features and the complexity it exhibits. It
automatically explores the space of hardware performance counters made available by a given CPU
to isolate the ones that are best correlated to the power consumption of the host, and then infers a
power model from the selected counters.

11 THE ROAD AHEAD AND NEW TRENDS
The semiconductor industry has gone through several decades of evolution; compute performance
has increased by orders of magnitude that was made possible by continued technology scaling,
improved transistor performance, increased integration to realize novel architectures, extreme form
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factors, emerging workloads, and reducing energy consumed per logic operation to keep power and
thermal dissipation within limits. We have worked around fundamental issues like ILP limits, end
of Dennard scaling, and Amdahl’s limit on multi-core performance. More recently, and expectedly,
there has been a slowdown of Moore’s Law. The following trends will continue to inexorably push
computing beyond current limits:

(1) Lower process nodes: The industry is currently in the sub-10nm node, and a shift to 5nm
and 3nm will provide a few generations of performance gains and energy efficiency, but
requiring new transistor architectures like nanosheets and nanowires beyond today’s FinFETs.
Stacking nanosheets will provide perhaps the last step step in Moore’s Law (Ye et al. [199]).

(2) Heterogeneous architectures: Mainstream computing will continue to see heterogeneous
architectures comprising of CPUs, GPUs, domain specific accelerators and programmable
hardware (FPGAs) across the spectrum with tightly integrated solutions.

(3) Exascale and beyond: Research and industry will continue the push to build exascale
systems using new architectures (Borkar et al. [38]) and computing paradigms like mixing
von Neumann and non-von Neumann models [62].

(4) Sub-threshold voltage designs: At the other end of the spectrum, sub-threshold and
near-threshold voltage designs and techniques will enable ultra low power IoT and embed-
ded/wearable markets that consume drastically lower power than traditional chips[178], [96].
Companies such as Ambiq Micro, PsiKick and Minima Processor, among others, have matured
techniques developed in academia (Univ of Michigan, MIT and VTT Technical Research
Center at Finland, respectively) to develop ultra low power chips that operate at 0.1-0.2 V
range, with wide dynamic range as well, all the way up to 0.8 V [189].

(5) Rise of non-x86 architectures and custom chips: The last couple of years has also seen
the rise of ARM architectures in enterprise systems (laptops), data center and cloud systems
that were traditionally x86-based, which was primarily due to the unmatched performance of
Intel and AMD processors. Recently, we have seen Apple’s M1 chip [18] in the personal PC
domain and chips such as Amazon Web Services’ Graviton2 [17] for the data center and ARM
in HPC [254]. We believe this trend of custom silicon will continue to push the boundaries of
architectural innovation.

(6) Energy efficient hardware: We will see newer, open standards based (RISC-V, for eg.),
energy-efficient architectures as computer architecture becomes more multi-disciplinary
cross cutting computer science and cognitive science as our understanding of nature and the
human mind evolves (neuromorphic and bio-inspired chips, for example). TinyML [237] is
an important emerging area of machine learning under the 1mW power envelope. Similarly,
software-defined hardware [88] is an important area of reconfigurable systems.

(7) Energy-aware software: Software and operating systems will need to evolve in lock-
step fashion to utilize energy efficient hardware across different categories of systems and
under varying energy efficiency/thermal constraints and challenges such as dark silicon and
accelerator limits.

(8) Cross Layer Energy Efficiency, Standards: Systems will necessitate a tight interplay
between energy efficient hardware and energy aware software through standardized cross
layer abstractions across architecture, design, modeling and simulation, implementation,
verification and optimization of complete systems.

(9) Domain-specific stacks: Across different computing domains (ultra low power/IoT, edge,
mainstream, cloud, HPC and exascale), the industry will see highly optimized domain-specific
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stacks that are built using modular, standardized hardware-software interfaces and compo-
nents. For example, Tesla’s full self-driving solution (FSD) (Talpes et al. [232]), which is a
tightly integrated, domain-specific system for autonomous driving with a TDP of under 40W.

(10) Neuromorphic Computing and other non-von Neumann systems: Several industrial
systems are available now that implement non-von Neumann architectural and programming
models such as IBM’s TrueNorth [173] and Intel’s Loihi (Davies et al. [68]). Both are based
on Spiking Neural Networks to demonstrate neuromorphic architectures. Poihiki Springs
took this further with a rack-mounted chassis enclosing 768 Loihi chips, FPGA interface
boards, and an integrated IA host CPU. Davies et al. [69] describes the latest results of how
specific types of deep learning algorithms (brain-inspired networks) perform with orders of
magnitude lower latency and energy. Such architectures and systems will continue to push
the boundaries of non-von Neumann computing.

(11) Quantum Computing: Quantum computing is on the horizon now, with several exper-
imental quantum computing architectures being built and used for specific optimization
problems. Amazon Web Services provides Braket, a fully managed cloud service that allows
scientists, researchers, and developers to begin experimenting with computers from multiple
quantum hardware providers in a single place [217]. Similarly, Microsoft provides a quantum
development kit for the Q# quantum programming language and Azure Quantum hardware
based on topological quantum computing. Intel is aiming for "quantum practicality" [132]
with its attempt to use silicon spin qubits that look exactly like a transistor; this would enable
high volume fabrication for silicon-based quantum computing. For the foreseeable future,
quantum computers will at best be accelerators that will interface with classical computers
[34]. Getting such systems to work is the immediate focus across research and industry.

(12) Thermodynamic computing: As we push the boundaries of computing and look at how
to make computers function more efficiently, researchers are probing the foundations of
thermodynamic computing [57] based on the observation that thermodynamics drives the
self-organization and evolution of natural systems and, therefore, thermodynamics might
drive the self-organization and evolution of future computing systems, making them more
capable, more robust, and highly energy efficient. It is not very clear what thermodynamic
computing will look like at this time of writing.

12 SUMMARY AND CONCLUSIONS
Computing systems have undergone a tremendous change in the last few decades with several
inflexion points. While Moore’s law guided the semiconductor industry to cram more and more
transistors and logic into the same volume, the limits of instruction-level parallelism (ILP) and the
end of Dennard’s scaling drove the industry towards multi-core chips; we have now entered the era
of domain-specific architectures, pushing beyond the memory wall. However, challenges of dark
silicon and other limits will continue to impose constraints. Overall energy efficiency encompasses
multiple domains - hardware, SOC, firmware, device drivers, operating system runtime and software
applications/algorithms and therefore must be done at the entire platform level in a holistic way
and across all phases of system development.
This survey brings together different aspects of energy efficient systems, through a systematic

categorization of specification, modeling and simulation, energy efficiency techniques, verification,
energy efficiency benchmarks, standards, consortiums and cross layer efforts that are crucial for next
generation computing systems. Future energy efficient systems will need to look at all these aspects
holistically, through cross-domain, cross-layer boundaries and bring together energy efficient
hardware and energy-aware software.
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Trends indicate that systems will continue to evolve, pushing the boundaries of technology,
architecture, design and manufacturing. For future systems, the power wall will be the boundary
condition around which computing systems will evolve across the ends of the computing spectrum
(ultra low power devices to large HPC/exascale systems), through a tight interplay between energy
efficient hardware and energy-aware software.
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