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No DBA? No regret! Multi-armed bandits for
index tuning of analytical and HTAP workloads

with provable guarantees
R. Malinga Perera, Bastian Oetomo, Benjamin I. P. Rubinstein, and Renata Borovica-Gajic

Abstract—Automating physical database design has remained a long-term interest in database research due to substantial
performance gains afforded by optimised structures. Despite significant progress, a majority of today’s commercial solutions are highly
manual, requiring offline invocation by database administrators (DBAs). This status quo is untenable: identifying representative static
workloads is no longer realistic; and physical design tools remain susceptible to the query optimiser’s cost misestimates. Furthermore,
modern application environments like hybrid transactional and analytical processing (HTAP) systems render analytical modelling next
to impossible. We propose a self-driving approach to online index selection that does not depend on the DBA and query optimiser, and
instead learns the benefits of viable structures through strategic exploration and direct performance observation. We view the problem
as one of sequential decision making under uncertainty, specifically within the bandit learning setting. Multi-armed bandits balance
exploration and exploitation to provably guarantee average performance that converges to policies that are optimal with perfect
hindsight. Our comprehensive empirical evaluation against a state-of-the-art commercial tuning tool demonstrates up to 75% speed-up
in analytical processing environments and 59% speed-up in HTAP environments. Lastly, our bandit framework outperforms a Monte
Carlo tree search (MCTS)-based database optimiser, providing up to 24% speed-up.

Index Terms—Physical Design Tuning, Index Tuning, HTAP, Multi-Armed Bandits, Reinforcement Learning.
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1 INTRODUCTION

With the growing complexity and variability of database
applications and their hosting platforms (e.g., multi-tenant
cloud environments), automated physical design tuning,
particularly automated index selection, has re-emerged as a
contemporary challenge for database management systems.
Most database vendors offer automated tools for physical
design tuning within their product suites [1], [2], [3]. Such
tools form an integral part of broader efforts toward fully
automated database management systems which aim to:
a) decrease database administration costs and thus total
costs of ownership [4], [5]; b) help non-experts use database
systems; and c) facilitate hosting of databases on dynamic
environments such as cloud-based services [6], [7], [8], [9].
Most physical design tools take an off-line approach, where
DBAs must decide when to invoke the tool and what rep-
resentative training workload to provide [10]. Where online
solutions are provided [8], [11], [12], [13], questions remain:
How can tools generalise beyond queries seen to dynamic
ad-hoc workloads, where queries are unpredictable and
non-stationary? And importantly, is the quality of proposed
designs in any way guaranteed?

Modern analytics workloads are dynamic in nature with
ad-hoc queries common [14], e.g., data exploration work-
loads adapt to past query responses [15]. Such ad-hoc work-
loads hinder automated tuning since: a) inputting represen-
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tative information to design tools is infeasible under time-
evolving workloads; and b) reacting too quickly to changes
may result in performance variability, where indices are
continuously dropped and created. Any robust automated
physical design solution must address such challenges [11].

The situation is further aggravated in HTAP envi-
ronments, that consist of online transaction processing
(OLTP) and online analytical processing (OLAP) workloads.
While indices provide (primarily) positive benefits to OLAP
queries, they hinder the OLTP performance due to the
additional index maintenance overhead. Furthermore, in
dynamic settings, workload composition (i.e., analytical to
transactional ratio) can vary over time, making it even more
challenging to identify useful indices that boost overall
workload performance.

To compare alternative physical design structures, au-
tomated design tools use a cost model employed by the
query optimiser, typically exposed through a “what-if” in-
terface [16], as the sole source of truth. However such cost
models make inappropriate assumptions about data charac-
teristics [17], [18]: commercial DBMSs often assume attribute
value independence and uniform data distributions when
sufficient statistics are unavailable [18], [19], [20]. As a
result, estimated benefits of proposed designs may diverge
significantly from actual workload performance [8], [9],
[20], [21], [22]. Even with more complex data distribution
statistics such as single- and multi-column histograms, the
issue remains for complex workloads [20]. Moreover, data
additions and updates in HTAP environments continuously
invalidate statistics, compounding the effect of the optimiser
misestimates. Keeping statistics up-to-date in such a setting
requires extra effort.
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In this paper, we demonstrate that even in ad-hoc
environments where queries are unpredictable, there are
opportunities for index optimisation. We argue that the
problem of online index selection under ad-hoc, analytical
and HTAP workloads can be efficiently formulated within
the multi-armed bandit (MAB) learning setting—a tractable
form of Markov decision process. MABs take arms or ac-
tions (selecting indices) to maximise cumulative rewards,
trading off exploration of untried actions with exploitation
of actions that maximise rewards observed so far (see Fig-
ure 1). MABs permit learning from observations of actual
performance, and need not rely on potentially misspecified
cost models. Unlike initial efforts with applying learning for
physical design, e.g., more general forms of reinforcement
learning [23], bandits offer regret bounds that guarantee the
fitness of dynamically-proposed indices [24]. In critical pro-
duction environments, the uncertainties of online learned
solutions can create doubts in a DBA’s mind, making safety
guarantees critical.

The key contributions of the paper can be summarised
as:

• We model index tuning as a multi-armed bandit,
proposing design choices that lead to a practical,
competitive solution.

• Our proposed design achieves a worst-case safety
guarantee against any optimal fixed policy, as a con-
sequence of a corrected regret analysis of the C2UCB
bandit.

• We introduce a new bandit flavour that extends the
existing contextual and combinatorial bandit where
structured rewards are observed for each arm, pro-
viding additional feedback for the bandit. This ban-
dit variation enjoys a superior regret bound com-
pared to the C2UCB bandit.

• Our comprehensive experiments demonstrate
MAB’s superiority over a state-of-the-art commercial
physical design tool and a deep reinforcement
learning agent, with up to 75% speed-up in the
former and 58% speed-up in the latter case, under
dynamic, analytical workloads.

• We showcase MAB’s ability to perform in complex
HTAP environments, which are notoriously chal-
lenging for index tuning, delivering up to 59% and
24% speed-up over the state-of-the-art commercial
design tool and Monte Carlo tree search (MCTS)-
based database optimiser, respectively.

2 PROBLEM FORMULATION

The goal of the online database index selection problem is to
choose a set of indices (referred to as a configuration) that
minimises the total running time of a workload sequence
within a given memory budget. Neither the workload se-
quence, nor system run times, are known in advance.

We adopt the problem definition of [13]. Let the workload
W = (w1, w2, . . . , wT ) be a sequence of mini-workloads
(e.g., a sequence of individual statements), I the set of
secondary indices, Cmem(s) represent the memory space re-
quired to materialise a configuration s ⊆ I , and S =
{s ⊆ I |Cmem(s) ≤M} ⊆ 2I be the class of index con-
figurations feasible within our total memory allowance M .

Our goal is to propose a configuration sequence S =
(s0, s1, . . . , sT ), with st ∈ S as the configuration in round t
and s0 = ∅ as the starting configuration, which minimises
the total workload time Ctot(W,S) defined as:

Ctot(W,S) =
T∑

t=1

Crec(t) + Ccre(st−1, st) + Cexc(wt, st) .

Here Crec(t) refers to the recommendation time in round
t (defined as running time of the recommendation tool)
and Ccre(st−1, st) refers to the incremental index creation
time in transitioning from configuration st−1 to st. Finally,
Cexc(wt, st) denotes the execution time of mini-workload
wt under the configuration st, namely the sum of response
times of individual statements.

At round t, the system:

1) Chooses a set of indices st ∈ S in preparation for
upcoming workload wt, without direct access to wt.
st only depends on observation of historical work-
loads (w1, . . . , wt−1), corresponding sets of chosen
indices, and resulting performance;

2) Materialises the indices in st which do not exist yet,
that is, all indices in the set difference st\st−1; and

3) Receives workload wt, executes all the statements
therein, and measures elapsed time of each individ-
ual statements and each operator in the correspond-
ing query plan.

3 CONTEXTUAL COMBINATORIAL BANDITS

In this paper, we argue that online index selection
can be successfully addressed using multi-armed bandits
(MABs) from statistical machine learning, where each
arm corresponds to an index. We first present nec-
essary background on MABs, outlining the essential
properties that we exploit in our work (i.e., ban-
dit context and combinatorial arms) to converge to
highly performant index configurations.

We use the following notation. We denote non-scalar val-
ues with boldface: lowercase for (by default column) vectors
and uppercase for matrices. We also write [k] = {1, 2, . . . , k}
for k ∈ N, and denote the transpose of a matrix or a vector
with a prime.

The contextual combinatorial bandit setting under semi-
bandit feedback involves repeated selections from k possible
actions, over rounds t = 1, 2, . . ., in which the MAB:

1) Observes a context feature vector (possibly random
or adversarially chosen) of each action or arm i ∈ [k],
denoted as Xt = {xt(i)}i∈[k], for xt(i) ∈ Rd, along
with their costs, ci;

2) Selects or pulls a set of arms (referred to as super arm)
st ∈ St, where we restrict the class of possible super
arms St ⊆ S ′t =

{
s ⊆ [k]

∣∣∑
i∈s ci ≤M

}
⊆ 2[k];

and
3) For each it ∈ st, observes random scores rt(it)

drawn from fixed but unknown arm distribution
which depends solely on the arm it and its context
xt(it), whose true expected values are contained in
the unknown variable r⋆t = {E[rt(i)]}i∈[k].
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SELECT A.C1 FROM A

WHERE A.C2 = 5 AND 

A.C3 = 6

Table A(C1, C2, C3)
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Fig. 1. An abstract view of the proposed bandit learning-based framework for online index selection.

Remark 1. The contextual combinatorial bandit setting is
a special case of a Markov decision process, which is
solved in general by reinforcement learning (RL). The
key difference is that in bandits, state transition is not
affected by MAB actions, only rewards are. States (ob-
served via contexts) arrive arbitrarily. This simplicity
admits theoretical guarantees for practical MAB learn-
ers, where state-of-the-art RL agents regularly have
none. When playing in a bandit setting, in practice MAB
learners may converge faster than their (typically over
parametrised) RL cousins.

A MAB’s goal is to maximise the cumulative expected
reward

∑
t E[Rt(st)] =

∑
t g(st, r

⋆
t ,Xt) for a known func-

tion g. This function g need not be a simple summation of
all the scores, however is typically assumed to be monotonic
and Lipschitz smooth in the arm scores.

Definition 1. A monotonic function g(s, r,X) is non-
decreasing in r: for all s,X, if r ⪯ r′ then g(s, r,X) ≤
g(s, r′,X).

Definition 2. Function g(s, r,X) is C-Lipschitz (uniformly) in
r, if |g(s, r,X)− g(s, r′,X)| ≤ C · ∥r− r′∥2, for all r, r′,
X, s.

The core challenge in this problem is that the expected
scores for all arms i ∈ [k] are unknown. Refinement of a
bandit learner’s approximation for arm i is generally only
possible by including arm i in the super arm, as the score
for arm i is not observable when i is not played. This
suggests solutions that balance exploration and exploitation.
Even though at first glance it may seem that each arm
needs to be explored at least once, placing practical limits
on large numbers of arms, there is a remedy to this as will
be discussed shortly.

The C2UCB algorithm. Used to solve the contextual
combinatorial bandit problem, the C2UCB Algorithm [24]
models the arms’ scores as linearly dependent on their con-
texts: rt(i) = θ′xt(i) + εt(i) for unknown zero-mean (sub-
gaussian) random variable εt, unknown but fixed parameter
θ ∈ Rd, and known context xt(i). It is crucial to notice
the implication that, all learned knowledge is contained
in estimates of θ, which is shared between all arms,

obviating the need to explore each arm. Estimation of θ can
be achieved using ridge regression, with |st| new data points
{(xt(i), rt(i))}i∈st available at round t, further accelerating
the convergence rate of the estimator θ̂, over observing only
one example as might be naı̈vely assumed.

Point estimates on the expected scores can be made
with r̄t(i) = θ̂′

txt(i), where θ̂t are trained coefficients of
a ridge regression on observed rewards against contexts.
However, this quantity is oblivious to the variance in the
score estimation. Intuitively, to balance out the exploration
and exploitation, it is desirable to add an exploration boost
to the arms whose score we are less sure of (i.e., greater
estimate variance). This suggests that the upper confidence
bound (UCB) should be used, in place of the expected value,
and which can be calculated [25] as:

r̂t(i) = θ̂′
txt(i) + αt

√
xt(i)′V

−1
t−1xt(i) , (1)

where αt > 0 is the exploration boost factor, and Vt−1 is
the positive-definite d × d scatter matrix of contexts for the
chosen arms up to and including round t− 1. The first term
of r̂t(i) corresponds to arm i’s immediate reward, whereas
its second term corresponds to its exploration boost, as its
value is larger when the arm is sensitive to the context
elements we are less confident of (i.e., the underexplored
context dimension). Hence, by using r̂t(i) in place of r̄t(i),
arms with contexts lying in the underexplored regions of
context space are more likely to be chosen, as higher scores
yield higher g, assuming that g is monotonic increasing in
the arm rewards.

Ideally, the super arm st ∈ St is chosen such that
g(st, r̂t,Xt) is maximised. However, it is sometimes com-
putationally expensive to find such super arms. In such
cases, it is often good enough to obtain a solution
via some approximation algorithm where g(r̂t,Xt, st) is
near maximum. With this criterion in mind, we now define
an α-approximation oracle.

Definition 3. An α-approximation oracle is an algorithm A
that outputs a super arm s = A(r,X) with guarantee
g(s, r,X) ≥ α ·maxs g(s, r,X), for some α ∈ [0, 1] and
given input r and X .
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Algorithm 1 The C2UCB Algorithm
1: Input: λ, α1, . . . , αT

2: Initialize V0 ← λId, b0 ← 0d

3: for t← 1, . . . , T do
4: Observe St
5: θ̂t ← V −1

t−1bt−1 ▷ estimate via ridge regression
6: for i ∈ [k] do
7: Observe context xt(i)

8: r̂t(i)← θ̂′
txt(i) + αt

√
xt(i)′V

−1
t−1xt(i)

9: end for
10: st ← A(r̂t,Xt) ▷ using α-approximation oracle
11: Play st and observe rt(i) for all i ∈ st
12: Vt ← Vt−1 +

∑
i∈st

xt(i)xt(i)
′ ▷ regression update

13: bt ← bt−1 +
∑

i∈st
rt(i)xt(i) ▷ regression update

14: end for

Note that knapsack-constrained submodular
programs are efficiently solved by the greedy algorithm
(iteratively select a remaining cost-feasible arm with highest
available score) with α = 1 − 1/e. C2UCB is detailed in
Algorithm 1.

The performance of a bandit algorithm is usually
measured by its cumulative regret, defined as the to-
tal expected difference between the reward of the cho-
sen super arm E[Rt(st)] and an optimal super arm
maxs∈St

E[Rt(s)] over T rounds. Such a metric is unfair
to C2UCB since its performance depends on the oracle’s
performance. This suggests assessing C2UCB’s performance
with a metric using the oracle’s performance guarantee as
its measuring stick, as follows.
Definition 4. Let s be a super arm returned by an α-

approximation oracle as a part of the bandit algorithm,
and r⋆t be a vector containing each arms’ true expected
scores. Then cumulative α-regret is the sum of expected
instantaneous regret, Regαt = α · maxs g(s, r

⋆
t ,Xt) −

g(st, r
⋆
t ,Xt).

When g is assumed to be monotonic and Lipschitz
continuous, [24] claimed that C2UCB enjoys Õ(

√
T ) α-

regret. We have corrected an error in the original proof,
as seen in Appendix, confirming the Õ(

√
T ) α-regret. This

expression is sub-linear in T , implying that the per-round
average cumulative regret approaches zero after sufficiently
many rounds. Consequently, online index selection based
on C2UCB comes endowed with a safety guarantee on worst-
case performance: selections become at least as good as an
α-optimal policy (with perfect access to true scores); and
potentially much better than any fixed policy.

4 MAB FOR ONLINE INDEX SELECTION

Performant bandit learning for online index tuning de-
mands arms covering important actions and no more, re-
wards that are observable and for which regret bounds are
meaningful, and contexts and oracle that are efficiently com-
putable and predictive of rewards. Each workload statement
is monitored for characteristics such as running time, query
predicates, payload, etc. (see Figure 1). These observations
feed into generation of relevant arms and their contexts. The
learner selects a desired configuration which is materialised.

For returning statements, the system identifies benefits of
the materialised indices, which are then shaped into the
reward signal for learning.

Dynamic arms from workload predicates. Instead of
enumerating all column combinations, relevant arms (in-
dices) may be generated based on queries: combinations
and permutations of query predicates (including join pred-
icates), with and without inclusion of payload attributes
from the selection clause. Such workload-based arm gen-
eration drastically reduces the action space, and exploits
natural skewness of real-life workloads that focus on small
subsets of attributes over full tables [15]. Workload-based
arm generation is only viable due to dynamic arm addition
(reflecting a dynamic action space) and is allowed by the
bandit setting: we may define the set of feasible arms for
each round at its start.

Context engineering. Effective contexts are predictive of
rewards, efficiently computable, and promote generalisation
to previously unseen workloads and arms. We form our
context in two parts (see Figure 1).

Context Part 1: Indexed column prefix. We encode one
context component per column. However unlike a bag-of-
words or one-hot representation appropriate for text, simi-
larity of arms depends on having similar column prefixes;
common index columns is insufficient. This reflects a novel
bandit learning aspect of the problem. A context component
has value m−j where j is the corresponding column’s
position in the index, provided that the column is included in
the index and part of the workload. We experimented with
values 1, 2, 10 and 100 for m, where 1 represents the one-
hot encoding. We observe that smaller values (i.e., 1 and
2) do not provide sufficient differentiation between arms,
while the larger values (i.e., 100) only differentiate based
on the first column (there is insufficient representation for
the rest of the columns). Thus we set m to 10. The value
is set to 0 otherwise, including if its presence only covers
the payload. Unlike a simple one hot encoding, this context
enables the bandit to differentiate between arms with the
same set of columns but different ordering, and reward the
columns differently based on their position in the index.

Example 1. Under the simplest workload (single query) in
Figure 1, our system generates six arms: four using dif-
ferent combinations and permutations of the predicates,
two including the payload (covering indices). Index IX5
includes column C1, but the context for C1 is valued as
0, as this column is considered only due to the query
payload.

Context Part 2: Derived statistical information. We represent
statistical and derived information about the arms and
workload, details available during statement execution, and
sufficient statistics for unbiased estimates. This statistical
information includes: a Boolean indicating a covering index,
the estimated size of the index divided by the database size
(if not materialised already, 0 otherwise), and the number
of times the optimiser has picked this arm in recent rounds.
This is shown in Figure 1 under D1, D2 and D3, respec-
tively. Results showed very low sensitivity to the number of
rounds considered for the D3 feature, however making it 0
leads to slight increases in creation times.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3271664

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Reward shaping. As the goal of physical design tuning
tools is to minimise end-to-end workload time, we incorpo-
rate index creation time and statement execution time into
the reward for a workload. We omit index recommenda-
tion time, as it is independent of arm selection. However,
we measure and report recommendation time of the MAB
algorithm in our experiments. Recall that MAB depends
only on observed execution statistics from implemented
configurations and generalisation of the learned knowledge
to unseen arms thereafter. Unlike OLAP workloads, un-
der HTAP workloads, the statement execution time can be
negatively impacted by the index maintenance operations,
necessitating its inclusion in the reward.

The implementation of the reward for an arm includes
the execution time as a gain Gt(i, wt, st) for a workload wt

by each arm i under configuration st. Indices can impact
the execution time in multiple ways. We split the execution
time gain into three components: a) data scan gains (Gds

t ),
b) index maintenance gains (Gim

t , usually a negative value),
and c) other areas of the query plan which can be difficult
to attribute to a single index (unclaimed gains) (Gun

t ).

Gt(i, wt, st)

= Gds
t (i, wt, st) +Gim

t (i, wt, st) +Gun
t (i, wt, st) .

Data scan gains: The data scan gain by index i for query q is
defined as:

Gds
t (i, {q}, st)

= [Ctab(τ(i), q, ∅)− Ctab(τ(i), q, {i})]1U(s,q)(i) ,

where U(s, q) denotes the list of indices used by the
optimiser in query q under a given configuration s.
Ctab(τ(i), q, ∅) represents the full table scan time for table
τ(i) and query q, where τ(i) is the table which i belongs
to.1

Index maintenance gains: Index maintenance operations
can take different forms based on the number of rows up-
dated. The optimiser typically opts for row-wise updates for
a small number of rows and index-wise updates otherwise.
In the second case, we can easily capture the maintenance
gain of an index as each index is updated separately. This
is however not straightforward in the case of row-wise
updates, where all indices are bulk updated for each row.
On these occasions, we compute the total maintenance
gain (Gim

t (V(s, q), {q}, st)) for all secondary indices that
require maintenance due to a statement q under a given
configuration s and equally divide it among the updated
indices. V(s, q) represents the set of indices updated under
configuration s by the statement q.

Gim
t (V(s, q), {q}, st) = [Cim(q, ∅)− Cim(q, s)] .

where Cim(q, ∅) and Cim(q, s) represent the index main-
tenance time without secondary indices and index mainte-
nance time under configuration s, respectively.

Gim
t (i, {q}, st)

=
[
Gim

t (V(s, q), {q}, st)/ |V(s, q)|
]
1V(s,q)(i) .

1. Due to the reactive nature of multi-armed bandits, we mostly
observe a full table scan time for each table τ(i) and query q. When
we do not observe this, we estimate it with the maximum secondary
index scan/seek time.

Unclaimed gains: Sometimes the impact of the indices can
be indirect. For example, while introducing a new index can
speed up the data scan, it can require sorting, which can
be costly. Therefore, when the overall gain results in a per-
formance regression, MAB needs to take corrective actions
to trigger a different query plan. These gains are captured
under Gun

t . Gun
t for a statement is computed by subtracting

all the other gains (data scan and index maintenance) from
the total gain (Gto

t ). The total gain (Gto
t ) can be obtained

by using statement running times before and after index
creation.

Gto
t ({q}, st) = [Cto(q, ∅)− Cto(q, st)] .

Then we equally divide this cost among participating
indices (U(s, q) ∪ V(s, q)).

The gain for a workload relates to the gain for individual
statement by:

Gt(i, wt, st) =
∑
q∈wt

Gt(i, {q}, st) .

By this definition, gain Gt(i, wt, st) will be 0 if i is not used
by the optimiser in the current round t and can be negative
if the index creation leads to a performance regression or if
the index incurs a maintenance cost.2 Creation time of i is
taken as a negative reward, only if i is materialised in round
t, and is 0 otherwise:

rt(i) = Gt(i, wt, st)− Ccre(st−1, {i}) .

Minimising the end-to-end workload time, or rather, max-
imising the end-to-end workload time gained, is the goal
of the bandit. As defined earlier, the total workload time
Ctot is the sum of execution, recommendation and creation
times accumulated over rounds. As such, minimising each
round’s summand is an equivalent problem. Modifying the
execution time to the time gain while ignoring the recom-
mendation time yields per-round super arm reward of:

Rt(st) = Cexc(wt, ∅)− [Cexc(wt, st) + Ccre(st−1, st)]

≈
∑
i∈st

Gt(i, wt, st)−
∑
i∈st

Ccre(st−1, {i})

=
∑
i∈st

rt(i) .

Selection of the execution plan depends on the query op-
timiser, and as noted, the query optimiser may resolve
to a sub-optimal query plan. As we show, the bandit is
nonetheless resilient as it can quickly recover from any
such performance regressions. Observed execution times
encapsulate real-world effects, e.g., the interaction between
statements, application properties, run-time parameters, etc.
However, concurrent environments might require modi-
fying the reward design based on specific performance
targets (e.g., removing index creation time, or considering
total workload run times over query run times). Since the
end-to-end workload time includes the index creation and
statement execution times, we are indirectly optimising for
both efficiency and the quality of recommendations.

2. The optimiser cost model does not have to agree that MAB choices
are optimal. The recommended indices will still be used if the optimiser
estimates that recommended MAB indices will provide a positive gain
over a full table scan.
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Algorithm 2 MAB Simulation for Index Tuning
1: QS← QueryStore() ▷ keeps query information
2: C2UCB← InitialiseBandit() ▷ A1, L 1-2
3: while (TRUE) do
4: queries← getLastRoundWorkload()
5: for all queries do
6: if (isNewTemplate) then
7: QS.add(query)
8: else
9: QS.update(query)

10: end if
11: end for
12: QoI← QS.getQoI() ▷ get queries of interest
13: arms← generateArms(QoI)
14: X← generateContext(arms,QoI)
15: st ← C2UCB.recommend(arms,X) ▷ A1, L 4-10
16: Ccre ← materialise(st)
17: Cexc ← executeCurrentWorkload()
18: C2UCB.updateWeights(Ccre, Cexc) ▷ A1, L 12-13
19: end while

A greedy oracle for super-arm selection. Recall that
C2UCB leverages a near-optimal oracle to select a su-
per arm, based on individual arm scores [24]. As a sum
of individual arm rewards, our super-arm reward has a
(sub)modular objective function and (as easily proven) ex-
hibits monotonicity and Lipschitz continuity. Approximate
solutions to maximise submodular (diminishing returns)
objective functions can be obtained with greedy oracles
that are efficient and near-optimal [26]. Our implementation
uses such an oracle combined with filtering to encourage
diversity.

Initially, arms with negative scores are pruned. Then
arm selection and filtering steps alternate, until the memory
budget is reached. In the selection step, an arm is selected
greedily based on individual scores. The filtering step filters
out arms that are no longer viable under the remaining
memory budget, or those that are already covered by the
selected arms based on prefix matching. If a covering index
is selected for a query, all other arms generated for that
query will be filtered out. Note that filtering is a temporary
process that only impacts the current round.

Bandit learning algorithm. Algorithm 2 shows the
MAB algorithm, which wraps Algorithm 1 and handles the
domain specific aspects of the implementation. We have
divided Algorithm 1 into three main parts, initialisation
(lines 1-2), arm recommendation (lines 4-10) and weight
vector update (lines 12-13). These segments are utilised
in Algorithm 2 as C2UCB function calls. After initialising
the bandit, Algorithm 2 summarises workload information
using templates; these track frequency, average selectivity,
first seen and last seen times of the statements which help to
generate the best set of arms per round (i.e., QoI). The con-
text is updated after each round based on the workload and
selected set of arms. The bandit then selects the round’s set
of arms, forming a configuration to be materialised within
the database. The reward will then be calculated based on
observed execution statistics on a new set of statements,
and will be used to update the shared weight. To support
shifting workloads, where users’ interests change over time,

the learner may forget learned knowledge depending on
the workload shift intensity (i.e., the number of newly
introduced statement templates).

In our implementation, we perform bandit updates sep-
arately for creation time reward and execution time re-
ward (line 13 of Algorithm 1). At the creation cost update,
we temporarily make all context features 0 except for the
context feature that is responsible for the index size. This
can be viewed as an innovation of independent interest to
the bandit community where we decompose the reward
into multiple components and want to direct each reward
component feedback to a subset of the features. We coin
the term focused update in reference to this approach. This
idea invites a new flavour of bandits elaborated in the next
section.

5 CONTEXTUAL COMBINATORIAL BANDIT WITH
STRUCTURED REWARDS

When rewards can be decomposed into component rewards
under two key conditions, we hypothesise that a focused
update can result in faster convergence: (i) when each reward
component is directly related to a small subset of context
features we create lower dimensional supervised learning
problems; and (ii) when each reward component is directly
observed we offer more opportunities for bandit feedback.
Under focused updates we use each component of the
reward to learn a part of the weight vector (see Figure 2).
Indeed for this structured setting we modify the proof of
C2UCB to arrive at a tighter regret bound by a factor of
1/
√
nf , where nf is the number of reward components (i.e.,

observed number of examples per round).
Our approach to structured rewards is by a reduction

to C2UCB. We modify the C2UCB’s formulation as if two
examples are observed for pulled arm i in round t with
respective rewards r̄t,1(i) and r̄t,2(i). Throughout both (sub
round) observations, the overall arm reward function is
fixed as rt(i) = r̄t,1(i) + r̄t,2(i). This permits learning at
a faster rate, while still coordinating an overall arm reward
estimate.

x1 x2 x3 x4 x5 x6 x7 x8

x1 x2 x3 x4 x5 x6 x7 x8

rt(i)   =  rt, 1(i)      +  rt, 2(i) 

Normal 
Update

Focused
Update

xt(i)

xt, 1(i) xt, 2(i) 
~~

Fig. 2. Regular contextual updates vs focused update.

Example 2. In the bandit setting of this paper, we are mo-
tivated by the desire for context part 1 to be completely
responsible for execution cost gains—we can learn the
negative weight from index creation cost directly into
part 2’s index size feature. This enables us to switch
off the creation cost overhead for already created arms
by simply setting the index size context feature to zero.
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This ability to use domain knowledge to tailor reward
feedback to a subset of context features is a powerful
benefit of structured rewards.

Let x̄t,f (i) ∈ Rd be the f th context of arm i at round t,
such that rt(i) = θ′

⋆xt(i) + εt = θ′
⋆(x̄t,1(i) + x̄t,2(i)) +

εt,1 + εt,2 for two independent zero-mean (subgaussian)
noise random variables εt,1 and εt,2 with equal variance3.
To observe the benefit of the focused update, we further
assume that εt,1 and εt,2 are each R√

2
-subgaussian, which

makes εt R-subgaussian.4 It should be noted that even
though we have assumed that the overall context is the
sum of the sub-contexts, Equation (1) from Section 3 still
holds since the equation is oblivious to how the overall con-
text is obtained from the sub-contexts. We further assume
complementary sparse sub-contexts: overall context xt(i)
is the concatenation of x̃t,1(i) ∈ Rd1 and x̃t,2(i) ∈ Rd2 ,
where d = d1 + d2 and x̄t,1(i)

′ =
[
x̃t,1(i)

′ 01×d2

]
and

x̄t,2(i)
′ =

[
01×d1

x̃t,2(i)
′] .

To maintain optimal least squares learning given two
observations per round with equal variances, at the end of
round t we generalise our matrix Vt and bt updates to:

Vt = λI +
t∑

τ=1

2∑
f=1

∑
i∈Sτ

x̄τ,f (i)x̄τ,f (i)
′

bt =
t∑

τ=1

2∑
f=1

∑
i∈Sτ

x̄τ,f (i)r̄τ,f (i) .

Notice that this is different from C2UCB’s definition of Vt

and bt, and hence a new regret analysis is warranted.
We exploit the fact that Theorem 4.2 in [24] holds regard-

less of the super arm St. Therefore, solely for the purpose
of modifying the aforementioned theorem, we re-index the
context and rewards such that x̄t,f (i) = x̄t(i + kf) and
r̄t,f (i) = r̄t(i + kf), and we construct the effective super
arm S′

t = {i′ : i′ = i + kf, i ∈ St, f ∈ {0, 1}}. As such, our
definition of Vt and bt can now be rewritten as:

Vt = λI +
t∑

τ=1

∑
i∈S′

τ

x̄τ (i)x̄τ (i)
′

bt =
t∑

τ=1

∑
i∈S′

τ

x̄τ (i)r̄τ (i) ,

which is syntactically the same as the definition given in
[24]. We need to be more careful in concluding the theorem,
however, since it contains an intermediate step involving

3. Equivariance is without loss of generality. If the two variances
were different, the expressions for Vt and bt would be different.
The data with the less variance would be prioritised via larger
weight: Vt = λI +

∑t
τ=1

∑2
f=1

∑
i∈Sτ

(σ1σ2
σf

)2x̄τ,f (i)x̄τ,f (i)
′ and

bt =
∑t

τ=1

∑2
f=1

∑
i∈Sτ

(σ1σ2
σf

)2x̄τ,f (i)r̄τ,f (i) . The hyperparameter
λ would need different adjustments since λ = σ2

1σ
2
2/γ

2. The value of
γ2 stays the same, serving as the variance for the prior of θ.

4. For independent r.v.’s X R1-subgaussian and Y R2-subgaussian,
X + Y must be

√
R2

1 +R2
2-subgaussian.

det(Vt) as defined in [27]. Assuming that ∥xt(i)∥ ≤ 1, we
bound det(Vt) as follows:

det(Vt) ≤
(
tr(Vt)

d

)d

=

(
tr(λId +

∑t
τ=1

∑
i∈S′

τ
x̄τ (i)x̄τ (i)

′)

d

)d

=

(
tr(λId) +

∑t
τ=1

∑
i∈S′

τ
tr(x̄τ (i)x̄τ (i)

′)

d

)d

=

(
λd+

∑t
τ=1

∑
i∈S′

τ
∥x̄τ (i)∥22

d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ

(
∥x̄τ,1(i)∥22 + ∥x̄τ,2(i)∥22

)
d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ

(
∥x̃τ,1(i)∥22 + ∥x̃τ,2(i)∥22

)
d

)d

=

(
λd+

∑t
τ=1

∑
i∈Sτ
∥xτ (i)∥22

d

)d

≤
(
λd+

∑t
τ=1

∑
i∈Sτ

1

d

)d

≤
(
λd+ tk

d

)d

,

where we have used the AM-GM Inequality for the first
inequality and the fact that xτ (i)

′ =
[
x̃τ,1(i)

′ x̃τ,2(i)
′] to

arrive at the last equality. Finally, using the fact that Vt−1 ⪯
Vt, that the noise is R√

2
-subgaussian and Theorem 2 from

[27], Theorem 4.2 from [24] becomes:

∥θ̂t − θ⋆∥Vt−1
≤ ∥θ̂t − θ⋆∥Vt

≤ R√
2

√
2 log

(
det(Vt)1/2

δ det(λId)1/2

)
+ λ1/2S

≤ R√
2

√
d log

(
1 + tk/λ

δ

)
+ λ1/2S ,

with probability at least 1 − δ, which is the same as that in
[24], with the exception of the definition of Vt.

Conveniently, Lemma 4.1 from [24] is written in terms
of Vt−1 and αt, thus the proof follows exactly besides the
choice of αt, rewritten below for convenience:

Lemma 1. If αt =
R√
2

√
d log

(
1+tk/λ

δ

)
+λ1/2S, then we have

0 ≤ r̂t(i)− r⋆t (i) ≤ 2αt∥xt(i)∥V −1
t−1

holds simultaneously for all t ≥ 0 and i ∈ [k] with
probability at least 1− δ.

We provide the correction of the proof of Lemma 4.2
from [24] in Appendix. This proof can be used by changing
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the definition of the matrix XT into:

X ′
T =



x̄′
T,1(s(1,T ))

...
x̄′
T,1(s(|ST |,T ))
x̄′
T,2(s(1,T ))

...
x̄′
T,2(s(|ST |,T )) .


.

Then we rewrite:

det(VT ) = det

V +
T∑

t=1

2∑
f=1

∑
i∈st

x̄t,f (i)x̄t,f (i)
′


= det

V +
T−1∑
t=1

2∑
f=1

∑
i∈st

x̄t,f (i)x̄t,f (i)
′ +

2∑
f=1

∑
i∈sT

x̄T,f (i)x̄T,f (i)
′


= det (VT−1 +XTX

′
T ) ,

and the rest of the proof follows very similarly, with slight
difference in the dimension of XT , changing from |sT | into
2|sT |. Finally, the third last equality requires us to find the
trace of the matrix of interest, which is tr(X ′

TV
−1
T−1XT ) =∑2

f=1

∑
i∈sT

xT,f (i)V
−1
T−1xT,f (i) , which in turn gives us

our new determinant inequality:

det(VT ) ≥ det(VT−1)

1 +
2∑

f=1

∑
i∈sT

∥xT,f (i)∥2V −1
T−1

 .

Therefore, we have our modification of Lemma 4.2 of [24]
(Lemma 1 in Appendix) as follows:

Lemma 2. Let V ∈ Rd×d be a positive definite matrix, st ⊆
{1, · · · , k} where |st| ≤ ℓ for t = 1, 2, . . . , and VT =
V +

∑T
t=1

∑2
f=1

∑
i∈st

x̄t,f (i)x̄t,f (i)
′. Then, if ∀t, i λ ≥

ℓ and ||xt(i)||2 ≤ 1 for concatenated context xt(i) =
x̄t,1(i) + x̄t,2(i) where x̄t,1(i)

′ =
[
x̃t,1(i)

′ 01×d2

]
and

x̄t,2(i)
′ =

[
01×d1

x̃t,2(i)
′], we have

T∑
t=1

∑
i∈st

∥xt(i)∥2V −1
t−1

=
2∑

f=1

T∑
t=1

∑
i∈st

∥xt,f (i)∥2V −1
t−1

≤ 2 log detVT − 2 log detV

≤ 2d log((tr(V ) + Tℓ)/d)−
2 log detV .

Since there is no modification to the objective function,
and since all the theorems and lemma required to arrive at
the final regret bound are the same, the regret bound for the
modified C2UCB stays the same, as stated in [24]:

T∑
t=1

Regαt ≤ C
R√
2

√
8Td log

(
1 +

Tk

dλ

)
·(√

d log

(
1 + Tk/λ

δ

)
+
√
λS

)
.

Notice that in cases where there are nf examples per arm
in each round instead of only two, the regret will generalise
into:

T∑
t=1

Regαt ≤ C
R
√
nf

√
8Td log

(
1 +

Tk

dλ

)
·(√

d log

(
1 + Tk/λ

δ

)
+
√
λS

)
,

which has a factor of 1√
nf

, nf ∈ N compared to the original
C2UCB where nf = 1.

6 EXPERIMENTAL METHODOLOGY

We evaluate our MAB framework across a range of widely
used analytical and HTAP industrial benchmarks, compar-
ing it to a state-of-the-art physical design tool shipped with
a commercial database product referred to as the Physical
Design Tool (PDTool). This is a mature product, proven to
outperform other physical design tools available on the mar-
ket [21], [28]. As a representative of the most recent studies
that successfully use Monte Carlo tree search (MCTS) to
tune indices [29], [30], [31], we test our framework against a
database optimiser that can tune indices using MCTS, called
UDO [29]. UDO is originally designed to work with ana-
lytical queries only, which we extend to work with HTAP
workloads (we refer to this baseline as MCTS hereafter).

Benchmarks. For HTAP performance testing we use
CH-BenCHmark [32], [33], TPC-H benchmark (with uni-
form distribution) [34] and TPC-H Skew benchmark [35]
with Zipfian factor 4. CH-BenCHmark provides a com-
plex mixed workload, combining TPC-C [36] and TPC-H
benchmarks. The CH-BenCHmark schema comprises an un-
modified TPC-C schema and three tables (Supplier, Region,
Nation) from TPC-H. Its workload is composed of TPC-C
transactional workload and modified 22 TPC-H [34] queries
adapted to the CH-BenCHmark schema.

While CH-BenCHmark provides a uniform dataset, we
are unaware of any HTAP benchmarks with skewed data
generation. While there are some OLTP benchmarks with
skewed datasets [33], they do not provide the required
level of OLAP complexity for the index selection problem
to be interesting. Due to the limitations of existing bench-
marks, we decided to extend the TPC-H skew benchmark
to include INSERT, DELETE and UPDATE statements to
mimic a skewed HTAP benchmark [37]. The TPC-H skew
data generation tool already provides the functionality to
generate data for inserts and deletes. In our extension, we
additionally perform updates on existing records using the
same generated data. To highlight the impact of skewness
on the overall performance, we also report comparable
HTAP results on the original TPC-H database.

For analytical experiments, we use five publicly available
benchmarks: TPC-DS [38], a complex benchmark resulting
in a large number of candidate configurations; SSB [39]
with easily achievable index benefits; Join Order Bench-
mark (JOB) with IMDb dataset (a real-world dataset) [18]
(henceforth referred to as IMDb), a challenging workload
for index recommendations with index overuse leading to
performance regressions; and finally, TPC-H and TPC-H
skew benchmarks.
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Unless stated otherwise, all experiments use scale fac-
tor (SF) 10, resulting in approximately 10GB of data per
workload, except in the case of the IMDb dataset, which
has a fixed size of 6GB.5 We consider two broad types of
workloads, allowing us to compare different aspects of the
recommendation process:

1) Static: The workload sequence is known in advance,
and repeating over time (modelling workloads used
for reporting purposes). In the absence of dynamic
environment complexities, this simpler setting al-
lows us to single-out the effectiveness (the ability
to find a good configuration) and the efficiency (the
search overhead) of the MAB search strategy.

2) Dynamic: The region of interest shifts over time
from one group of queries to another (modelling
data exploration). For HTAP experiments, interest
shifts through workloads with different transaction
and analytical compositions, ranging from fully an-
alytical workloads to transaction heavy workloads.
Dynamic workloads are used to evaluate adoption
speed, cost of exploration and memory efficiency in
dynamic environments.

Across experiments, each group of templates is invoked
over rounds, producing different instances. For static exper-
iments, we invoke the PDTool at the start of the second
round giving the first round workload as the represen-
tative workload. For dynamic workloads, we invoke the
PDTool soon after the workload shift since this workload
will become representative of future rounds. This setting is
somewhat unrealistic and favourable for PDTool, since in
real-life the PDTool will seldom truly have knowledge of
the representative workload (i.e., what is yet to arrive in the
future), advantaging the PDTool in our experiments. How-
ever, it presents a viable comparison against the workload-
oblivious MAB. Bandits do not use any workload informa-
tion ahead of time, but instead observe a workload sequence
and react accordingly.

Physical design tuning parameters. Both PDTool and
MAB are given a memory budget approximately equal to
the size of the data (1x; 10GB for SF 10 datasets and 6GB for
IMDb dataset) for the creation of secondary indices. We have
experimented with different memory budgets ranging from
0.25x to 2x (since benefits of additional memory seem to
diminish beyond a 2x limit) under TPC-H and TPC-H skew
benchmarks, and observed the same patterns throughout
that range.6 We have naturally picked the middle of the
active region (1x) as our default memory budget. All these
workloads come with original primary and foreign keys that
influence the choice of indices. We grant the aforementioned
memory budget on top of this.

In search of the best possible design, we do not constrain
the running time of PDTool.All proposed indices are mate-
rialised and workload invoked over the same commercial
DBMS in both cases (MAB and PDTool).

5. CH-BenCHmark does not scale with the SF parameter like most of
the other benchmarks we use. It uses a number of warehouses (similar
to the TPC-C benchmark) as a scaling parameter. For our experiments,
we use 137 warehouses which generates approximately a 10GB dataset.

6. Both tools converge to the same execution cost by the final round,
when enough memory was given to fit the entire useful configuration.
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Fig. 3. MAB vs. PDTool vs. MCTS total workload time under CH-
BenCHmark for static workloads with a range of different TARs

Hardware. All experiments are performed on a server
equipped with 2x 24 Core Xeon Platinum 8260 at 2.4GHz,
1.1TB RAM, and 50TB disk (10K RPM) running Windows
Server 2016. We report cold runs, clearing database buffer
caches prior to every query execution.

7 EXPERIMENTAL RESULTS

This section reports empirical comparisons of MAB against
PDTool and MCTS on HTAP workloads and summarises
results under analytical workloads, reported earlier [40].
We report the total workload time broken down by recom-
mendation, index creation, and workload execution times.
Total workload time captures all the costs incurred from
the start of the experiment to the end. Index deletion cost
is negligible compared to creation and execution costs and
does not have an observable growth with index size.7 There-
fore, we ignore the index deletion cost. For HTAP experi-
ments, execution time is further divided into analytical and
transactional components. In addition, we present original
statement times without any secondary indices (denoted
as NoIndex). We present summary graphs with total end-
to-end workload time and convergence graphs with to-
tal workload and execution times per round. Finally, we
present results against a well-tuned reinforcement learning
agent.

7.1 MAB vs PDTool Under HTAP Workloads
7.1.1 Static HTAP Workloads
To illustrate the impact of transactional statements, we use
a series of CH-BenCHmark static experiments varying the
transactional to analytical ratio. In each of these experi-
ments, we keep the analytical component constant with
22 adapted TPC-H queries (a set of analytical queries) while
changing the size of the transactional component.

The transactional component of the workload is com-
posed of 5 transactions (new-order, payment, order-status,
delivery and stock-level) with a pre-specified transaction
mixture (44%, 44%, 4%, 4% and 4%, respectively). The small-
est transactional workload adhering to the specified TPC-C
transaction mixture comprises 11 new order transactions, 11

7. When tested with indices of different sizes and complexities, we
observed sub-millisecond deletion costs in all cases.
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Fig. 4. MAB vs. PDTool vs MCTS convergence under CH-BenCHmark
for static workloads with 3:1 TAR: (a) End-to-end workload time, (b) Total
execution time.
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Fig. 5. MAB vs. PDTool vs MCTS convergence under CH-BenCHmark
for static workloads with 3:1 TAR: (a) Transactional Execution cost, (b)
Analytical Execution cost.

payment transactions, an order-status transaction, a delivery
transaction and a stock-level transaction (approximately 650
statements). This smallest transactional workload is hence-
forth referred to as a set of transactional statements. We define
the transactional to analytical ratio (henceforth referred to
as TAR) as the ratio between transactional and analytical
statement sets. As an example, 5:1 TAR is composed of one
analytical set (22 TPC-H queries) and 5 transactional sets
(i.e., 55 new order transactions, 55 payment transactions,
5 order-status transactions, 5 delivery transactions and 5
stock-level transactions, resulting in approximately 3300
transactional statements per round).

As evident from Figure 3, in transaction-heavy work-
loads, MAB performs much better than PDTool providing
up to 51% speed-up (5:1) in total workload time, whereas
PDTool performs better in the fully analytical workload
(0:1) providing up to 8% speed-up. Static workloads over
uniform datasets are the best case for offline physical design
tools, as a pre-determined workload sequence may perfectly
represent future statements. We will look into analytical
workloads in more detail in Section 7.3. At 1:1 TAR, the
first ratio that introduces the transactional component, MAB
starts to take the lead providing a 4% performance gain
in total workload time. MAB reaches the same last round
execution time as PDTool; however, due to better execution
times in early rounds, PDTool provides 7.7% total execution
time speed up over MAB. From 2:1 TAR onwards, MAB

dominates the PDTool providing 26%, 47%, 51% and 51%
total workload time speed-up over PDTool, under 2:1, 3:1,
4:1, 5:1 TARs, respectively. PDTool struggles to perform
better than NoIndex from 3:1 TAR onwards due to the heavy
recommendation costs incurred by PDTool, yet PDTool is
still superior to NoIndex in execution cost.

The MCTS-based approach performs much better than
NoIndex but records lower performance in total workload
cost compared to the PDTool and MAB. MAB managed to
outperform MCTS by 21.7%, 16.3%, 18.7%, 20%, 23.7% and
24.1% under 0:1, 1:1, 2:1, 3:1, 4:1 and 5:1 TARs, respectively.
Furthermore, MCTS requires longer training outside the
total workload time (e.g., MCTS used 1h on average for
training across the experiments). On the downside, MCTS
action space grows like O(2k) where k is the number of
arms, which limits its candidate indices to unique column
subsets and not the permutation of those columns.

To further understand the results, we dive into the 3:1
TAR experiment, which provides a good balance of trans-
actional and analytical statements to demonstrate the im-
portance of both analytical gain and transactional overhead.
As shown in the convergence graphs in Figure 4(b), MAB
converges to a better configuration providing 29.4% and
42.8% faster execution time by the last round compared
to PDTool and MCTS, respectively. Figure 4 also explains
PDTool’s higher total workload time compared to NoIndex.
While PDTool consumes a high recommendation time in the
first round, it results in a better per round total workload
and execution times than NoIndex.

Balancing the configuration fitness between transac-
tional and analytical workloads is the prime concern of
index tuning in HTAP environments. How tools achieve
this balance can be better understood by breaking the ex-
ecution cost into analytical and transactional components.
As Figure 5 demonstrates, MAB configuration provides
better execution time for both analytical and transactional
workload components compared to both PDTool and MCTS.
MAB provides 19.9% and 42.5% better execution times by
the 25th round for analytical and transactional workloads,
respectively, compared to the second best option (MCTS in
the transactional and PDTool in the analytical cost). In initial
rounds, MAB performance is inferior to PDTool in trans-
actional execution time, but it quickly learns the negative
impact of indices on the transactional workload. By the 4th

round, MAB surpasses PDTool in transactional execution
time by dropping indices with negative rewards. While
removing the unnecessary indices, MAB makes sure not to
impact the analytical execution times by keeping the high
reward indices intact. MAB performs several configuration
changes in rounds 15–17, which results in a sudden oscilla-
tion in transactional execution time, but these configuration
changes allow the bandit to find a superior configuration
in both analytical and transactional execution costs. There
is some variability in transactional execution costs even
with the same number of transactions in each round, as
the number of statements per round can be different (e.g.,
different new orders can have a different number of items in
a transaction, leading to a different number of statements).

MCTS performance under the static experiments are less
satisfactory due to its limitations in the action space and
longer training times. These issues will be compounded
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TABLE 1
HTAP: Total workload time breakdown for HTAP workloads (in min): the best choice is in bold text.

Workload Recommendation Index Creation Execution Analytical Transactional Total
MAB PDT MAB PDT MAB PDT MAB PDT MAB PDT MAB PDT

CH 0.1 79.15 6.67 1.86 76.6 76.72 55.02 48.74 21.58 27.98 83.37 157.73
TPC-H 0.14 14.09 9.41 6.43 87.41 81.82 57.42 53.4 29.99 28.42 96.96 102.35
TPC-H Sk. 0.15 13.92 14.79 12.74 77.29 102.29 37.19 65.45 40.11 36.84 92.22 128.94
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Fig. 6. MAB vs. PDTool vs. NoIndex total end-to-end workload time for
static TCP-H and TPC-H skew HTAP workloads.

with dynamic workloads which would require multiple
training sessions. Therefore, in the remaining experiments,
we compare MAB against PDTool (the strongest competi-
tor).

Further analysis of additional RL approaches under
analytical workloads can be found in [40]. Those experi-
ments demonstrate that deep RL’s randomised exploration
of the vast state-action space and challenging hyperparam-
eter tuning contributes to the solution volatility, whereas
MAB typically provides better convergence and simpler
implementation.

7.1.2 The Impact of Data Skew in HTAP Workloads
We now experiment with TPC-H and TPC-H Skew HTAP
workloads to demonstrate the impact of the addition of
transactional statements to well-known OLAP benchmarks.

We experiment with a similar number of transactional
statements as in the 3:1 TAR CH-BenCHmark experiment.
The OLTP part of the workload is composed of 6 templates
(two insert templates, two delete templates and two update
templates). We use the original data generation tools to
generate the INSERT, DELETE and UPDATE statements for
ORDER and LINEITEM tables. The transactional workload
used here is less complex than CH-BenCHmark but suffi-
cient to demonstrate the impact of HTAP workloads on the
overall performance.

As shown in Figure 6, MAB performs better in both TPC-
H and TPC-H skew HTAP workloads. Interestingly, MAB
achieves 5.2% better total workload time under the TPC-H
benchmark, which is usually favourable to PDTool. MAB
converges to a similar performant configuration, comparing
the final round execution cost. However, with MAB’s longer
execution times in the first few rounds, PDTool achieves a
6% better total execution time. Due to the higher recom-
mendation time of PDTool, it has a higher total workload
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Fig. 7. MAB vs. PDTool total-workload time convergence under CH-
BenCHmark for dynamic workloads with different transaction levels (log
y-axis)

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200 220

To
ta

l E
xe

c.
 T

im
e 

Pe
r R

ou
nd

 (s
ec

)

Round Number

PDTool
MAB

Fig. 8. MAB vs. PDTool total execution time convergence under CH-
BenCHmark for dynamic workloads with different transaction levels

time. In TPC-H Skew, MAB dominates the PDTool across
all dimensions, having 28.4% better total workload time and
24% better execution time. All HTAP results are summarised
in Table 1.

7.1.3 Dynamic HTAP Workloads

This experiment gradually increases and decreases the
transactional workload component over the rounds. We
start with 0:1 TAR, which is purely analytical, and then we
add transactional workload sets one by one till we reach
5:1 TAR. Afterwards, we gradually reduce the transactional
workload sets one by one to reach 0:1 TAR again. We run 20
rounds in each TAR.

After each workload change, PDTool is invoked with
the new workload from the previous round, which is a
good representation of the next 19 rounds. It is essential
to provide the workload from at least one complete round
because PDTool considers the transactional to analytical ra-
tio when making recommendations. However, as observable
from Figure 7, each invocation of PDTool takes a substantial
amount of time for larger workloads in higher transaction
levels.
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Fig. 9. MAB vs. PDTool analytical execution time convergence under
CH-BenCHmark for dynamic workloads with different transaction levels
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Fig. 10. MAB vs. PDTool transactional execution time convergence
under CH-BenCHmark for dynamic workloads with different transaction
levels

MAB performs most of the configuration changes at the
start of the experiment and then after the first workload
change (0:1 → 1:1). Understandably, MAB needs to explore
extensively at the start of the experiment. However, a similar
level of exploration for the first workload change might not
be as intuitive, given that we do not see such exploration
from MAB for the rest of the experiment. In round 21,
MAB is exposed to transactional statements for the first
time in this experiment. As a result, MAB performs more
exploration and learns the negative impact of indices in
these rounds and thus performs much better after round
40. Ultimately, MAB provides a 57.8% speed up in the total
workload time compared to PDTool. A significant portion of
this speed-up is attributed to MAB’s lower recommendation
cost compared to PDTool.

To compare the different configurations proposed by the
tools, we plot execution time over the rounds in Figure 8.
After the first two transaction levels (i.e., after round 40),
MAB always manages to lock into a superior configuration
providing faster execution time. As a result, MAB provides
an 11% speed-up in total execution cost.

In the entire experiment, we go through the same TAR
two times (except for 5:1 TAR), which results in similar
workloads. However, from Figure 8, it is noticeable that
PDTool reaches higher execution costs in the descending
part of the experiment (after round 120) compared to the
ascending part of the experiment (rounds 1 to 120). Con-
figurations proposed by the PDTool depend on the existing
secondary indices present in the system and the underly-
ing data. Continuous additions and deletions change the
underlying data, partially invalidating the statistics used

by the optimiser. Furthermore, at each PDTool invocation,
the system has a different starting set of secondary indices,
impacting PDTool’s recommendations. Therefore the recom-
mendations proposed for similar workloads in ascending
and descending parts of the graph are different. For exam-
ple, rounds 80–100 and 120–140 run a 4:1 TAR workload,
whereas PDTool proposes two very different configurations
for these two sections. While it proposes only 18 indices at
round 81, 27 are proposed in round 121, with only 11 indices
being shared across 2 configurations. On the other hand,
MAB converges quickly in the later experiment rounds,
taking advantage of the already obtained knowledge.

To further analyse MAB’s gain in the dynamic exper-
iment, we need to break down the execution time into
analytical and transactional components. As one can ob-
serve from Figures 9 and 10, MAB obtains the gain mainly
from the transactional workload. MAB provides 4.5% better
analytical execution cost and 22.6% better transactional ex-
ecution cost compared to the PDTool. As observable from
Figure 9, MAB is obtaining a noticeable analytical gain in
2:1 and 3:1 TARs. In the analytical heavy workloads (0:1,
1:1 TARs), PDTool records a better or similar analytical
execution time. MAB opts for the transactional friendly con-
figuration for transactional heavy workloads (4:1, 5:1 TARs),
reducing thereby the analytical execution time gain. On the
transactional end, MAB leads in almost all workloads. As
expected, transactional execution cost gain increases for the
transactional heavy workloads.

Impact of data skewness on dynamic HTAP workloads:
This section explores the compound effect of data skewness
and dynamic workloads. We experiment with a dynamic
HTAP TPC-H skew workload to demonstrate this effect.
We run a shifting workload with different TARs similar to
the dynamic ch-BenCHmark, where each shift runs for 15
rounds. There are three shifts (0.5×, 1×, 2× TARs) with
45 rounds in total. Here 1× represents the TAR used in
the static TPC-H skew HTAP experiment. However, in this
experiment, we shift the analytical workload as well. All
analytical templates are divided into three almost equal
size sets and used one set per shift. In this experiment,
MAB provided an 82.51% gain in total workload time and a
22.77% gain in total execution time.

7.1.4 Space Savings Under HTAP Workloads
In the case of index tuning of HTAP workloads, more
indices can result in higher running time for transactional
components of the workload. Consequently, a minimal in-
dex set can be optimal for a transaction-heavy workload.
While such a configuration might be suboptimal for the
analytical component of the workload, a minimal config-
uration can result in a better total workload execution
time due to the significant savings obtained from avoiding
index maintenance activities stemming from transactional
statements. Our experiments observed that PDTool usually
exploits the entire given memory budget, resulting in a
higher transactional execution cost.8

8. We have observed that PDTool sometimes goes over the given
budget due to errors in index size estimations. On the other hand, MAB
initially estimates the index size based on the statistics and corrects the
estimate after indices are materialised for the first time and therefore
does not suffer from the same issue.
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Fig. 11. MAB vs. PDTool convergence under CH-BenCHmark for static
workloads with 5:1 TAR: (a) Memory use, (b) Total execution time.
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Fig. 12. MAB vs. PDTool convergence under CH-BenCHmark for static
workloads with 5:1 TAR: (a) Transactional Execution cost, (b) Analytical
Execution cost.

On the flip side, MAB learns the negative impact of
indices on transactional statements and dynamically adjusts
the configuration. However, this behaviour was not visible
with fully analytical workloads. The index size context
feature typically carries a negative weight due to negative
rewards from index creation operations and forces the ban-
dit to choose the smaller arms that provide the best gains in
execution cost.

At 5:1 TAR, MAB provides a configuration that yields
an 83% memory saving while achieving an 8.8% execution
time gain by the last round (see Figure 11). This execution
cost gain is smaller than the gain we observed under trans-
action level 3, as the usefulness of indices reduces when the
workload becomes transactions heavy.

While it might be counter-intuitive for an index tuning
tool to use less memory to provide better performing con-
figurations, it can be easily understood by observing the
analytical and transactional execution times of both tools by
the last round (see Figure 12). Comparing the last round
configurations of both tools, PDTool creates an analytical
friendly configuration that provides a 27% speed-up in an-
alytical execution time (around 40 second gain per round).
On the other hand, MAB locks into a smaller configuration
that is more suitable for transactional statements providing
a 60% speed-up in transactional execution cost (around 60
second gain per round). Ultimately MAB provides an 8.8%
speed-up in total execution time while offering a significant

memory saving.

7.1.5 Impact of restricted recommendation times under
HTAP workloads

In all experiments, we run with unrestricted running
times for PDTool in search of the best recommendation
quality. Some tuning tools, like PDTool, can restrict the
tuning session to a time provided by the user [41]. While
this can negatively impact the recommendation quality (and
in turn execution time), this restriction can reduce the total
workload time.

To shed some light on this issue, we experiment with
CH-BanCHmark 3:1 TAR workload providing different tun-
ing times to the PDTool (See Table 2). We notice an apparent
increase in execution time when we reduce the recommen-
dation time, impacting the total workload time in the long
run. However, in our 25-round experiments, the reduction in
recommendation time leads to better total workload times
for the PDTool. Nevertheless, MAB’s total workload time
remains superior.

As observable in Table 2, when given a tuning time less
than the minimum, PDTool will end without providing any
recommendations. Unfortunately, identifying the minimum
time requirement for the tuning session is next to impossible
(other than through the trial and error). For example, the
3:1 TAR experiment gives the first recommendation at 30
minutes, whereas under the 5:1 TAR workload, PDTool took
60 minutes.

7.1.6 Impact on Recommendation Quality of Including In-
dex Maintenance Time in Rewards

This section tests the impact of including the index
maintenance time in the reward. We experiment against the
OLAP version of the bandit, which only considers the index
creation time and query execution time. While the OLAP
version focuses on improving the data scan gains entirely,
the HTAP version tries to balance the gain from the data
scans and the negative impact of the index maintenance. We
run a CH-BenCHmark 5:1 TAR workload for 25 rounds. In
this experiment, we notice that the OLAP version provides a
5.33-minute gain in analytical execution time, while causing
a 13.02-minute loss in transactional execution time. Overall,
the HTAP version provides a 7.68-minute gain in total
execution time. This experiment shows that HTAP reaches
a better balance by considering both data scan gains and
index maintenance overheads.

TABLE 2
HTAP: Total workload time breakdown for CH-BenCHmark 3:1 TAR

workloads (in min)

Component Recommend Creation Execution Total
MAB 0.1 6.67 76.6 83.37
PDT (15 mins) No Recommendations
PDT (30 mins) 30.64 2.34 84.74 117.72
PDT (60 mins) 60.67 2.11 81.17 143.95
PDT (original) 79.15 1.86 76.72 157.73
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TABLE 3
Total time breakdown for analytical workloads (in min): the best choice is in bold text.

Workload Recommendation Creation Execution Total
PDTool (#) MAB PDTool MAB PDTool MAB PDTool MAB

St
at

ic

SSB 0.34 (0.34) 0.02 0.95 1.86 12.9 13.15 14.19 15.03
TPC-H 0.6 (0.6) 0.08 2.45 5.66 46.35 55.64 49.4 61.38
TPC-H Sk. 0.58 (0.58) 0.11 8.37 19.82 54.17 32.06 63.12 51.99
TPC-DS 44.86 (44.86) 1.53 1.45 5.94 302.63 242.15 348.94 249.62
IMDB 0.34 (0.34) 0.31 1.1 1.3 11.01 9.42 12.41 11.03

D
yn

am
ic

SSB 1.28 (0.32) 0.05 1.5 2.21 5.42 5.69 8.2 7.95
TPC-H 1.55 (0.32) 0.12 9.36 9.74 26.35 25.14 37.25 35
TPC-H Sk. 1.65 (0.41) 0.16 14.98 20.96 85.49 21.44 102.11 42.56
TPC-DS 11.13 (2.78) 1.66 6.08 16.48 187.08 155.65 204.29 173.79
IMDB 3.09 (0.77) 0.29 1.59 2.24 11.21 7.93 15.89 10.46

R
an

do
m

SSB 2.83 (0.57) 0.02 1.77 2.37 26.59 16.83 30.85 19.22
TPC-H 7.55 (1.51) 0.08 14.68 7.06 84.14 80.43 106.37 87.57
TPC-H Sk. 3.3 (0.66) 0.08 31.74 34.68 48.71 39.44 83.75 74.2
TPC-DS 310.22 (62.04) 1.4 8.23 19.81 323.57 227.02 642.01 248.24
IMDB 14.74 (2.94) 0.28 2.72 1.14 48.55 14.47 66.01 15.89

# The average time of a single PDTool invocation

TABLE 4
Total end-to-end workload time for
static analytical workloads under
different database sizes (in min)

Workload SF PDTool MAB

TPC-H
1 2.02 2.03
10 49.4 61.38
100 891.01 793.40

TPC-H
Skew

1 4.17 3.83
10 63.12 51.99
100 2640.64 1219.33

TABLE 5
Total time breakdown for analytical TPC-H Skew workloads under

different round sizes (in min)

Round size Rec. Creation Execution Total
Single Query 1.11 27.77 30.16 59.04
0.5x 0.13 22.39 30.39 52.92
1x 0.11 19.82 32.06 51.99
2x 0.08 12.66 43.53 56.27

7.2 MAB vs PDTool Under Analytical Workloads

In addition to the static and dynamic workloads, we incor-
porate random workloads for analytical testing.9 Random
experiments test the delicate balance between swift and
careful adaptation under returning workloads, which can
lead to unwanted index oscillations. As presented in Table 3,
under all three analytical settings (static, dynamic, and ran-
dom, MAB achieves a faster total workload time, except for
SSB and TPC-H static analytical workloads. Consistent with
the HTAP experiments, fully analytical workloads on uni-
form datasets work as the best case for offline tuning tools.
However, when underlying data is skewed or dynamic, rec-
ommendations based on a pre-determined workload alone
can have unfavourable outcomes.

The main experiments used skewed datasets with Zip-
fian factor 4 (and uniform datasets with Zipfian factor 0).
To further investigate the impact of the degree of data skew,
we experiment with different Zipfian factors ranging from
1 to 3 with analytical workloads. As shown in Figure 13
under Zipfian factors 2 and 3, MAB demonstrates over 51%
and 58% performance gain against PDTool, respectively.
Whereas under Zipfian factor 1, PDTool outperforms MAB
by 16%. PDTool missing the index on Orders.O custkey
appears to be more costly with Zipfian factors 2 and 3,
mainly affecting Q22. An in-depth analysis of the solution
fitness on analytical workloads can be found in [40].

7.2.1 The Impact of Database Size
To examine the impact of database size, we run TPC-H
uniform and TPC-H Skew benchmarks with static analytical
workloads on SF 1, 10 and 100 databases. Under SF 10, MAB

9. A query sequence is chosen entirely at random (modelling more
dynamic settings, such as cloud services)

performs better in the case of TPC-H Skew and PDTool
performs better on TPC-H (see Table 4). The impact of
sub-optimal index choices is even more evident for larger
databases, leading to a huge gap between total workload
times of MAB and PDTool for TPC-H Skew (44 hours in the
former vs 20 hours in the latter case). In TPC-H, PDTool
results in a higher total workload time (14.8 hours vs. 13.2
hours for MAB). This is mainly due to sub-optimal opti-
miser decisions, where the optimiser favours the usage of
indices (coupled with nested loops joins) when alternative
plans would be a better option. For instance, under the
recommended indices from PDTool, some instances of Q5
run longer than 8 minutes (using index nested loops join),
whereas others finish in 1.5 minutes (using a plan based
on hash joins). We notice that, with larger database sizes,
execution time dominates contributing more than 91% to the
total workload time. We observe faster and more accurate
convergence of MAB under larger databases, due to a clear
difference between rewards for different arms, highlighting
MAB’s excellent potential for larger databases.

7.2.2 Hypothetical Index Creation vs Actual Index Creation
Managing the exploration-exploitation balance under a
large number of candidate indices, with an enormous num-
ber of combinatorial choices, is non trivial. PDTool explores
using the “what-if” analysis, which comes under the tool’s
recommendation time, whereas MAB explores using index
creations.

Comparing the total of recommendation and index cre-
ation times (henceforth referred to as exploration cost) be-
tween MAB and PDTool presents a clear picture about these
two exploration methods. From Table 3 we can observe
that, in most cases (9 out of 15) MAB archives a better
exploration cost compared to PDTool when running analyt-
ical workloads. However when the workload is small (e.g.,
dynamic shifting) PDTool tends to perform better. TPC-DS,
with the highest number of candidate indices among these
benchmarks (over 3200 indices), provides a great test case
for exploration efficiency. Under TPC-DS, MAB exploration
cost is significantly lower in shifting and random settings,
and marginally higher in the static setting. Despite the effi-
cient exploration, MAB does not sacrifice recommendation
quality in any way (achieving faster execution times in 12
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Fig. 13. MAB vs. PDTool total end-to-end workload time under TPC-H
skew static analytical workloads with different Zipfian factors (z)

out of 15 cases, with significantly faster execution across all
TPC-DS experiments).

This efficient exploration is promoted by the linear
reward-context relationship along with C2UCB’s weight
sharing (Section 3), resulting in a small number of param-
eters to learn. An arm’s identity becomes irrelevant and
context (Section 4) becomes the sole determining factor of
each arm’s expected score, which allows MAB to predict the
UCB of a newly arriving arm with known context without
trying it even once.

7.2.3 The Impact of Round Size
In the original TPC-H Skew static analytical experiment (1x),
each bandit round includes all the benchmark templates (22
queries). To analyse the impact of the round size (bandit
invocation frequency), we conduct experiments with single-
query (1 query), 0.5x (11 queries) and 2x (44 queries) round
sizes using the TPC-H Skew analytical workload. All three
round sizes converge to the same performant configurations
by the last round. We observe a faster convergence with
small round sizes, resulting in lower execution costs in
the first few rounds. While the execution cost gain from
1x to 0.5x is noticeable, dividing the round further (single
query) does not provide a considerable benefit compared
to the added creation and recommendation overhead. With
larger round sizes, we observe lower creation costs due to
less frequent bandit updates (see Table 5). MAB performs
better under all round-sizes compared to PDTool. A DBA
can decide on the round size (bandit invocation frequency)
based on the application and DBA’s primary goal (faster
convergence vs lower creation cost). We leave auto-tuning
of this parameter as an interesting future work avenue.

7.2.4 The Impact of Focused Updates
This section analyses the impact of focused updates on the
convergence speed. As shown in Figure 14, under both TPC-
H and TPC-H Skew analytical workloads, there is a clear im-
provement in convergence speed. Faster convergence results
in 17% and 20% gain in total execution time and 21% and
28% gain in total workload time under TPC-H and TPC-H
skew benchmarks with focused updates, respectively.
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Fig. 14. MAB end-to-end workload time convergence with and without
focus update for static analytical workloads: (a) TPC-H, (b) TPC-H Skew

7.3 Experimental Results Summary

This section summarises the experimental results. In an
experiment against a uniform dataset and 6 TARs, MAB
showed a 28.9% and 20.8% gain on average compared to
PDTool and MCTS, respectively. Diving deeper into the 3:1
TAR, we noticed that MAB provides improvements in both
transactional execution cost and analytical execution cost.
Execution cost gain from MAB peaks with more balanced
TARs. With workloads that are at the extreme ends of the
spectrum (either purely analytical or purely transactional
queries), both PDTool and MAB provide similar execu-
tion times. However, large PDTool recommendation times
were observed with transactional heavy workloads. Besides
better performance, we noticed that MAB also provides
remarkable memory saving with transactional heavy work-
loads (up to 83%).

Using learned knowledge, MAB performed much bet-
ter than PDTool in dynamic experiments. On the other
hand, PDTool’s performance degraded in the dynamic set-
ting when index recommendations had to consider existing
indices. Furthermore, we demonstrated the superiority of
MAB-based PDS tuning over different bandit update fre-
quencies and with large databases. Finally, we demonstrated
that under analytical workloads, MAB outperforms PDTool
in 13/15 experiments, showcasing the robustness of the
MAB framework.
8 RELATED WORK

HTAP. HTAP workloads are composed of online transaction
processing (OLTP) workloads and online analytical pro-
cessing (OLAP) workloads. While most existing analytical
systems depend on data pipelines writing to a separate
data warehouse for OLAP queries, such an approach lim-
its the users from running analytics on fresh operational
data. Research has targeted hybrid environments that can
cater to OLTP statements and OLAP queries. The last few
years have witnessed the emergence of HTAP focused
database architectures, platforms and databases [42], [43],
[44], [45], [46], [47], [48], commercial tools [49], [50], [51], and
benchmarks [32], [33], [52]. This rapid growth of research
and commercial interest in HTAP environments highlights
an important point of efficiently processing analytical and
transactional statements over the same dataset.
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Automated physical design tuning. Most commercial
DBMS vendors nowadays offer physical design tools in their
products [1], [2], [3]. These tools rely heavily on the query
optimiser to compare benefits of different design structures
without materialisation [16]. Such an approach is ineffective
when base data statistics are unavailable, skewed, or change
dynamically [10]. In these dynamic environments, the prob-
lem of physical design is aggravated: a) deciding when to
call a tuning process is not straightforward; and b) deciding
what is a representative training workload is a challenge.

Online physical design tuning. Several research
groups have recognised these problems and have offered
lightweight solutions to physical design tuning [11], [12],
[13]. While such solutions are more flexible and need not
know the workload in advance, they are typically limited
in terms of applicability to new unknown workloads (gen-
eralisation beyond past), and do not come with theoret-
ical guarantees that extend to actual runtime conditions.
Moreover, by giving the optimiser a central role, the tools
remain susceptible to its mistakes [9]. [8] extends [1] with
the use of additional components, in a narrowed scope of
index selection to mimic an online tool. This takes corrective
actions against the optimiser mistakes through a validation
process.

Adaptive and learning indices. Another dimension of
online physical design tuning is database cracking and
adaptive indexing that smooth the creation cost of indices
by piggybacking on query execution [53], [54]. Recent efforts
have gone a step further and proposed replacing data struc-
tures with learned models that are smaller in size and faster
to query [55], [56]. Such approaches are complementary
to our efforts: once the data structures (or models) are
materialised inside a DBMS, the MAB framework can be
used to automate the decision making as to which data
structure should be used to speed-up query analysis.

Learning approaches to optimisation and tuning.
Recent years have witnessed new machine learning ap-
proaches to automate decision-making processes within
databases. For instance, reinforcement learning approaches
have been used for query optimisation and join order-
ing [57], [58], [59], [60]. In [9], regression has been used to
successfully mitigate the optimiser’s cost misestimates as a
path toward more robust index selection. [9] shows promis-
ing results when avoiding query regressions. However, this
classifier incurs up to 10% recommendation time, impacting
recommendation cost in all cases, especially where recom-
mendation cost already dominates the cost for PDTool (e.g.,
TPC-DS, IMDb).

When it comes to tuning, the closest approaches employ
variants of RL for index selection or partitioning [23], [30],
[31], [61], [62] or configuration tuning [5], [29]. [62] describes
RL-based index selection, which depends solely on the
recommendation tool for query-level recommendations and
is affected by decision combinatorial explosion, both issues
addressed in our work. Unlike its more general counter-
part (RL), MABs have advantages of faster convergences,
simpler implementation, and theoretical guarantees [40].
There has also been recent interest in using bandits for
database tasks such as monitoring, query optimisation and
join ordering [63], [64], [65].

Use of learned cost/cardinality estimators and cost

models. Learned cost estimators and models [66], [67] allow
accurate and faster cost estimations and provide better
execution plans. Better estimations and models can be par-
ticularly beneficial for avoiding estimation errors in offline
optimiser-based tools like PDTool. Even learned systems
like our MAB system can benefit from such cost models
to avoid the cold start problem [68]. These learned models
and estimations will require using ‘optimiser hints’, forcing
the optimiser to use a different query plan than its original
choice. However, when used externally with commercial
systems, flexibility in optimiser hints will be limited. Fur-
thermore, such learned solutions suffer from long training
times [66], which will be problematic given that PDTool
already suffers from long recommendation times.

Workload compression. Large complex workloads have
been a challenge for index tuning tools. This is visible from
high recommendation times in PDTool and high creation
times in HMAB under CH-BenCHmark. Workload com-
pression [69], [70], [71] can alleviate these challenges by
efficiently identifying a small subset of queries that can be
used for index tuning.

Workload forecasting. Both PDtool and MAB have lim-
ited visibility into the future. Understanding what a future
workload might look like would allow these tools to pro-
vide better recommendations. We acknowledge the progress
in workload forecasting [72] as a complementary research
direction to PDS tuning.

9 CONCLUSIONS

This paper develops a multi-armed bandit learning frame-
work for online index selection. This framework does not
depend on the DBA and the (error-prone) query optimiser
for index selection and learns the benefits of indices through
strategic exploration and observation. We justify our choice
of MAB over general reinforcement learning for online
index tuning, comparing MAB against DDQN, a popular
RL algorithm based on deep neural networks, demonstrat-
ing significantly faster convergence of the MAB. Further-
more, our extensive experimental evaluation demonstrates
advantages of MAB over an existing commercial physical
design tool (up to 75% speed up, and 23% on average), and
exemplifies robustness to data skew, unpredictable ad-hoc
workloads and complex HTAP environments.
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rithms for linear stochastic bandits,” in NIPS, vol. 11, 2011, pp.
2312–2320.

[28] J. Kossmann, S. Halfpap, M. Jankrift, and R. Schlosser, “Magic
mirror in my hand, which is the best in the land? an experimental
evaluation of index selection algorithms,” VLDB, vol. 13, no. 12,
pp. 2382–2395, 2020.

[29] J. Wang, I. Trummer, and D. Basu, “Udo: universal database
optimization using reinforcement learning,” VLDB, vol. 14, no. 13,
pp. 3402–3414, 2021.

[30] W. Wu, C. Wang, T. Siddiqui, J. Wang, V. Narasayya,
S. Chaudhuri, and P. A. Bernstein, “Budget-aware index
tuning with reinforcement learning,” in Proceedings of
the 2022 International Conference on Management of Data,
ser. SIGMOD ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 1528–1541. [Online]. Available:
https://doi.org/10.1145/3514221.3526128

[31] X. Zhou, L. Liu, W. Li, L. Jin, S. Li, T. Wang, and J. Feng, “Au-
toindex: An incremental index management system for dynamic
workloads,” in 2022 IEEE 38th International Conference on Data
Engineering (ICDE), 2022, pp. 2196–2208.

[32] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper,
S. Krompass, H. Kuno, R. Nambiar, T. Neumann, M. Poess et al.,
“The mixed workload ch-benchmark,” in DBTest, 2011, pp. 1–6.

[33] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux,
“Oltp-bench: An extensible testbed for benchmarking relational
databases,” VLDB, vol. 7, no. 4, pp. 277–288, 2013.

[34] TPC, “TPC-H benchmark,” http://www.tpc.org/tpch/.
[35] Microsoft, “TPC-H skew bench-

mark,” https://www.microsoft.com/en-
us/download/details.aspx?id=52430.

[36] TPC, “TPC-C benchmark,” http://www.tpc.org/tpcc/.
[37] R. M. Perera, “Tpc-h and tpc-h skew htap workload,”

https://github.com/malingaperera/TPC H HTAP, 2021.
[38] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in VLDB.

VLDB Endowment, 2006, p. 1049–1058.
[39] P. O. Neil, B. O. Neil, and X. Chen, “Star schema benchmark,”

2009, unpublished.
[40] R. M. Perera, B. Oetomo, B. I. Rubinstein, and R. Borovica-Gajic,

“Dba bandits: Self-driving index tuning under ad-hoc, analytical
workloads with safety guarantees,” in ICDE. IEEE, 2021, pp.
600–611.

[41] S. Chaudhuri and V. R. Narasayya, “Anytime
algorithm of database tuning advisor for mi-
crosoft sql server.” https://www:microsoft:com/en-
us/research/publication/anytime-algorithm-of-databasetuning-
advisor-for-microsoft-sql-server, 2020.

[42] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki,
“The case for heterogeneous htap,” in CIDR, 2017.

[43] J. Arulraj, A. Pavlo, and P. Menon, “Bridging the archipelago
between row-stores and column-stores for hybrid workloads,” in
SIGMOD, 2016, p. 583–598.

[44] M. Athanassoulis, K. S. Bøgh, and S. Idreos, “Optimal column
layout for hybrid workloads,” VLDB, vol. 12, no. 13, p. 2393–2407,
Sep. 2019.

[45] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso, “Batchdb:
Efficient isolated execution of hybrid oltp+olap workloads for
interactive applications,” in SIGMOD. Association for Computing
Machinery, 2017, p. 37–50.

[46] D. Huang, Q. Liu, Q. Cui, Z. Fang, X. Ma, F. Xu, L. Shen, L. Tang,
Y. Zhou, M. Huang, W. Wei, C. Liu, J. Zhang, J. Li, X. Wu, L. Song,
R. Sun, S. Yu, L. Zhao, N. Cameron, L. Pei, and X. Tang, “Tidb:
A raft-based htap database,” VLDB, vol. 13, no. 12, p. 3072–3084,
Aug. 2020.

[47] J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar,
H. Bhanawat, S. Chakraborty, Y. Mahajan, R. Mishra, and K. Bach-
hav, “Snappydata: A hybrid transactional analytical store built on
spark,” in SIGMOD, 2016, p. 2153–2156.

[48] A. Kemper and T. Neumann, “Hyper: A hybrid oltp olap main
memory database system based on virtual memory snapshots,” in
ICDE, 2011, pp. 195–206.

[49] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, J. Loaiza, N. Mac-
naughton, V. Marwah, N. Mukherjee, A. Mullick, S. Muthulingam,
V. Raja, M. Roth, E. Soylemez, and M. Zait, “Oracle database in-
memory: A dual format in-memory database,” in ICDE, 2015, pp.
1253–1258.

[50] P.-r. Larson, A. Birka, E. N. Hanson, W. Huang, M. Nowakiewicz,
and V. Papadimos, “Real-time analytical processing with sql
server,” VLDB, vol. 8, no. 12, p. 1740–1751, Aug. 2015.

[51] J. Yang, I. Rae, J. Xu, J. Shute, Z. Yuan, K. Lau, Q. Zeng, X. Zhao,
J. Ma, Z. Chen, Y. Gao, Q. Dong, J. Zhou, J. Wood, G. Graefe,
J. Naughton, and J. Cieslewicz, “F1 lightning: Htap as a service,”
VLDB, vol. 13, no. 12, p. 3313–3325, Aug. 2020.

[52] F. Coelho, J. a. Paulo, R. Vilaça, J. Pereira, and R. Oliveira, “Htap-
bench: Hybrid transactional and analytical processing bench-
mark,” in ICPE, 2017, p. 293–304.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3271664

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 18

[53] S. Idreos, M. L. Kersten, and S. Manegold, “Database cracking,” in
CIDR, 2007, pp. 68–78.

[54] G. Graefe and H. A. Kuno, “Self-selecting, self-tuning, incremen-
tally optimized indexes.” in EDBT, 2010, pp. 371–381.

[55] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The
case for learned index structures,” in SIGMOD, 2018, pp. 489–504.

[56] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska,
“Fiting-tree: A data-aware index structure,” in SIGMOD, 2019.

[57] T. Kaftan, M. Balazinska, A. Cheung, and J. Gehrke, “Cuttlefish:
A lightweight primitive for adaptive query processing,” 2018,
unpublished.

[58] I. Trummer, S. Moseley, D. Maram, S. Jo, and J. Antonakakis,
“SkinnerDB: Regret-bounded query evaluation via reinforcement
learning,” VLDB, vol. 11, no. 12, pp. 2074–2077, 2018.

[59] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kem-
per, “Learned cardinalities: Estimating correlated joins with deep
learning,” in CIDR, 2019.

[60] R. Marcus and O. Papaemmanouil, “Towards a hands-free query
optimizer through deep learning,” in CIDR, 2019.

[61] B. Hilprecht, C. Binnig, and U. Röhm, “Towards learning a parti-
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