Reminiscences on Influential Papers

This issue’s contributors chose papers that ad-
dress challenges at the heart of database systems:
physical design tuning for index selection and trans-
action isolation levels. Both contributions empha-
size the elegant, modular, and long-lasting design
choices of the respective work. Enjoy reading!

While T will keep inviting members of the data
management community, and neighboring commu-
nities, to contribute to this column, I also welcome
unsolicited contributions. Please contact me if you
are interested.

Pinar To6ziin, editor
IT University of Copenhagen, Denmark
pito@itu.dk

Renata Borovica-Gajic
University of Melbourne, Australia
renata.borovica@unimelb.edu.au

Surajit Chaudhuri and Vivek Narasayya.

An Efficient, Cost-Driven Index Selection
Tool for Microsoft SQL Server.

In Proceedings of the International Conference
on Very Large Data Bases (VLDB), pages 146-155,
1997.

Pondering on which paper impacted you most is
hard - so when Piar invited me to contribute to
this column, I had a hard time picking it. Yet, I
immediately knew which thread of papers had the
greatest impact on my work. Thus, as is only nat-
ural, T chose the first paper from this thread that
started an avalanche of amazing work in physical
design tuning of databases through the AutoAdmin
project.

The AutoAdmin project started in mid-1996 at
Microsoft, with the goal of developing technology
that makes database systems more self-tuning and

36

self-managing. The task was a tall order at the
time, when the database administrators were deeply
involved in performance tuning of databases, and
when very little automation had seen the light in
production systems. Yet, the problem of choosing
the right physical design was critical, since together
with the execution engine and the optimizer, the
physical database design determines the efficiency
of executed queries, and hence ultimately it affects
the overall user experience when using a database.
The VLDB 1997 paper was the first paper of this
line of work, and it looked at recommending indexes
(a.k.a. index selection) as one (important) aspect
of physical database design.

The index selection problem had been studied
since the early 70’s and the importance of the prob-
lem was well recognized at the time. The goal of
automated index selection is to automatically pick
a set of indexes, referred to as a configuration, esti-
mated to (maximally) boost the performance of the
given workload, often under memory budget con-
straints. While the index selection problem was
proven to be NP-complete (through the work of
Shapiro in 1983), the VLDB 1997 paper presented
a practical, efficient, and elegant solution to this
rather challenging problem. And this is what struck
me the most about this paper. The authors had
taken an extremely challenging problem, broke it
down into small pieces, and proposed a set of el-
egant techniques to address all the challenges effi-
ciently and effectively, while keeping the entire ar-
chitecture fully modularized. This end-to-end sys-
tems approach not only resulted in an extremely
clean design, but also opened doors for future im-
provements, since any component could easily be
replaced by another, more efficient algorithm in the
future. Thanks to this modularized design, over
a dozen of papers had appeared in the following
decade, many leveraging the proposed architecture
and adding new dimensions to the problem (e.g.,
considering materialized views, partitioning, statis-

SIGMOD Record, September 2023 (Vol. 52, No. 3)



tics, etc).

So, let’s dive into the architecture. The index se-
lection tool proposed in this paper consists of candi-
date index selection module, configuration enumer-
ation module, “what-if” index creation module, cost
evaluation module and multi-column index genera-
tion module.

The index selection module proposes a set of can-
didate indexes for the given workload. Since the
number of possible index candidates is too large (ex-
ponential in the number of columns and tables), the
authors proposed a heuristic of determining the best
configuration for each query independently, and only
consider indexes belonging to one or more of such
best configurations as a candidate index set. This
neat trick allowed them to use their own tool to gen-
erate candidate indexes, since each individual query
could be considered as a workload consisting of that
single query - which is yet another example of the
elegance of the approach.

Next, out of N candidate indexes chosen as the
overall candidate set, the goal of configuration enu-
meration modules is to pick the best K. Exhaus-
tively enumerating all possible combinations is again
too large, and the authors employed a greedy incre-
mental approach where in each round the algorithm
selects an optimal configuration of the size M, where
M <= K, greedily adding the next most beneficial
index to the existing configuration until M == K
or until no further cost reduction is possible.

Probably the most influential component is the
“what-if” API in the query optimizer. The “what-
if” component stood the test of time and remained a
critical component of many subsequent tools as well
as served as an independent component for man-
ual performance tuning of databases employed by
database administrators. The “what if” API simu-
lates the presence of different physical design struc-
tures without materializing them. When the index
selection tool needs to evaluate the cost of a work-
load, it simulates the presence of the configuration
by loading the catalog tables of a database system
with metadata and statistical information about de-
fined structures. It then optimizes the queries from
the workload in a no-execute mode, in which the op-
timizer returns a plan and a cost estimate for each
query without executing them. Using the query op-
timizer’s cost estimates as the basis for the physical
design tool has several advantages. First, it can
guarantee that any proposed index, if materialized,
will actually be used by the optimizer. Second, it
is much more efficient than paying the cost to ma-
terialize candidate indexes. Finally, as the query
optimizer’s cost model evolves over time the tool

SIGMOD Record, September 2023 (Vol. 52, No. 3)

will just benefit from those improvements, which is
yet another forward-looking aspect of this paper.

Still, calling the optimizer to cost all possible con-
figurations across the entire workload may be too
expensive. To reduce the number of optimizer calls,
the authors introduce a concept of atomic configu-
rations and show that it is sufficient only to eval-
uate all atomic configurations across the workload,
as the cost of all other configurations could be de-
rived from atomic configurations without requiring
any additional optimizer calls. On top of reducing
the number of atomic configurations to cost, the
authors propose a way of reducing the cost of eval-
uating atomic configurations by costing only a sub-
set of relevant indexes from the configuration whose
columns are part of the query set. By caching the
results of the optimizer calls for atomic configura-
tions, optimizer invocations for other configurations
for the same query could be eliminated (often even
by orders of magnitude).

Finally, the authors proposed a search algorithm
to incrementally examine the space of multi-column
indexes. The approach the authors employed is
to iteratively expand the space of multi-column in-
dexes by choosing only the winners of one iteration
and augmenting the search space of the next itera-
tion by expanding such winners with an additional
column. This heuristic allows for a structured and
tractable exploration of what would be an enormous
space of alternative choices.

The impact of this paper was manyfold. It was
the first approach that looked at creating an auto-
mated tool for index selection. This work formed
the basis of the Index Tuning Wizard (ITW) that
shipped in Microsoft SQL Server 7.0, and many
commercial vendors have followed suit, using some-
what similar techniques. The paper rightfully re-
ceived the 10-Year Best Paper Award at VLDB
2007 due to its novelty, clean architecture but also
the broad impact it had on the research commu-
nity and database vendors at large. As the work
progressed, so did the product, resulting in a fully-
fledged Database Tuning Advisor (DTA) that shipped
as part of Microsoft SQL Server 2005. DTA went
beyond index selection and supported selection of
materialized views, and horizontal partitioning. To-
day’s SQL Server DTA also supports selection of
partial indexes and columnstore indexes.

On a personal note, I first discovered this paper
more than a decade ago when embarking on a PhD
journey, and immediately appreciated its elegant ar-
chitecture, and pragmatic approach to solving chal-
lenging problems. This pragmatic approach stayed
with me throughout my professional life, for which I

37



will be forever grateful to the authors. Finally, while
we as a research community naturally evolve and
sometimes outgrow research problems, the problem
of automated physical design tuning is more impor-
tant than ever, considering the strong presence of
cloud platforms where the workload complexity and
the absence of on-premise database administrators
make such tools a necessity. When we will be able
to completely solve this problem is hard to say, since
as authors conclude in their 10-year paper summary
(published in VLDB 2007) “it will probably be im-
possible to make database systems self-tuning by
a single architectural or algorithmic breakthrough”
and that “demand for self-manageability could lead
to development of newer structured store that is
built grounds-up with self-manageability as a criti-
cal requirement”. Almost two decades later, we are
seeing first strides towards making database sys-
tems self-driving from the ground up. And I am
sure that the next two decades will be as exciting,
with fully adaptive and self-driving systems becom-
ing common.

Bailu Ding
Microsoft Research Redmond, USA

bailu.ding@microsoft.com

Atul Adya, Barbara Liskov, and Patrick E. O’Neil.

Generalized Isolation Level Definitions.

In Proceedings of the 16th International Con-
ference on Data Engineering (ICDE), pages 67-78,
2000.

When 1 first started working on transaction pro-
cessing, one of the first papers I read was “Gener-
alized Isolation Level Definitions” by Adya, Liskov,
and O’Neil. This paper argues that isolation levels
should be a logical property of transactions, rather
than being defined based on how transactions are
implemented in a locking-based concurrency con-
trol scheme, as was the case in earlier ANSI-SQL 92
standards. The authors propose a new way to define
transaction isolation levels based on the dependen-
cies of transactions, which decouples the abstrac-
tion of isolation levels from their implementation.
This definition can be applied to different concur-
rency control schemes, such as optimistic concur-
rency control or multi-version concurrency control.
I was impressed by this work for its elegance and
practicality. The technique of analyzing isolation
levels based on transaction dependency graphs has
also become a crucial tool used in my later work

38

on relaxed concurrency control for transaction pro-
cessing, such as in watermarking [1] and transaction
reordering [2].

[1] Bailu Ding, Lucja Kot, Alan Demers, and
Johannes Gehrke.“Centiman: Elastic, High Perfor-
mance Pptimistic Concurrency Control by Water-
marking.” In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing, pages 262-275, 2015.

[2] Bailu Ding, Lucja Kot, and Johannes Gehrke.
“Improving Optimistic Concurrency Control through
Transaction Batching and Operation Reordering.”
In Proceedings of the VLDB Endowment 12.2, pages
169-182, 2018.

SIGMOD Record, September 2023 (Vol. 52, No. 3)



