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Abstract Query optimizers depend heavily on statis-

tics representing column distributions to create good

query plans. In many cases, though, statistics are out-

dated or non-existent, and the process of refreshing

statistics is very expensive, especially for ad-hoc work-

loads on ever bigger data. This results in suboptimal

plans that severely hurt performance. The core of the

problem is the fixed decision on the type of physical

operators that comprise a query plan.

This paper makes a case for continuous adaptation

and morphing of physical operators throughout their

lifetime, by adjusting their behavior in accordance with
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the observed statistical properties of the data at run-

time. We demonstrate the benefits of the new paradigm

by designing and implementing an adaptive access path

operator called Smooth Scan, which morphs contin-

uously within the space of index access and full ta-

ble scan. Smooth Scan behaves similarly to an index

scan for low selectivity; if selectivity increases, how-

ever, Smooth Scan progressively morphs its behavior

toward a sequential scan. As a result, a system with

Smooth Scan requires no optimization decisions on the

access paths up front. Additionally, by depending only

on the result distribution and eschewing statistics and

cardinality estimates altogether, Smooth Scan ensures

repeatable execution across multiple query invocations.

Smooth Scan implemented in PostgreSQL demonstrates

robust, near-optimal performance on micro-benchmarks

and real-life workloads, while being statistics-oblivious

at the same time.

Keywords Access Path Selection · Cardinality

Estimation · Robust Query Execution · Adaptive

Query Processing · DBMS

1 Introduction

Perils of query optimization complexity. Query

execution performance of database systems heavily de-

pends on query optimization decisions; deciding which

(physical) operators to use and in which order to place

them in a plan is of critical importance and can affect

response times by several orders of magnitude [54]. To

find the best possible plan, query optimizers employ a

cost model to estimate performance of viable alterna-

tives. In turn, cost models rely on statistics about the

data to estimate the size of intermediate results (cardi-

nality estimates) of each operator in the plan. With the
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Fig. 1: Non-robust performance due to cardinality mis-

estimates in a state-of-the-art commercial DBMS.

growth in complexity of decision support systems (e.g.

templatized queries, UDF) and the advent of dynamic

web applications that have databases at their back-

bone, the optimizer’s grasp of reality becomes increas-

ingly loose and it becomes more difficult to produce an

optimal plan [17, 44]. For instance, to defy complexity

and make up for lack of statistics, commercial database

management systems often assume uniform data dis-

tributions and attribute value independence, which is

in reality hardly the case [29]. As a result, cardinality

estimates are frequently off by several orders of mag-

nitude, consequently leading to suboptimal plans and

non-robust query performance [9, 35,37,59,65,75].

Example of non-robust behavior. To illustrate

the severe impact of cardinality misestimates and con-

sequent suboptimal access path choices, we provide an

example of non-robust performance using a state-of-

the-art commercial system, referred to as DBMS-X. We

run the TPC-H benchmark [76], having first tuned the

system with a set of indexes as indicated by its own

tuning tool. Figure 1 shows that for several queries per-

formance degrades significantly after tuning (e.g., up to

a factor of 400 for Q12). More details are provided in

Section 7.2, but for now it suffices to say that the only

change compared to the original plan of Q12 is the type

of access path operator. This decision prolonged the ex-

ecution time from one minute to 11 hours.

Tipping points causing robustness problems.

The performance degradation shown in Figure 1 is at-

tributed to suboptimal access path choices, where the

optimizer favored index usage over full table scans for

the cases when it underestimated the result cardinality

sizes. The core of the problem of access path selection

lies in the fact that even a small cardinality estimation

error may lead to a drastically different result in terms

of performance. This effect is shown in Figure 2 as the

tipping point. When considering access path selection,

the optimizer makes a choice between an index scan

and full scan. Figure 2 illustrates how the cost (i.e., ex-

ecution time) varies for these access path alternatives

as a function of result selectivity increase. The tipping

point is the estimated cardinality value1 for which the

optimizer makes a decision switch, i.e., for the values

below the tipping point the optimizer opts for the in-

dex scan and for the values above it opts for the full

scan. This means that one tuple difference in cardinal-

ity estimation can swing the decision between an index

scan and a full scan, possibly causing a significant per-

formance drop. It also demonstrates the sensitivity of

the optimizer to the quality of estimates. For instance,

the choice of index for the estimated selectivity point

shown as EST in Figure 2 will result in a severe perfor-

mance degradation for the case when the actual selec-

tivity appears to be higher than estimated (e.g. ACT

shown in Figure 2).

A case for robustness in query processing.

Overall, the sensitivity to the quality of the optimizer’s

cardinality estimation results in unpredictable perfor-

mance thereby affecting the robustness of the system.

In addition, the overall behavior is driven by the cur-

rent version of statistics used by the system, which

means that two different deployments over the same

data might have different performance results if their

statistical summaries that represent data distributions

differ. Statistical summaries form a part of metadata

catalog populated by the collect statistics command,

hence it is possible for different deployments to be out of

sync: although representing the same data(base) their

statistical summaries will differ. The last aggravates

testing repeatability across different servers or even mul-

tiple invocations of the same query (if the statistics col-

lection command was issued in between).

Stability and predictability, which imply that simi-

lar query inputs should have similar execution perfor-

mance, are of paramount importance for industrial ven-

dors as a path toward respecting service level agree-

ments (SLA) [64]. This is exemplified, nowadays, in

cloud environments, offering paid-as-a-service function-

ality governed by SLAs in environments which are much

more ad-hoc than traditional closed systems, and where

a manual human effort is highly undesirable [32]. In

these cases, the system’s ability to efficiently operate in

the face of unexpected and especially adverse run-time

conditions (e.g. receiving more tuples from an operator

than estimated) becomes more important than yielding

great performance for one query input while potentially

1 We use the term cardinality value as the value de-
rived from the optimizer’s estimate on result selectivity, i.e.,
card value = |T | ∗ selectivity, where |T | is the number of
tuples in a relation and selectivity is a selectivity factor [73].
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suffering from severe degradation due to a suboptimal

plan choice for another [43,45]. We define robustness in

query processing as the ability of a system to efficiently

cope with unexpected and adverse conditions with re-

spect to its input, and deliver near-optimal performance

for all query inputs.

Run-time reoptimization. Past efforts on robust-

ness focus primarily on dealing with the problem at

the optimizer level [7, 9, 33, 34, 37, 38]. Nonetheless, in

dynamic environments with constantly changing work-

loads and data characteristics, judicious query opti-

mization performed up front could bring only partial

benefits as the environment keeps changing even after

optimization. Orthogonal approaches on run-time reop-

timizaton [3, 6, 40, 58, 59, 65], although promising, lack

the flexibility at the level of access paths. They are lim-

ited in their scope, either by completely ignoring intra-

operator adaptivity within the access path operator, or

by performing binary switching decisions that introduce

risks and result in unpredictable performance.

To illustrate the latter, let us re-consider the access

path selection problem. A simple solution to recover
from the suboptimal access path choice would be to

switch the strategy (at run-time) from an index scan to

a full table scan upon detecting a cardinality misesti-

mation or alternatively when the observed cardinality

reaches the tipping point between the index and full

table scan. Such a case is depicted in Figure 3 with a

’Reoptimization’ line. Reoptimization is typically per-

formed by monitoring the result cardinality and trigger-

ing the switch once the observed cardinality exceeds the

estimate. Reoptimization bounds the worst case per-

formance and prevents severe performance degradation

that could have happened with continuation of the sub-

optimal access path (the index scan). However, it is not

robust. The main problem with reoptimization is that

it is based on a binary decision and switches completely

when a certain cardinality threshold is reached. This

means that even a single extra result tuple can result

in drastically different performance if the switch occurs,

since after the switch the execution time is prolonged

by the time to perform full scan (see Figure 3). Such a

behavior can discourage business analysts who repeat

the same query they ran yesterday and observe different

query performance, while the only change was addition

of a single record to a database table [10].

We refer to the effect of a sudden increase in execu-

tion time as a performance cliff. The performance hit,

together with the uncertainty whether the overhead in-

curred at the time of change will be amortized over the

remaining query time, render this approach volatile and

hence non-robust. For instance, if the actual result se-

lectivity lies anywhere in the gray box shown as ’Risk’

in Figure 3, a better decision would be to continue with

the index scan, since the reoptimization overhead (the

cost of full scan) cannot be amortized over the rest of

the query lifetime. Additionally, since the violation of

the optimizer’s estimates usually triggers reoptimiza-

tion, this approach remains sensitive to the version of

statistics present in the system, which complicates test-

ing across different query invocations and deployments.

Suboptimality of access paths. Figure 4 illus-

trates the core of the problem with access path selec-
tion. The figure depicts how suboptimality changes for

access paths as a function of result selectivity increase.

The suboptimality is measured as a discrepancy from

the optimal solution which lies at the lower bound of

the alternative access paths throughout the entire se-

lectivity interval. The actual selectivity points and the

suboptimality levels will vary depending on the hard-

ware characteristics. Neither access path is, however,

optimal over the entire selectivity interval, making any

choice potentially risky for the cases of cardinality mis-

estimation. The full scan is suboptimal until the tipping

point, since the index scan is the optimal access path

for low selectivity. On the contrary, the index scan is

highly suboptimal for high selectivity. Reoptimization

is never optimal, but is closer to the optimal compared

to the index (in the worst case), making it a viable

patch to prevent further performance degradation in the

case of cardinality underestimation. To reduce variabil-

ity and performance drops due to suboptimal decisions,

we need an access path whose performance stays at the
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lower cost boundary (i.e., close to the ’Optimal’ line),

throughout the entire selectivity interval.

Smooth Scan. In this paper, we respond to the

quest for robust execution at the access path level by

introducing a novel class of access path operators de-

signed with the goal of providing robust performance

for every query input, regardless of the severity of cardi-

nality estimation errors. Since the understanding of the

data distributions is a continuous process that devel-

ops throughout the execution of a query, we propose a

new class of morphable operators that continuously and

seamlessly adjust their execution strategy as the un-

derstanding of the data evolves. We introduce Smooth

Scan, an operator that morphs between an index look-

up and a full table scan, achieving near-optimal perfor-

mance regardless of the operator’s selectivity and obliv-

iously to the existing data statistics. Morphing relieves

the optimizer from choosing an optimal access path a

priori, since the execution engine has the ability to ad-

just its behavior at run-time as a response to the ob-

served operator selectivity.

This paper extends our previous work [18] with the

theoretical analysis on the worst case performance guar-

antees of Smooth Scan. Worst case performance guar-

antees are extremely important when considering the

algorithm robustness as they show the maximal dis-

crepancy from the optimal solution. In addition, since

Smooth Scan trades off CPU for I/O reduction, we

present a more detailed cost model that incorporates

both I/O and CPU costs. We also present a new robust

out-of-core design and implementation of the Smooth

Scan algorithm that achieves good performance irre-

spective of the allowed memory size. Additionally, we

enrich our experiments across several dimensions: i) we

report new experiments with respect to the cost model

and ii) statistics collection, and include iii) an in depth

sensitivity analysis on the behavior of the Smooth Scan

algorithm on disk and vi) for various memory sizes. We

finally survey related work on adaptive query process-

ing techniques in more detail.

The contributions of the paper are the following:

– We propose a new paradigm of building smooth and

morphable access path operators that adjust their

behavior and transform from one operator imple-

mentation to another according to the statistical

properties of the data observed at run-time.

– We design and implement a statistics-oblivious ac-

cess path operator called Smooth Scan that morphs

between an index access and a full scan as selectivity

knowledge evolves at run-time.

– We present a theoretical analysis on the worst case

performance guarantees of Smooth Scan’s alterna-

tive policies.

– Using both synthetic benchmarks and TPC-H in a

thorough experimental analysis we show that Smooth

Scan, implemented in PostgreSQL, is a viable option

for achieving near-optimal performance, by approx-

imating the performance of the optimal access path

throughout the entire selectivity interval.

The rest of the paper is structured as follows. Sec-

tion 2 presents the background on access path selec-

tion, describing three main approaches. Section 3 intro-

duces the intra-operator adaptivity at the access path

level through the design of the Smooth Scan opera-

tor. Section 4 introduces the implementation details of

Smooth Scan when incorporated into a mature open-

source DBMS (PostgreSQL). Section 5 presents the de-

tailed cost model of Smooth Scan. Section 6 presents

a competitive analysis of the worst case performance

of Smooth Scan when compared against a theoretical

bound. Section 7 demonstrates, through an experimen-

tal analysis, that Smooth Scan achieves robust and effi-

cient performance. Finally, Section 8 provides a related

work discussion, positioning Smooth Scan with respect

to existing efforts in (re)optimization, adaptivity and

robustness. Section 9 presents our concluding remarks.

2 Background

In order to fully understand the advantages and the

mechanisms of the Smooth Scan operator, this section

provides a brief background on the traditional access

path operators.

Full (Table) Scan. Full table scan is employed

when there are no alternative access paths, or when

the selectivity of the access operator is estimated to be

high (above 1-10% depending on the system parame-

ters). The execution engine starts by fetching the first

tuple from the first page of a table stored in a heap, and

continues accessing tuples sequentially inside the page.

It then accesses the adjacent pages until it reaches the

last page. Figure 5a depicts an example of a full scan

over a set of pages in the heap; the number placed on the

left-hand side of each tuple indicates the order in which

the page is accessed. Even if the number of qualifying

tuples is small, a full table scan is bound to fetch and

scan all pages of a table, since there is no information

on where tuples of interest might be. Despite its rigor-

ousness, the sequential access pattern employed by the

full table scan is one to two orders of magnitude faster

than the random access pattern of an index scan.

Index Scan. Secondary indexes are built on top

of data pages stored in the heap. Indexes are usually

implemented as B+-trees containing pointers to tuples.

Figure 5b depicts a B+-tree index built on top of the
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Fig. 5: Access paths in a DBMS.

same table we used in Figure 5a with the leaves of the

tree pointing to the heap data pages. A query with a

range predicate needs to traverse the tree once in or-

der to find the pointer to the first tuple that qualifies,

and then it continues following adjacent leaf pointers

until it finds the first tuple that does not qualify. As

before, the number placed on the left-hand side of each

tuple indicates the order in which it is accessed. The up-

side of this approach, compared to the full scan, is that

only tuples that are needed are actually accessed. The

downside is the random access pattern when following

pointers from the leaf page(s) to the heap (shown as

lines with arrows). Since the random access pattern is

much slower than the sequential one, performance de-

teriorates quickly if many tuples need to be selected.

Moreover, as the number of tuples that qualify grows,

so does the chance that the index scan visits the same

page more than once.

Sort (Bitmap) Scan represents a middle ground

between the previous two approaches. Sort Scan still

exploits the secondary index to obtain tuple identifiers

(ID) of all tuples that qualify, but prior to accessing

the heap, the qualifying tuple IDs are sorted in an in-

creasing heap page order. In this way the poor perfor-

mance of the random access pattern gets translated into

a (nearly) sequential pattern, which is easily detected

by disk prefetchers. This can decrease execution time

even when the selectivity of the operator grows signifi-

cantly. However, it has dramatic influence on the execu-

tion model. The index access that traditionally followed

the pipeline execution model, now gets transformed into

a blocking operator which can be harmful, especially

when the index is used to provide an interesting order-
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ing [73]. One advantage of B-tree indexes stems from

the fact that tuples are accessed in the sorted order of

attributes on which the index is built. Sorting of tuple

IDs based on their page placement breaks the natural

index ordering that is restored by introducing a sorting

operator above the index access (or up in the tree). In

addition, the introduction of the blocking operator so

early in the execution plan may stall the rest of the op-

erators; if they require a sorted input, their execution

can start only after the second sort finishes.

3 Intra-operator adaptivity with Smooth Scan

Having discussed in Section 1 reasons why performance

cliffs are undesirable, this section introduces Smooth

Scan which avoids performance cliffs while providing

robust query execution performance within given cost

boundaries. Instead of making binary decisions like the

one introduced with reoptimization, Smooth Scan grad-

ually and adaptively shifts its behavior between ac-

cess path patterns to fit the data distributions, thereby

avoiding performance drops.

The core idea behind Smooth Scan is to gradually

transform between two strategies, i.e., the index look-

up and full table scan, maintaining the advantages of

both worlds. The main objective is to provide smooth

behavior so that at no point during execution an extra

tuple in the result causes a performance cliff. Smooth

Scan morphs its behavior incrementally, and continu-

ously, causing only gradual changes in performance as

it goes through the data and its estimation about result

cardinality evolves.

Figure 6 shows the targeted performance behavior

of Smooth Scan as a function of result selectivity in-

crease. As we produce more result tuples, the behav-

ior of Smooth Scan keeps adjusting continuously, even-

tually approaching the behavior of the full scan when

more tuples qualify from the select operator. This con-

tinuous adaptation is the key element, which provides
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near-optimal performance regardless of the severity of

cardinality estimation errors.

A critical advantage of Smooth Scan over runtime

reoptimization with binary switching is that Smooth

Scan does not need to choose a single point of adapta-

tion (i.e., the switch point). As a result, a single point

of failure is removed and replaced with incremental re-

finement actions and decisions. Moreover, we release the

optimizer from the burden of choosing an optimal ac-

cess path a priori, which solves both common problems

with access paths: a) choosing an index when selectivity

is underestimated due to attribute correlation, which

usually results in performance degradation; b) choos-

ing a full table scan when selectivity is overestimated

due to anti-correlation (see Figure 4).

3.1 Morphing Mechanism

We now describe how Smooth Scan achieves this grad-

ual adaptation. During the operator lifetime, Smooth

Scan can be in three modes, while morphing between

an index and full scan. In each mode the operator per-

forms a gradually increasing amount of work as a result

of the selectivity increase.

Mode 0: Index Scan. Assuming the existence of

index as an access path, Smooth Scan starts with a clas-

sical Index Scan as its initial mode. For each tuple from

the index, Smooth Scan fetches a single page from the

main relation where the look-up key resides and pro-

duces one resulting tuple. Additionally, Smooth Scan

continuously monitors the result cardinality, and once

it exceeds a threshold (see discussion on the policies

below), it switches to the Entire Page Probe mode.

Mode 1: Entire Page Probe. A core problem of

Index Scan is that a particular disk page can be refer-

enced multiple times, causing repeated (random) I/O

accesses (e.g. 3 times for pages 3 and 4 in Figure 5b).

The classical index scan retrieves solely the searched

record driven by the index probe while ignoring remain-

ing records from the page, some possibly belonging to

the result. The latter potentially results in a need to re-

turn to the same page somewhere in the future if more

tuples from the same page qualify. To avoid repeated

page accesses from which the index scan suffers, in this

mode Smooth Scan analyzes all records from each heap

page it loads to find qualifying tuples, trading CPU cost

for I/O cost reduction. Since the cost of an I/O oper-

ation translates to an order of million CPU instruc-

tions [41], Smooth Scan invests CPU cycles for reading

additional tuples from each page with minimal over-

head. Figure 7 depicts the access pattern of a Smooth

Scan in this mode. Like in Figure 5, the number at

the left-hand-side of each tuple indicates the order in

Smooth access

….

...

...

1

2

3

4

5

6

78

9

10

XX X XX

Flattening AccessEntire Page Probe

Morphing region

Fig. 7: Smooth Scan access pattern.

which the access path touches this tuple. Within each

page Smooth Scan accesses tuples sequentially.

Mode 2: Flattening Access. When the result car-

dinality grows, Smooth Scan amortizes the random I/O

cost by flattening the random pattern and replacing

it with a sequential one. Flattening happens by read-

ing additional adjacent pages from the heap, i.e., for

each page it has to read, Smooth Scan prefetches a few

more adjacent pages (read sequentially). An example of

a morphing region is depicted in Figure 7 as the gray

rectangle over the heap pages.

Mode 2+: Flattening Expansion. Flattening Ac-

cess Mode is in fact an ever expanding mode. When it

first enters Flattening Access Mode, Smooth Scan starts

by fetching one extra page for each page it needs to

access. However, when it detects result cardinality in-

crease, Smooth Scan progressively increases the number

of pages it prefetches by multiplying it with a factor of

2. The reason is that, as selectivity increases, the I/O

increase of fetching more potentially unnecessary pages

could be masked by the CPU processing cost of the tu-

ples that qualify. In this way, as the result cardinality

increases, Smooth Scan keeps expanding, and concep-

tually it morphs more aggressively into a full table scan.

3.2 Morphing Policies

There are several ways in which Smooth Scan can morph

between modes.

Greedy Policy. Assuming a worst case scenario,

i.e., a very high result selectivity, Smooth Scan can per-

form morphing region expansion after each index probe.

In this way, the morphing expansion greedily follows the

selectivity increase. The upside of this approach is that,

due to its fast convergence, its worst case performance

resembles the performance of full scan. The downside

is that, in the case of low selectivity, Smooth Scan in-



Smooth Scan: Robust Access Path Selection without Cardinality Estimation 7

troduces an overhead of reading unnecessary pages that

could not be masked by useful work.

Selectivity Increase Driven Policy. Blindly mor-

phing between the modes may introduce too much over-

head if the I/O cost cannot be overlapped with useful

work. With this policy, Smooth Scan continuously mon-

itors selectivity at run-time, and it expands the morph-

ing region size when it detects a selectivity increase. In

particular, Smooth Scan computes the result selectiv-

ity over the last morphing region (the heap pages trig-

gered with the previous index access) and it increases

the morphing region size each time the local selectivity

over the last morphing region (calculated in Eq. (1)) is

greater than the global selectivity over so far seen pages

(calculated in Eq. (2)). The meaning of the parameters

can be found in Table 1. If selectivity does not increase,

Smooth Scan keeps the previous morphing region size.

sellocal =
#Pres region

#Pseen region
(1)

selglobal =
#Pres

#Pseen
(2)

Elastic Policy. When considering big data sets, it

is unlikely that a single execution strategy will be opti-

mal during the entire scan over a big table; dense and

sparse regions with respect to the tuple distribution on

disk frequently appear in such a context due to skewed

data distributions. To benefit from the density discrep-

ancy and use skew as an opportunity, Smooth Scan

uses the Elastic Policy to morph two-ways; it increases

the morphing region size over a dense region, while it

decreases the morphing region size when it passes the

dense region. More precisely, if the local selectivity over

the last morphing region is higher than the global se-

lectivity over all tuples seen so far, then this implies a

denser region, hence Smooth Scan doubles the morph-

ing size. In the counter case, Smooth Scan halves the

morphing region size for the next heap access. This way,

morphing is performed at a pace that is purely driven

by the data and the query at hand.

3.3 Morphing Triggering Point

Optimizer Driven. Smooth Scan can be introduced

to the existing query stack as a reaction to unfavorable

conditions, i.e., as a robustness patch. With this strat-

egy Smooth Scan initiates morphing once the result car-

dinality exceeds the optimizer’s estimate. A cardinality

violation is an indication that the optimizer’s estimate

is inaccurate and that the chosen access path might be

suboptimal. After triggering, Smooth Scan can morph

with either of the policies described in Section 3.2.

SLA Driven. Another option is to take action only

when there is danger of violating a performance thresh-

old, i.e., a service level agreement (SLA). For example,

let us assume a given time T as an upper bound (SLA)

for the operator execution. In this case, Smooth Scan

continuously monitors execution and has a running es-

timate of the expected total cost (based on the cost

model discussed in Section 5). The moment Smooth

Scan detects that it will not be able to guarantee the

SLA target behavior unless it switches to a more con-

servative behavior, it triggers morphing.

Eager Approach. An alternative approach, favored

in this work, is to completely replace access paths with

Smooth Scan. With this strategy Smooth Scan eagerly

starts morphing immediately as of the first tuple. In this

way, Smooth Scan guarantees that the total number of

page accesses will be equal to the total number of heap

pages in the worst case. Moreover, with this strategy

there is no need to record tuples produced before mor-

phing has started (to prevent result duplication), which

provides additional benefit and decreases bookkeeping

information.

Since the bookkeeping overhead of the Eager strat-

egy is minimized, in the experiments performed through-

out this paper, Eager is the default strategy unless

stated otherwise. We study other strategies in detail

in Section 7.

4 Integration of Smooth Scan into PostgreSQL

In this section, we discuss the design details of Smooth

Scan and its interaction with the remaining query pro-

cessing stack when incorporated inside an existing ma-
ture DBMS. We implement Smooth Scan in PostgreSQL

9.2.1 DBMS as a classical access path operator existing

side by side with the traditional access path operators

described in Section 2. During query execution, the ac-

cess path choice is replaced by the choice of Smooth

Scan, whereas the upper layers of query plans generated

by the optimizer remain intact. Thus, one advantage of

Smooth Scan is that it can be integrated into existing

systems with fewer changes compared to more involved

approaches such as [5, 6].

4.1 Design Details

To make the Smooth Scan operator work efficiently,

several critical issues need to be addressed.

Page ID Cache. To avoid processing the same

heap page twice (since multiple leaf pointers of the in-

dex can point to the same page), Smooth Scan keeps

track of the pages it has read and records them in a
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Page ID Cache. The Page ID Cache is a bitmap struc-

ture with one bit per page. Once a page is processed

its bit is set to 1. When traversing the leaf pointers

from the index, a bit check precedes a heap page ac-

cess. Smooth Scan accesses the heap page only if that

page has not been accessed before. Otherwise, Smooth

Scan skips the leaf pointer (X in Figure 7) and contin-

ues the leaf traversal.

Tuple ID Cache. If Smooth Scan starts from Mode

0 following the Optimizer or SLA Driven strategy, it

has to ensure that the result tuples will not be dupli-

cated. This could happen if a result tuple is produced

by following the traditional index, and later on the same

page is fetched with Smooth Scan. To address this is-

sue, Smooth Scan keeps a cache of tuple IDs produced

with the traditional access in a bitmap-like structure.

Later, while producing tuples Smooth Scan performs

a bit check whether the tuple has already been pro-

duced. The overhead of the Tuple ID Cache, while rela-

tively low, can be avoided if a DBMS maintains a strict

(indexkey, T ID) ordering in the secondary index (which

some commercial systems do). Then it suffices to re-

member the last tuple reached with the traditional in-

dex, and ignore tuples with (indexkey, T ID) lower than

that last tuple.

Result Cache. If an index is chosen to support

an interesting order (e.g., in a query with an ORDER

BY clause), then the tuple order has to be respected.

This means that a query plan with Smooth Scan can-

not consume all tuples the moment it produces them.

To address this constraint, the additional qualifying tu-

ples found (i.e., all but the one specifically pointed to by

the given index look-up) are kept in the Result Cache.

The Result Cache is a hash-based data structure that

stores qualifying tuples. In this setting, an index probe

is preceded by a hash probe of the Result Cache for

each tuple identifier obtained from the leaf pages of

the index. If the tuple is found in the Result Cache, it

is immediately returned (and could be deleted); other-

wise, Smooth Scan fetches it from the disk following the

current execution mode. The cache deletion is done in

a bulk fashion. The Result cache is partitioned into a

number of smaller caches that can be deleted once all

tuples from an instance are produced. By grouping the

caches per key value (or key ranges), Smooth Scan can

remove all items from a cache as soon as the key value

of the cache is traversed.

Memory management. Both the Page ID and

Tuple ID Cache are bitmap structures, meaning that

their size is significantly smaller compared to the data

set size (they easily fit into memory). To illustrate, their

size is usually a couple of KB to MB for hundreds of

GB of data. In the Tuple ID cache we keep only the

IDs of the tuples acquired with the traditional index,

which is in practice significantly lower than the overall

number of tuples.

The Result Cache is an auxiliary structure whose

size depends on the access order of tuples, the number

of attributes in the payload, and the overall operator

selectivity. In the worst case, if the cache grows above

the allowed memory size, Smooth Scan performs parti-

tioning and overflows partitions into temporary files on

disk. Partition ranges are created by looking at the root

page of the index to decide on the number of partitions

(and their ranges). The reasons are two-fold. First, the

root page of an index is typically stored in memory,

hence its access will not invoke an unnecessary I/O.

Second, the root page of an index contains information

about the distribution of key values, since, assuming a

B-tree is balanced, data skew will be shown in the way

the keys are distributed. For instance, a big gap be-

tween two consecutive keys in the root implies a sparse

region with respect to the distribution of data with val-

ues in that range. Similarly, a small gap, implies a dense

region. Smooth Scan uses the root keys to decide on the

number of partitions and their ranges given the allot-

ted memory size (and the table size). If the number

of partitions is higher than the total number of keys in

the root page, meaning that consecutive keys create too

large partitions, Smooth Scan accesses the second level

index pages to refine the partition ranges.

During run-time, Smooth Scan pipelines tuples for

the current key immediately as it finds them, while re-

maining qualifying tuples (for other partition ranges)

are stored in their corresponding partitions. If memory

becomes scarce, Smooth Scan employs overflow resolu-

tion and writes a partition with the highest key values

into a temporary file on disk first. Once a particular key

(or a partition range) is completely consumed, Smooth

Scan can freely discard the partition it belongs to. This

shrinking reduces memory pressure during run-time.

Once Smooth Scan needs to service the data belong-

ing to another partition it simply accesses the partition

(i.e., the temporary file) and returns all tuples belong-

ing to it, enjoying the benefit of spatial locality. Hence,

even if the table is much larger compared to the allotted

memory, Smooth Scan will still benefit from reducing

repeated and random accesses compared to the index

scan at the expense of additional sequential access to

temporary files.

4.2 Interaction with Query Processing Stack

Smooth Scan is an access path targeted primarily at

preventing severe performance degradation due to un-

expected selectivity increase, which is a common com-
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plaint received by the customer support for major in-

dustrial vendors as it is a major source of unpredictabil-

ity in query performance [43, 44, 63]. Nonetheless, its

impact goes much beyond being just a patch that pre-

vents further performance drops.

Simplified query optimization. Smooth Scan sim-

plifies the query optimization process. Effectively, when

choosing the access path for a select operator the op-

timizer can always choose Smooth Scan. Smooth Scan

will then make all decisions on-the-fly during query ex-

ecution. It should be noted however that Smooth Scan

is a local optimization that solves the problem of access

path selection, while the problem of join ordering still

needs to be addressed by the query optimizer.

Interaction with other operators. Smooth Scan

is able to completely replace the functionality of both

index and full scan. The output of Smooth Scan is an

input to other operators in a query plan. Depending on

the next operator in the query tree, a different varia-

tion of Smooth Scan may be used. For example, if a

Merge Join follows Smooth Scan implying an imposed

order among tuples, then the variant of Smooth Scan

with the result caching will be used. Since the tuples ob-

tained out of order could not be immediately consumed

they are rather stored in the Result Cache until their

key value arrives. If Index Nested Loops Join (INLJ) is

an operator on top of the scan and Smooth Scan is em-

ployed as the outer input to a join, Smooth Scan does

not have constraints on the order of tuples produced

from this input, hence Smooth Scan can consume tu-

ples the moment it finds them and no caching is needed.

If the ordering requirement is however placed by some

of the operators up in the tree, we still employ the first

option. If Smooth Scan serves as an inner input (a pa-

rameterized path) to a join, the results per requested

join key could be produced in an arbitrary order by call-

ing Smooth Scan with that particular key value as a fil-

tering predicate. As a result, the repeated I/O accesses

are avoided and random ones are significantly reduced

per join key value, which helps in the case of multiple

key matches (e.g., PK-FK relationship). Finally, since

Hash Join (HJ) does not support an interesting order,

this implies that when placed below a HJ, Smooth Scan

can produce the result tuples the moment it finds them.

5 Modeling Smooth Scan

This section provides an analytical model of the access

path alternatives. The analytical model serves the pur-

pose of answering the critical questions of which pol-

icy and mode Smooth Scan should employ and when.

Smooth Scan trades CPU for I/O cost reduction, thus

the proposed model includes the cost of the access path

Table 1: Smooth Scan: Cost model parameters

Parameter Description
TS Tuple size (bytes)
#T Number of tuples in the relation
PS Page size (bytes)

#TP Number of tuples per page
#P Number of pages the relation occupies
KS Size of the indexing key (bytes)
sel Selectivity of the query predicate(s) (%)
card Number of result tuples

cardmX Number of tuples obtained with Mode X
m0chk Was a traditional index employed first? 0/1

randcost Cost of a random I/O access (per page)
seqcost Cost of a sequential I/O access (per page)
cpucost Cost of a CPU operation (per tuple)
#Pres Number of pages containing result tuples

#Pres reg Num. of pages with result in current region
#Pseen Number of pages seen so far

#Pseen reg Number of pages in the current region
#randio Number of random accesses
#seqio Number of sequential accesses

Derived values
fanout B+-tree fanout
#leaves Number of leaf pages in B+-tree

#leavesres Num. of leaf pages with pointers to results
height Height of B+-tree

OPio cost Cost of an operator in terms of I/O
OPcpu cost Cost of an operator in terms of CPU

CR Competitive ratio

operators both in terms of the number of disk I/O ac-

cesses, and the CPU cost. Although it is expected that

in most cases I/O dominates overall cost [41], the rapid

evolution of modern hardware continuously shifts those

balances, thus we provide a complete model that can be

easily adjusted for future faster hardware as well. We

make a distinction between the cost of a sequential and

random access, since the nature of accesses drives the

overall query performance.

#TP = bPS

TS
c (3)

#P = d #T

#TP
e (4)

fanout = b PS

1.2×KS
c (5)

#leaves = d #T

fanout
e (6)

height = dlogfanout (#leaves)e+ 1 (7)

card = sel ×#T (8)

#leavesres = d card

fanout
e (9)

Table 1 contains the parameters of the cost model.

Formulas calculating the cost of the non-clustered in-

dex scan and the full scan are presented for compar-

ison purposes (similar cost model formulas are found
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in database text books [69]). Indexes are implemented

as B+-trees, with k as the tree fanout. Equations (3) to

(9) are base formulas used for all access path operators.

We simplify the calculations by assuming every page is

filled completely (100%) and that heap pages and index

pages are of the same size (PS). Lastly, we assume that

TS already includes a tuple overhead (usually padding

and a tuple header). In Eq. (5), we calculate the fanout

of the B+-tree by adding 20% of space per key for a

pointer to a lower level. For Eq. (6) and (9), we assume

that every tuple stored in a heap page has a pointer to

it in a leaf page of the index.

Full Table Scan. The cost of full scan does not

depend on the number of tuples that qualify for the

given predicate(s). Thus, regardless of the selectivity of

the query its cost remains constant. As shown in Eq.

(10), the I/O cost is the cost of fetching all pages of

the relation sequentially (as we expect each table to

be stored sequentially on disk). Once full scan fetches

a page, it performs a tuple comparison for all tuples

from the page to find the ones that qualify. Assuming

that each comparison invokes one CPU operation, the

overall CPU cost is given by Eq. (11).

FSio cost = #P × seqcost (10)

FScpu cost = #T × cpucost (11)

Index Scan. To fetch the tuples, the (non-clustered)

index scan traverses the tree once to find the first tu-

ple that qualifies (height in Eq. (12)). For the remain-

ing tuples, it continues traversing the leaf pages from

the index (#leavesres × seqcost) and uses all tuple IDs

that qualify to access the heap pages, potentially trig-

gering a random I/O operation per look-up (card in

Eq. (12)). While traversing the tree, within every inter-

nal node page, the index scan performs a binary search

in order to find a pointer of interest to the next level

(height× log2(fanout) in Eq. (13)). For each tuple ob-

tained by following the pointers from the leaf it then

performs a tuple comparison to see whether the tuple

qualifies (the second part of Eq. (13)).

ISio cost = (height + card)× randcost

+ #leavesres × seqcost (12)

IScpu cost = (height× log2(fanout)

+ card)× cpucost (13)

Smooth Scan. Having defined the cost of the basic

access path operators, we move on to define the cost of

Smooth Scan. We calculate the cost of Smooth Scan for

each mode separately. Overall result cardinality is split

between the modes (Eq. (14)). Like the index scan, the

cost of the Smooth Scan access is driven by selectivity.

Assuming uniform distribution of the result tuples (the

worst case cost), the number of pages containing the

result is calculated in Eq. (15).

card = cardm0 + cardm1 + cardm2 (14)

#Pres = min(card,#P ) (15)

Mode 0: Index Scan. If the traditional index is

employed prior to morphing, the I/O cost to obtain first

cardm0 tuples is identical to the cost of the index scan

for the same number of tuples, hence we omit the for-

mula. A slight difference is in calculating the CPU cost

in Mode 0 (the multiplier 2 in Eq. (16)), to populate

tuple IDs to the Tuple ID cache.

SScpu cost m0 = (height× log2(fanout)

+ cardm0 × 2)× cpucost (16)

Mode 1: Entire Page Probe. The number of tu-

ples for which Mode 1 is going to be employed is calcu-

lated in Eq. (17). Every page is assumed to be fetched

with a random access (Eq. (18)). Once Smooth Scan

obtains a page, it performs a tuple comparison check-

ing all tuples from the page (the first part of Eq. (19)).

Before fetching a page x, Smooth Scan checks whether

x has already been processed; if not, it scans x and adds

it to the Page Cache (the second part of Eq. (19)). Fi-

nally, if Smooth Scan started in Mode 0, for each tuple

Smooth Scan has to perform a check whether the tuple

has already been produced in Mode 0 (the third part

of Eq. (19)). In case Smooth Scan needs to support

an interesting order, the Result Cache will be used as

a replacement for the Tuple ID cache functionality. In

that case Smooth Scan only marks the tuple ID as a

key in the cache, without copying the actual tuple as a

hash value; the probe match without the actual result

thus signifies that the tuple has already been produced.

Thus, the CPU cost remains (roughly) the same in both

cases.

#Pm1 = min (cardm1,#P ) (17)

SSio cost m1 = #Pm1 × randcost (18)

SScpu cost m1 = (#Pm1 ×#TP + #Pm1 × 2

+ #Pm1 ×#TP ×m0chk)× cpucost (19)

Mode 2: Flattening Access. We calculate the maxi-

mum number of pages to fetch with Mode 2 in Eq. (20).

Notice that pages processed in Mode 1 are skipped in

Mode 2. The nature of the morphing expansion in Mode

2 of Smooth Scan is described with Eq. (21). The so-

lution of the recurrence equation is shown in Eq. (22).

In this case, n is the number of times Smooth Scan

expands the morphing region size (i.e., the number of

times Smooth Scan performs a random I/O access) and

f(n) translates to the number of pages to fetch with

Mode 2 (#Pm2). The minimum number of random ac-

cesses (jumps) to fetch all pages containing the results
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is given by Eq. (24). This number is the best case sce-

nario, when the access pattern is such that all pages are

fetched with the flattening pattern without repeated ac-

cesses. The worst case scenario number of random ac-

cesses is shown in Eq. (25). When selectivity is low, the

number of random I/O accesses is at worst equal to the

number of pages that contain the results. Nonetheless,

there is an upper bound to it, equal to the logarithm

of the number of pages in total, since after this number

all pages will be accessed.

Since both Eq. (24) and Eq. (25) converge to the

same value equal to log2(#P + 1), we use this value in

the remainder of the section. The I/O cost of Mode 2

of Smooth Scan is shown in Eq. (26), and is equal to

the cost of the number of jumps with a random access

pattern, plus the cost to fetch the remaining number

of pages with a sequential pattern. The CPU cost per

page in Mode 2 is identical to the cost per page in Mode

1 (Eq. (27)).

#Pm2 = min (cardm2,#P −#Pm1) (20)

f(i + 1) = 2× f(i), i = 0..n (21)

f(0) = 0, f(n) = 2n, n >= 0 (22)

#Pm2 =

#randio(m2 min)∑
i=0

2i (23)

#randio(m2 mn) = log2 (#Pm2 + 1) (24)

#randio(m2 mx) = min (#Pm2, log2 (#P + 1)) (25)

SSio cost m2 = #randio(m2)× randcost

+ (#Pm2 −#randio(m2))

× seqcost (26)

SScpu cost m2 = (#Pm2 ×#TP + #Pm2 × 2

+ #Pm2 ×#TP ∗m0chk)

× cpucost (27)

Finally, the overall costs are the sums of the operator

CPU and I/O costs for all employed modes.

SSio cost = SSio cost m0 + SSio cost m1 + SSio cost m2

SScpu cost = SScpu cost m0 + SScpu cost m1

+ SScpu cost m2

6 Competitive Analysis

This section provides a competitive analysis comparing

Smooth Scan against the optimal access path (referred

to as Oracle). The Oracle provides a theoretical bound,

modeling the case when all resulting pages are known

in advance and accessed sequentially; it mimics the be-

havior of Sort Scan, while ignoring the sorting cost. We
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Fig. 8: Worst case result distributions for Smooth Scan

alternatives.

calculate a competitive ratio (CR) as the maximum ra-

tio between the cost of Smooth Scan and the Oracle

throughout the entire selectivity interval (Eq. (28)).

CR = max

(
SScost(sel)

Oracle(sel)

)
, sel ∈ [0, 100%] (28)

The competitive ratio is an important metric when

considering robustness, since it shows how far from op-

timal Smooth Scan can be. The purpose of this anal-

ysis is to give insights on which Smooth Scan’s policy

is most robust, and examines worst case performance

guarantees of Smooth Scan. For each of the policies we

consider their worst case result distribution (depicted

in Figure 8) and calculate the CR as a function of table

size (the number of pages #P ).

6.1 Greedy Policy

We first consider Smooth Scan with the Greedy Policy

according to which the operator increases the morphing

region size after each index access.

Worst case result distribution. The worst case

result distribution for the Greedy policy is when all

additional pages that Smooth Scan obtains with the

flattening access pattern do not contain any tuples con-

tributing to the result set. In this case, the number of

fault pages (not containing the result tuples) is max-

imized. This can happen when the next result tuple

is always one page ahead of the current morphing re-

gion. The order does not have to be such that the page

is strictly ahead, but without loss of generality we as-

sume this use case scenario, while in order to cover the

most adversarial behavior we consider index accesses

between morphing regions to be entirely random.

Figure 8a depicts a result distribution for such a

case. Squares with striped lines denote pages contain-

ing results, while empty squares denote fault pages (i.e.,

without results). Bellow each graphics in Figure 8 de-

scribing a different result distribution pattern, we show
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Fig. 10: The CR of Greedy Smooth Scan against Oracle.

the number of page hits (dividend) per the morphing

region size (divisor). The case when Greedy Smooth

Scan is least effective is when the number of page hits

is equal to the maximum number of (random) jumps

distributed over the entire table (depicted in Figure

8a). With the selectivity increase above this number,

Smooth Scan’s number of I/O accesses remains con-

stant since all pages of the table have been accessed,

and thus Smooth Scan only benefits from further selec-

tivity increase. Therefore, the worst case performance

of Greedy Smooth Scan is when the cardinality is equal

to the number of random jumps (Eq. (29)). Eq. (30)

shows the cost of Smooth Scan for this use case sce-

nario, while Eq. (31) calculates the CR.

card = #randio = log2 (#P + 1) (29)

SScost = #randio × randcost

+ (#P −#randio)× seqcost (30)

CR = max

(
SScost

Oracle

)
=

SScost

#randio × seqcost

=
#randio × randcost + #P × seqcost

#randio × seqcost
− 1 (31)

The CR of Greedy Smooth Scan against the Oracle

for this use case and characteristics of HDD (randcost=10

and seqcost=1) is depicted in Figure 10. For 1000 pages

the value of CR is equal to 110. The value of CR in-

creases sublinearly with the increase in number of pages,

reaching the value of 760 for 10000 pages. A similar CR

is observed for the characteristics of SSD (randcost=2

and seqcost=1), ranging from 100 to 750.

Discussion. From the competitive analysis we see

that Greedy Smooth Scan is not a viable option for low

selectivity, since it can be highly suboptimal due to a

high number of fault pages that this policy might fetch.

6.2 Selectivity Increase Driven Policy

Selectivity Increase (SI) Driven Policy increases the mor-

phing region size as a response to the observed selectiv-

ity increase.

Worst case result distribution. Figure 8b de-

picts the worst case result distribution for this policy.

With the SI driven policy, an initial high selectivity can

mislead Smooth Scan to keep a high region size (e.g., in

Figure 8b a morphing region of size 16 is kept through-

out the rest of the operator lifetime).

To increase the morphing region size, SI Smooth

Scan has to notice the selectivity increase over the last

morphing region bigger than the selectivity seen so far

(calculated in Eq. (1) and Eq. (2) ). A minimal selec-

tivity sequence that will trigger the morphing region

increase has to be a sequence 1/2, 3/4, 6/8, 12/16, ...,

3 ∗ 2i−2 /2i , where the divisor denotes the size of the

current morphing region and the dividend denotes the

number of pages containing results in this region. Eq.

(32) calculates the number of pages containing results

needed to trigger such a behavior. After performing the

morphing region expansion x times, to maximize the

number of fault pages the remaining y morphing re-

gions have a single match. The total number of accesses

is shown in Eq. (33). In the following equations we re-

place y with Eq. (34) (derived from Eq. (33)). Since the

total cost of Smooth Scan depends on both x and y, and

since we can represent y as f(#P, x), in Figure 11 we

plot the CR of Smooth Scan against the Oracle as a

function of x and #P . In addition, Figure 11b shows

a 2D view of the same graph, where the same color in

equidistant contours denotes the same value of CR. The

peak value has the brightest color. We plot the CR for
the HDD characteristics (randcost=10 and seqcost=1).

#Pres = 1 +

x−2∑
i=0

3× 2i +

y∑
i=1

1

= 1 + 3 ∗ (2x−1 − 1) + y (32)

#P =

x∑
i=1

2i + 2x ∗ y

= 2 ∗ (2x − 1) + 2x ∗ y = 2x ∗ (2 + y)− 2 (33)

y =
#P + 2

2x
− 2 (34)

#randio = x + y

SScost = #randio × randcost

+ (#P −#randio)× seqcost (35)

CR =
SScost

#Pres × seqcost
(36)

For this use case the CR is a monotonically increas-

ing sublinear function that reaches a value of 100 for



Smooth Scan: Robust Access Path Selection without Cardinality Estimation 13

100K pages for the x peak value of 8, i.e., for 8 morph-

ing increase steps. We have experimented with higher

page numbers for which we noticed a higher absolute

value of CR with the x peak translated on the right.

This is expected since with more pages we can increase

the morphing region size to a higher value, for which we

need more steps. Nonetheless, the overall trend is simi-

lar. Although the CR of SI Smooth Scan is better than

the CR of Greedy Smooth Scan, it is still a monotoni-

cally increasing sublinear function, which again puts a

soft upper bound on the worst case performance of SI

Smooth Scan. The same trend is noticed in the case of

SSD as well.

Discussion. Similar to the Greedy Policy, there are

cases when the SI driven policy cannot provide robust

performance. With a soft bound on the CR, the discrep-

ancy of SI Smooth Scan from the optimal access path

can be quite high, making it an undesirable choice.

6.3 Elastic Policy

Elastic Policy follows the selectivity pattern of the ac-

cess, i.e., it increases the morphing region size in the

dense regions, and decreases it in the sparse regions.

Highest page miss rate. In order to increase the

morphing region size, Smooth Scan has to notice the

same selectivity increase pattern as the one described

in Eq. (32). The behavior of Elastic Smooth Scan how-

ever differs in this case. After noticing the selectivity

drop, Elastic Smooth Scan progressively decreases the

morphing size back until it reaches the value of 1 page.

Therefore, Elastic Smooth Scan performs x times the

region morphing increase and x times the region mor-

phing decrease, after which it continues with the mor-

phing region size of 1 for the (y − x) remaining tuples

(assuming no local selectivity increase is noticed again).

Eq. (37) calculates the total number of pages accessed.

#P =

x∑
i=1

2i +

x∑
i=0

2i + (y − x)

= 2 ∗ (2x − 1) + 2x+1 − 1 + y − x

= 2x+2 − 3 + y − x (37)

#randio = x + y

SScost = #randio × randcost

+ (#P −#randio)× seqcost (38)

CR =
SScost

#Pres × seqcost
(39)

Figure 12 plots the CR against the Oracle for the

use case from which the Selectivity Increase driven pol-

icy suffers. For calculations we use the characteristics

of HDD, and plot the CR as a function of x and y (#P

(a) CR against Oracle (b) Equidistant Contours

Fig. 11: The CR of Selectivity Increase Smooth Scan

when compared against Oracle.

(a) CR against Oracle (b) Equidistant Contours

Fig. 12: The CR of Elastic Smooth Scan for the worst

case result distribution of SI Smooth Scan.

could be derived from Eq. (37)). The CR is a monoton-

ically decreasing function that from an initial value of

10 for one random access, converges to a value of 2 for

x > 10 (a more realistic case). From this analysis we

have seen that Elastic Smooth Scan has an expected

CR of 2 for the use case for which SI Smooth Scan has

a soft upper bound, hence it is a more robust choice.

The highest number of page misses happens when

the distribution is such that the number of pages in each

morphing region for one half of the table is just enough

to perform the expansion; after visiting this half the

selectivity drops sharply with having only one resulting

page per the remaining (shrinking) regions. Figure 9

depicts such a distribution. We calculate the CR for

this scenario. Our analysis shows the CR against the

Oracle of 2.45 for 100 pages that decreases to the value

of 2.0001 for 3M pages.

Worst case result distribution. The previous

analysis showed the worst case scenario with respect to

the number of fault page reads. Nonetheless, for Elas-

tic Smooth Scan, this is not the scenario with the worst

case CR. The worst case for Elastic Smooth Scan ap-

pears when the number of random I/O accesses is maxi-

mized. This happens when the access is such that every

second page has a result match (illustrated in Figure

8c). In this case, Elastic Smooth Scan keeps the mor-
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phing size of 2, since it never detects the local selectiv-

ity increase when compared to the one over so far seen

pages (except for the first page). Therefore, Smooth

Scan will perform #P/2 random accesses, and the same

amount of sequential accesses (to fetch adjacent pages).

#randio =
#P

2
(40)

SScost = #randio × randcost

+ (#P −#randio)× seqcost (41)

CR =
SScost

#P
2 × seqcost

(42)

=
#P
2 × (randcost + seqcost)

#P
2 × seqcost

= 11

The CR is calculated in Eq. (42). For characteris-

tics of HDD, with randcost = 10 and seqcost = 1, the

CR reaches the value of 11 when compared against the

Oracle, and is constant regardless of the table size. The

same ratio decreases in the case of SSD (randcost = 2

and seqcost = 1), reaching the value of 6. When com-

pared to Full Scan (which is the optimal existing access

path in this case), the CR of Elastic Smooth Scan is

equal to 5.5 for HDD, and 3 for SSD.

Discussion. Overall, Elastic Smooth Scan proves

to be the most robust solution. This policy provides a

firm upper bound on suboptimality with the maximum

theoretical CR of 11 and 6 in the case of HDD and

SSD respectively, regardless of the table size. We thus

choose Elastic Smooth Scan as the default policy in our

experiments.

Additionally, our analysis shows that a morphing

increase factor greater than 2, leads to a higher CR.

For instance, for the previous analysis, the morphing

increase factor of 10 for HDD gives a competitive ratio

of 19. Therefore, we use the factor of 2 as the morphing

increase factor for the Smooth Scan implementation.

7 Experimental Evaluation

This section presents a detailed experimental analysis

of Smooth Scan. We demonstrate that Smooth Scan

achieves robust performance in a range of synthetic and

real workloads without the need for accurate statistics,

while existing approaches fail to do so. Furthermore,

Smooth Scan proves to be competitive with existing

access paths throughout the entire selectivity interval,

making it a viable replacement option.

7.1 Experimental Setup

Software. Smooth Scan is implemented inside Post-

greSQL 9.2.1 DBMS. To demonstrate the problem of

robustness presented in Section 1 we use a state-of-the-

art commercial DBMS we refer to as DBMS-X.

Benchmarks. We use two sets of benchmarks to

showcase algorithm characteristics: a) for stress testing

we use a micro-benchmark, and b) to understand the

behavior of the operators in a realistic setting we use

the TPC-H benchmark SF 10 [76].

Hardware. All experiments are conducted on servers

equipped with 2 x Intel Xeon X5660 Processors, @2.8

GHz (with L1 32KB, L2 256KB, L3 12MB caches), with

48 GB RAM, and 2 x 300 GB 15000 RPM SAS disks

with an average I/O transfer rate of 130 MB/s, running

Ubuntu 12.04.1. In all experiments we report cold runs;

we clear database buffer caches as well as OS file sys-

tem caches before each query execution. The memory

setting thus does not impact our findings.

7.2 TPC-H analysis

TPC-H in DBMS-X. In Figure 1 in Section 1, we

demonstrated the severe impact of suboptimal index

choices on the overall TPC-H workload. For this ex-

periment, we used the tuning tool provided as part of

DBMS-X, with 5GB of space allowance (1/2 of the

data set size) to propose a set of indexes estimated

to boost the performance of the TPC-H workload. In

queries Q12 and Q19, the presence of indexes favors

a nested loop join when the number of qualifying tu-

ples in the outer table is significantly underestimated,

resulting in a significant increase in random I/O to ac-

cess tuples from the index (“table look-up”), which in

turn results in severe performance degradation (factors

400 and 20 respectively). In both cases the access path

operator choice is the only change compared to the orig-

inal plan, i.e., join ordering stays the same. Smaller

degradation as a result of a suboptimal index choice fol-

lowed by join reordering occurs in several other queries

(Q3, Q18, Q21) resulting in the overall workload per-

formance degradation by a factor of 22.

Improving performance with Smooth Scan.

We now demonstrate a significant benefit that Smooth

Scan brings to PostgreSQL compared to the optimizer’s

chosen alternatives when running TPC-H queries. Since

PostgreSQL does not have a tuning tool, we create the

set of indexes proposed by the commercial system from

the previous experiment (on the same workload).

Figure 13 shows the results for 5 interesting TPC-

H queries that typically trigger robustness issues in

databases. These queries represent “choke points” for

testing data access locality [13]. They cover: i) range

predicates, ii) a LIKE statement, iii) an equality over

string predicates, which are all known to be problematic

predicates that cause cardinality misestimates, conse-
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Fig. 13: Improving performance of TPC-H queries with

Smooth Scan.

Table 2: I/O Analysis of TPC-H queries
Q1 Q6 Q4 Q14 Q7

pSql SS pSql SS pSql SS pSql SS pSql SS
#I/O
req.(K)

71 87 566 95 225 235 416 87 745 124

Read
data(GB)

8.9 10.2 8.7 8.8 10.9 12.1 6.8 8.9 11.6 11.6

quently leading to poor query performance. We show

the performance of: i) single table selections with selec-

tivities from both sides of the spectrum (very high and

very low), ii) two table joins covering both selectivity

extremes, and iii) a more complex query involving a 6-

table join and predicates over multiple attributes as an

exemplary case of complex decision-making workloads.

Low and high selectivity experiments are chosen as ex-

treme cases for Smooth Scan – showing that it can solve

the problem of suboptimal index selection in the case

of cardinality misestimates such as for Q12 and Q19

of DBMS-X (low selectivity), but also demonstrating

the negligible overhead in the cases when the optimal

choice can be made by a DBMS (high selectivity).

The brackets on the right-hand side of the query ID

show the selectivity of the query. Q1 and Q6 are sin-

gle table selection queries, with the selectivity of 98%

and 2% respectively. Q4 and Q14 are two-table join

queries with two selectivity extremes (65% and 1% re-

spectively) when considering the LINEITEM table. The

performance greatly depends on the selectivity of this

table, since it is the largest. Lastly, we run Q7, a 6-table

join, which has selectivity of 30%. Since Smooth Scan

trades CPU utilization for I/O cost reduction, we show

the execution breakdown through CPU utilization and

I/O wait time (i.e., the blocking I/O in the critical path

of execution). Similarly, in Table 2 we show the num-

ber of I/O requests issued by the operators, together

with the amount of data transferred from the disk. The

query execution plans are given in Appendix [15].

Figure 13 shows that PostgreSQL with Smooth Scan

avoids extreme degradation and achieves good perfor-

mance for all queries. For instance, while plain Post-

greSQL suffers in Q6 due to a suboptimal choice of an

index scan, PostgreSQL with Smooth Scan maintains

good performance preventing a degradation of a fac-

tor of 10. Q6 selects 2% of the data, which in the case

of the index scan causes 566K of random I/O accesses

over the LINEITEM table (shown in Table 2). By flat-

tening (i.e., accessing adjacent pages) and avoiding re-

peated accesses, Smooth Scan reduces this number to

95K which results in much better performance.

On the other hand, in query Q1 with selectivity

of 98% the plain PostgreSQL chooses Sort Scan (also

called Bitmap Heap Scan), which is the optimal path.

However, even in this case Smooth Scan introduces only

a marginal overhead; it quickly realizes that the result

selectivity is high and adjusts the execution by forcing

sequential accesses. As a result, Smooth Scan adds an

overhead of only 14% over the optimal behavior. This

overhead is due to periodical random I/O accesses when

following pointers from the index, which increased the

number of I/O requests for disk pages from 71K to 87K.

In Q4 the selectivity of the LINEITEM table is 65%,

and PostgreSQL chooses the full scan as the outer table

of a nested loop join with a primary key look-up as the

inner input. Although Smooth Scan starts with using

the index lookup on the outer table as well, it adjusts its

access patterns quickly morphing its behavior toward

sequential scan and adds less than 1% of overhead over

the optimal solution.

On the contrary, the selectivity of the LINEITEM

table in Q14 is around 1%, but still a factor of 2 more

than what the optimizer estimated. Both plain Post-

greSQL and our implementation start with an index

scan as the outer input, joined with an INLJ with OR-

DERS (a primary key look-up). This query is an il-

lustration for cases when performance of DBMS-X de-

graded severely (e.g. by a factor of 400). Furthermore,

this is a major source of performance degradation in

databases – a suboptimal index choice due to cardinal-

ity underestimates, typically as a consequence of at-

tribute value independence assumption employed by

most DBMSs [9,35,37,59,65,75]. Unlike the index scan

that issues 416K I/O requests for this query, Smooth

Scan issues only 87K requests which translates to a per-

formance improvement of a factor of 8. In both join

queries, Smooth Scan does not perform any additional

page fetching over the inner tables since for each probe

we have a single match; thus there is no need to per-

form morphing region expansion, which Smooth Scan

correctly detects.



16 Renata Borovica-Gajic et al.

Time (sec) Time (sec)Time (sec)

B
lo

ck
 a

d
d

re
ss

Fig. 14: Profiling I/O access of Q1: a) Full/Sort Scan,

b) Index Scan, c) Smooth Scan.

Table 3: The histogram of block transfer sizes
Block size 8KB 16KB 32KB 64KB 128KB
# of transfers 3079 288 174 168 83263

Lastly, an index choice for plain PostgreSQL over

the LINEITEM table for a 6-way join in Q7 hurts per-

formance by a factor of 7 compared to the performance

of Smooth Scan. This degradation is due to the choice

of the index over a range predicate with selectivity of

30%. The result cardinality of the range predicate was

18M as opposed to 300K which was the estimated value.

Smooth Scan detects higher selectivity and naturally

morphs toward a more desirable access pattern.

Discussion. The memory structures of Smooth Scan

span a couple of MB in these experiments. For illus-

tration, the Page ID cache for the LINEITEM occu-

pies 140KB (for 1M pages). Although Smooth Scan can

transfer larger amounts of data from disk compared

to the original access path (see Table 2), its benefit

comes from exploiting the access locality and issuing

fewer I/O requests. Overall, Smooth Scan provides ro-

bust behavior without requiring accurate statistics. It

brings significant gains when the original system makes
a suboptimal decision and only marginal overheads over

optimal decisions.

Profiling I/O Access. To better grasp the be-

havior of Smooth Scan on disk we profile the access

of TPC-H Q1 with the iosnoop tool. Figure 14 depicts

the disk accesses of all access paths when running Q1.

The figure shows which device address (shown on the

Y axis) is requested at what point in time (shown on

the X axis). In the case of both full scan and sort scan

all pages are requested and accessed consecutively from

the first until the last one. This is due to high selectiv-

ity of Q1 (98%), i.e., all pages have matching tuples.

The index scan suffers from accessing pages repeatedly

over time. Compared to the index scan, Smooth Scan

requests fewer pages over time (and no repeated ac-

cesses occur). In the case of Smooth Scan the access is

not purely sequential, as it is driven by occasional in-

dex probes which invoke random I/O accesses. This is

evident in the last stages of execution where accesses to

a single page are typically issued to fetch the data of in-

0.1

1

10

100

1000

10000

100000

0

0
.0

0
1

0
.0

1

0
.1 1

2
0

5
0

7
5

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Full Scan

Index Scan

Sort Scan

Smooth Scan

0.1

1

10

100

1000

10000

100000

0

0
.0

0
1

0
.0

1

0
.1 1

2
0

5
0

7
5

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Full Scan

Index Scan

Sort Scan

Smooth Scan

NO ORDER BYORDER BY

Adaptivity over selectivity range
Setting: Micro-benchmark, Q1 (w. and w/o. order), Selectivity 0-100%

7

(a) With order by

0.1

1

10

100

1000

10000

100000

0

0
.0

0
1

0
.0

1

0
.1 1

2
0

5
0

7
5

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Full Scan

Index Scan

Sort Scan

Smooth Scan

0.1

1

10

100

1000

10000

100000

0

0
.0

0
1

0
.0

1

0
.1 1

2
0

5
0

7
5

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Full Scan

Index Scan

Sort Scan

Smooth Scan

NO ORDER BYORDER BY

Adaptivity over selectivity range
Setting: Micro-benchmark, Q1 (w. and w/o. order), Selectivity 0-100%

7(b) Without order by

Fig. 15: Smooth Scan vs. alternative access paths for a

query with and without an order by clause.

terest, without expanding the morphing region. This is

due to the fragmentation in accessed areas on disk, since

the neighboring pages have already been processed in

the past. Due to this reason and the fact that the re-

sult selectivity is high (98%), the highest number of

data transfers were issued to the maximum block size

of 128KB2 (83263 transfers) followed by a single page

8KB requests (3079 transfers), as presented in Table 3.

7.3 Fine-grained analysis over full selectivity interval

This section provides the performance comparison of

Smooth Scan against Full Scan, Index Scan and Sort

Scan. In order to demonstrate the robust behavior of

Smooth Scan, a micro-benchmark is used to stress test

various aspects. All experiments are run on top of our

extension of PostgreSQL, thus Full Scan, Index Scan

and Sort Scan are the original PostgreSQL access paths.

The micro-benchmark consists of a table with 10 inte-

ger columns randomly populated with values from an

interval 0 − 105. The first column is the primary key

identifier, and is equal to the tuple order number. The

table contains 400M (4∗108) tuples, and occupies 25GB

of disk space for 3M (3 ∗ 106) pages each of which is of

8KB size (PostgreSQL’s default value). In addition to

the primary key, a non-clustered index is created on the

second column (c2). We run the following query:

Q1: select * from relation where c2>= 0 and

c2<X% [order by c2 ASC];

Supporting an interesting order. In this experi-

ment, we show that Smooth Scan maintains tuple order-

ing and hence outperforms other alternatives for queries

(or sub-plans) that require the ordering of tuples. Fig-

ure 15a shows the performance of all alternative access

2 128KB block requests were consecutive up to 16MB of
size, which is the maximum expansion region of Smooth Scan.
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paths for a query with an order by clause. The perfor-

mance of Index Scan degrades quickly due to repeated

and random I/O accesses. For selectivity 0.1% its exe-

cution time is already 10 times higher than the execu-

tion of Full Scan, reaching a factor of more than a 100

for 100% selectivity. Sort Scan solves the problem of

repeated and random accesses, while at the same time

fetching only the heap pages that contain results; there-

fore, it is the best alternative for selectivity below 1%.

Nonetheless, its sorting overhead to restore the proper

ordering grows and for selectivity above 2.5% it is not

beneficial anymore. Smooth Scan is between the alter-

natives when selectivity is below 2.5%, while it achieves

the best performance for the selectivity above this level.

This is attributed to avoiding the overhead of posterior

sorting of tuples to produce results in the interesting

order, from which Full Scan and Sort Scan suffer.

Without an interesting order. Figure 15b shows

the performance of the access paths when executing Q1

without the order by clause. For selectivity between 0

and 2.5% the behavior of the operators is the same as

in the previous experiment. For higher selectivity, how-

ever, Full Scan is the best alternative, since it performs

a pure sequential access. Both Sort Scan and Smooth

Scan, however, manage to maintain good performance.

The overhead of Sort Scan is attributed to the pre-sort

phase of the tuples obtained from the index; after that

the access is nearly sequential as page IDs are monoton-

ically increasing. Smooth Scan does not suffer from the

sorting overhead, but it does suffer from a periodical

random I/O access driven by the index probes, adding

less than 20% overhead when compared to Full Scan for

100% selectivity. A different behavior is observed when

the experiment is run on an SSD (shown in Figure 23),

where Smooth Scan benefits much more compared to

Sort Scan (by a factor of 3).

Discussion. Smooth Scan bridges the gap between

existing access paths. Its performance does not degrade

when selectivity increases, like in the case of Index Scan.

This is particularly important in real-life scenarios where

a degradation in Index Scan causes performance drops

of several orders of magnitude [44]. At the same time,

Smooth Scan does not pay the cost of Full Scan to select

just a few tuples, which is important for point queries

for which Full Scan is impractical. When the order is

not imposed the absolute performance of Smooth Scan

is comparable to that of Sort Scan; nonetheless, the

benefit of Smooth Scan becomes visible when consider-

ing its placement in the query plan. Unlike Sort Scan,

Smooth Scan adheres to the pipelining model, which

is important since the access path operators are exe-

cuted first and can stall the rest of the query plan. In

the experiments, Smooth Scan’s CR reaches a maxi-

Evaluation of Smooth Modes
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Fig. 16: Sensitivity analysis of

Smooth Scan modes.
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mum value of 2 over the optimal solution, for the case

when selectivity is below 0.01%. To put absolute num-

bers in perspective, in our experiment a maximal over-

head of 60 seconds is paid to prevent a worst case per-

formance degradation of 11 hours. In decision support

systems that are characterized by long running queries,

this overhead is likely tolerable as a robustness guaran-

tee for the prevention of severe performance drops that

happen due to data correlation and skew.

7.4 Sensitivity analysis of Smooth Scan

We now study the parameters that affect the perfor-

mance of Smooth Scan such as the impact of its morph-

ing modes, policies, and strategies. We show the book-

keeping overhead and study the Smooth Scan on HDD

versus SSD. For all experiments in this section, unless

stated otherwise, we use Q1 from the micro-benchmark

without an order by clause.

Impact of the entire page probe mode. The

pointer chasing of non-clustered indexes when perform-

ing a tuple look-up in general hurts performance when

selectivity increases. Figure 16 depicts the improvement

that Smooth Scan achieves by removing repeated ac-

cesses when executing query Q1 from the micro bench-

mark. The curve of Smooth Scan denoted as the ’Entire

Page Probe’ morphs only until Mode 1. Smooth Scan

improves performance by a factor of 10 when compared

to Index Scan for selectivity 100%. The performance

of Smooth Scan degrades with selectivity increase up

to 1%; this is the point when approximately all pages

have been read. With 120 tuples per page (64-byte tu-

ples in 8KB pages) and uniform distribution, we expect

one tuple from each page to qualify. After that point

the execution time stays nearly flat with the increase of

20% for 100% selectivity, showing that the overhead of

reading the remaining tuples from a page is dominated

by the time needed to fetch a page from disk. The exe-

cution time of Smooth Scan when morphing only up to

Mode 1, is however still significantly higher (a factor of



18 Renata Borovica-Gajic et al.

Morphing policies

0

50

100

150

200

250

300

350

400

0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1

1
0

3
0

5
0

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Greedy

Selectivity Increase

Elastic

Setting: 400M tuples, 10 int. attributes, 25GB, Index(c2), cold runs
Query:   select * from R where c2 < X%; 

0

100

200

300

400

500

600

0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1

1
0

3
0

5
0

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Optimizer Driven

SLA Driven

Eager

SLA

Fig. 18: Morphing policies.

Morphing policies

0

50

100

150

200

250

300

350

400

0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1

1
0

3
0

5
0

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Greedy

Selectivity Increase

Elastic

Setting: 400M tuples, 10 int. attributes, 25GB, Index(c2), cold runs
Query:   select * from R where c2 < X%; 

0

100

200

300

400

500

600

0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1

1
0

3
0

5
0

1
0

0

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Result selectivity(%)

Optimizer Driven

SLA Driven

Eager

SLA

Fig. 19: Triggering choices.

14) compared to Full Scan for 100% selectivity. This is

due to the discrepancy between random and sequential

page accesses; the former being an order of magnitude

slower in the case of HDD.

Impact of the flattening access mode. To alle-

viate the random access problem, Smooth Scan employs

Mode 2+ (shown in Figure 16 as the ’Flattening Access’

curve). By fetching adjacent pages Smooth Scan amor-

tizes access costs at the expense of extra CPU cost to

go through all fetched data. Smooth Scan with Flatten-

ing Access is not only much better than Index Scan (by

a factor of 115) but also nearly approaches the behav-

ior of Full Scan; in the worst case of selectivity 100%

Smooth Scan is only 20% slower than Full Scan.

Maximum morphing region size. We perform

a sensitivity analysis on the maximum number of ad-

jacent pages up to which Smooth Scan performs the

morphing region expansion. The experiment varies this

number from 1000 up to 5000 pages, showing in Fig-

ure 17 the query execution times for 3 cases, when se-
lectivity is 1%, 10% and 100%. We performed a fine-

grained analysis over the entire selectivity range, and

results followed the same trend, hence for clarity we

show only these 3 selectivity points. The experiments

show that 2000 pages are optimal, which translates to

the morphing region size of 16MB. Thus, we keep 2000

as the maximum morphing region size for the rest of

the experiments.

Impact of policy choices. We plot the impact of

policy choices in Figure 18. The Greedy policy morphs

with each index probe, and hence converges to Full

Scan faster than other policies. For lower selectivity, the

Selectivity Increase and Elastic policies introduce less

overhead compared to Greedy since they fetch fewer

adjacent pages, i.e., more pages need to be seen for

the morphing region size to increase. This particularly

holds for the Elastic policy that adjusts the morphing

size depending on the selectivity of the fetched regions.

Since it is the most responsive to the changes in selec-

tivity, we favor it in the rest of the experiments.

Impact of trigger choices. Figure 19 plots the

impact of triggering strategy choices. The Eager strat-

egy starts immediately with Smooth Scan; in this case

we plot the Elastic Smooth Scan. The Optimizer Driven

strategy starts with the traditional index and changes

to Smooth Scan after 15K tuples (the optimizer’s es-

timated cardinality), causing the increase in the exe-

cution time for selectivity 0.005%. After the shift to

Smooth Scan, for this experiment we continue with the

Selectivity Increase Driven policy. The overhead of the

Optimizer Driven strategy increases for higher selectiv-

ity compared to the Eager strategy and is attributed

to a tuple check for each tuple produced with Smooth

Scan, and to additional repeated accesses of the same

pages accessed before the Smooth Scan behavior is trig-

gered. On the other hand the initial execution time is

lower compared to the Eager strategy due to fewer page

accesses. Similar behavior is observed with the SLA

driven triggering strategy, with a sharper cliff for point

0.009%, since with this strategy we switch immediately

to Greedy. For this experiment we have set an upper

performance bound equal to the performance of 2 Full

Scans as an SLA constraint; the calculated bound is

shown as the dashed line in Figure 19. According to

the model the morphing triggering point is 32K tuples,

which guarantees the execution time just slightly below

the SLA bound for 100% selectivity.

Overall, the Eager strategy strikes a balance in terms

of overall performance, hence we favor it as the default

strategy in the remaining experiments. However, when

in an environment where respecting SLAs is the main

priority, or Smooth Scan serves as a means of fixing

suboptimal decisions then the SLA or Optimizer driven
strategies are viable alternatives. We can turn a strat-

egy knob depending on the applications requirements.

Adjusting to skew distribution. Smooth Scan

has demonstrated the ability to prevent execution time

blow-up due to selectivity increase tested on uniform

distributions of result tuples. Many modern applica-

tions, however, exhibit non-uniform data distributions

(e.g. stock markets, Internet networks [23,49]). For these

applications one execution strategy is not likely to op-

timally serve the entire table. We show that Smooth

Scan can adapt well to skewed distribution of values

across pages. We use the Elastic policy and compare it

against the Selectivity Increase (SI) policy.

We use a table with 1.5B tuples, 10 integer columns

(random values from [0-105]) that occupy 100GB, and

create a secondary index on the second column (c2).

First 15M tuples have c2 = 0; afterwards another 0.001%

of random tuples have value 0. The result selectivity is

slightly above 1%, with most of the tuples coming from
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Fig. 20: Handling skew.

the pages placed at the beginning of the relation heap,

i.e. we read all tuples where c2 = 0.

Figure 20a plots the execution time of Index Scan,

Full Scan, Selectivity Increase and Elastic Smooth Scan;

Figure 20b plots the number of distinct pages fetched

to answer the query. From Figure 20b one can see that

Selectivity Increase Smooth Scan fetches 56 times more

pages than Elastic Smooth Scan, and it is 5 times slower.

The large number of pages is due to the initial skew;

Selectivity Increase Smooth Scan notices the high se-

lectivity increase at the beginning, and in order to re-

duce the potential degradation it continues fetching big

chunks of sequentially placed page, ultimately fetching

8.8M out of 12.5M pages. On the contrary, after the

dense region, Elastic Smooth Scan decreases the mor-

phing step, quickly converging back to the access of a

single page per probe, ultimately ending up with only

150K pages fetched. This number is close to the num-

ber of pages accessed by Index Scan that fetched 140K

pages. The severe impact of random I/O is not seen

for Index Scan, since for this experiment the index key

follows the page placement on disk.

From the experiment, one could observe that Elastic

Smooth Scan continues to provide near-optimal perfor-

mance, despite the significant initial skew. This is par-

ticularly important for long-running queries over big

data, where data distributions tend to be non-uniform

[58]. Approaches that employ one execution strategy, or

run multiple alternatives shortly and stop all but the

winning one are likely to make a mistake and not be

able to benefit from this density discrepancy. Elastic

Smooth Scan, however, seamlessly adjusts its behavior

to fit the data distribution.

The overhead of auxiliary data structures. To

avoid repeated page accesses, Smooth Scan in Post-

greSQL uses the data structures described in Section 4.

We now show the bookkeeping overhead of these struc-

tures and their usability rate, demonstrated on Q1 from

the micro-benchmark with an ORDER BY clause.

Figure 21a shows that Result Cache adds a maxi-

mum overhead of 14% when storing all result matches

in the cache (shown as blue bars). At the same, the
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Fig. 21: Analysis of auxiliary data structures.

Result Cache Hit Rate, calculated as the ratio between

the number of tuple requests served from the cache and

the total number of tuple requests, reaches 100% for

1% selectivity. Figure 21b shows that the morphing ac-

curacy, calculated as the ratio between the number of

pages containing result matches and the total number

of checked pages with Smooth Scan, gets improved after

1%, reaching 100% for 2.5% selectivity. The overhead

of page ID checks remains significantly below 1% in all

our experiments, hence we do not show it separately.

Memory sensitivity of Result Cache. Since Re-

sult Cache is the largest data structure we perform a

sensitivity analysis of Result Cache to the memory size.

We run Q1 from the micro-benchmark, varying the Re-

sult Cache size from 2.5% of the table size to 100% of

the table size. The table size is 25GB with 400M tuples

stored, and the query has selectivity 100% throughout

the entire experiment.

To see the overhead when partitions are spilled on

disk, Figure 22 plots the normalized execution time

with respect to the execution time when Result Cache

completely resides in memory, i.e., when no spilling oc-

curs. As one can see from the graph, Smooth Scan is

quite resilient to the memory size, adding only 37% of

overhead when the memory size is 2.5% of the table size,

i.e., it occupies only 625MB, compared to the case when

all data stays in memory (i.e., no partitioning occurs).

For the memory size of 2.5%, Smooth Scan builds 50

partitions in total shown by the black line in Figure 22.

Moreover, Smooth Scan is quite resilient to the number

of partitions created. For instance, Smooth Scan adds

only 3% of additional overhead for creating 50 parti-

tions compared to 14 partitions for the case when the

memory size is 10% of the table size. The biggest over-

head increase of 20% is between 100% and 80%, and is

attributed to disk access. Once partitions start spilling

to disk (in all other cases except 100% they do), the

performance remains steady across a different number

of partitions, because Smooth Scan enjoys the benefit

of spatial locality when fetching partitions from disk.
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7.5 Smooth Scan on SSD

Given the different access costs of solid state disks (SSD),

better random access performance, and the forecasts of

their potential replacement of HDD [47], we now stress

test Smooth Scan on SSD. We use a solid state disk

OCZ Deneva 2C Series SATA 3.0 with advertised read

performance of 550MB/s (offering 80kIO/s of random

reads). We use query Q1 from the micro-benchmark

without an order by clause and compare Smooth Scan

against the existing access operators.

Figure 23 demonstrates that Smooth Scan benefits

even more from solid state technology than from hard

disks (shown in Figure 15). SSD are well known for re-

moving mechanical limitations of disks, which enables

them to achieve better performance of random I/O ac-

cesses. Our analysis for the hardware used in this paper,

shows that random I/O accesses are two times slower

than sequential accesses on SSD, while this discrepancy

reaches a factor of 10 in the case of HDD. This differ-

ence makes Index Scan (and Smooth Scan) more bene-

ficial on SSD than on HDD. In our experiments, Index

Scan on HDD is beneficial only for selectivity below

0.01%, while on SSD this range increases until 0.1%.

For higher selectivity, Index Scan on SSD still loses the

battle against other alternatives, since it suffers from re-

peated accesses and cannot benefit from the flattening

pattern compared to other alternatives. Consequently,

Index Scan is slower than Smooth Scan by a factor of

30 for 100% selectivity. What is interesting to note is

that Sort Scan loses the battle against Smooth Scan

for selectivity above 0.1% (even without the imposed

order), since the pre-sort overhead to obtain page IDs

cannot be masked due to faster I/O performance.

Discussion. Smooth Scan favors SSD over HDD,

since occasional random jumps when following the in-

dex pointers do not hurt performance as much, com-

pared to the sorting overhead of Sort Scan to presort

tuples. Smooth Scan is faster than Full Scan for selec-

tivity below 20%, and is only 10% slower for 100% selec-

tivity. The smaller gap between random and sequential

Smooth Scan on SSD
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Fig. 23: Smooth Scan on SSD.

I/O and the decreased SSD latency, thus makes Smooth

Scan a promising solution for the future.

7.6 Cost model analysis

In this experiment we show that the estimates of the

analytical model derived in Section 5 correspond closely

to the measured performance. Figure 24 compares the

execution time and number of I/O requests of Full Scan,

and Smooth Scan against the analytical cost model,

shown as a function of result selectivity increase.

We model the costs for a table with 400M tuples

from the micro-benchmark. For the page size we take

the value of 8KB (default PostgreSQL page); for the tu-

ple size we assume 68 bytes (40 bytes of data plus the

overhead for the tuple header), and for the key size we

use 16 bytes. We assume uniform distribution of result

tuples, and approximate the number of random I/O ac-

cesses for Mode 2 of Smooth Scan with log2(#P + 1).

Finally, for seqcost we use 1, for randcost we use 10,

and for cpucost we use 10−6 (i.e., one I/O translates

to 1M CPU cycles). Our disk has I/O transfer rate of

130MB/s, which for the block size of 128KB (the OS

setting) gives the throughput of 1000 blocks per second.

Thus, when transforming the analytical model into ex-

ecution time, we use 1ms as the block transfer latency.

The model suggests that for lower selectivity Smooth

Scan behaves like Index Scan, while for higher selectiv-

ity it converges to the performance of Full Scan. This is

corroborated in the experiment presented in Figure 24a,

where Smooth Scan converges to Full Scan as predicted.

The only discrepancy from the model we observe is that

Smooth Scan converges faster to Full Scan than esti-

mated. This effect is partly due to the disk controller be-

havior that groups many sequential I/O requests from

the disk controller queue into one in the case of Full

Scan. This consequently puts the performance bar of

Full Scan a bit lower than expected. Similar behavior

is not observed in the case of Smooth Scan that issues

requests for sequential sub-arrays with random jumps

in between. Although the same grouping of sequential

sub-arrays could happen and equally improve perfor-
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Fig. 24: Comparing the analytical model against measured performance.

mance, the disk controller did not possess logic to do

so. For high selectivity, both Full Scan and Smooth Scan

slightly exceed the estimates of the model. This is due

to the overhead of tuple construction of PostgreSQL,

that is not part of the model, but dominates the CPU

cost in the case of high selectivity.

Figure 24b compares the estimated and measured

I/O performance of Full Scan and Smooth Scan. Smooth

Scan again exhibits close to estimated behavior in terms

of the number of I/O requests. While for Full Scan the

analytical model has a 2% of relative error, in the case

of Smooth Scan for 100% selectivity the relative error is

11%, i.e., the model suggested I/O increase of 5% com-

pared to Full Scan, while measured experiments capture

16% of I/O increase. When it comes to the CPU cost,

both the analytical model and real execution observe a

negligible CPU overhead due to Smooth Scan’s opera-

tions. Since the CPU cost is less than 0.1% of the total

cost, we do not present CPU measures separately.

7.7 The benefit of mid-operator reoptimization

We now study the benefit of mid-operator reoptimiza-

tion as an alternative to preventing performance degra-

dation. We demonstrate that although a simple solu-

tion can help in some cases (such as fulfilling SLA con-

straints for instance), there are consequences behind bi-

nary decisions such as performance cliffs or the inability

to return once the decision has been made.

Figure 25 shows the benefit of mid-operator reopti-

mization implemented through an operator we refer to

as Switch Scan. Switch Scan is implemented in Post-

greSQL, existing side by side with the remaining access

path operators. Switch Scan starts with following an in-

dex scan. During runtime it monitors the operator’s se-

lectivity and upon detecting the selectivity estimation

violation, to prevent further degradation, it switches

the access path strategy to full scan. Although pretty

simplistic, Switch Scan bounds the worst case execution
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time to the time of obtaining X tuples (the optimizer’s

cardinality estimation) with the index lookup plus the

time to perform the full table scan, which could still be

significantly lower than the time to fetch all the tuples

with the index look-up.

We report results of executing query Q1 from the

micro-benchmark. In the case of Switch Scan, one can
observe a performance cliff for 0.009% selectivity, due

to the strategy switch. In this example, the optimizer’s

cardinality estimate is 32K tuples and it decided to em-

ploy an index scan. While monitoring the actual cardi-

nality, Switch Scan detects more than 32K tuples and

performs the switch before producing the next result

tuple. The execution time to produce 32001 tuples now

becomes the execution time of the index seek for 32K

tuples plus the execution time of the full table scan.

After the switch, Switch Scan performs just like Full

Scan, avoiding degradation of more than an order of

magnitude when selectivity is 100%. Nonetheless, the

moment Switch Scan opts for the switch, the execution

time increases by the time of the full scan, which might

not be amortized over the rest of the query’s lifetime.

The performance hit together with the uncertainty

whether the overhead incurred at the time of a change

will actually be amortized over the remaining query

time is perceived as lacking in robustness. In this ex-

ample, if it were to receive only 32001 qualifying tuples
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(but not knowing it at the time), Switch Scan would pay

the overhead that could not be amortized over the rest

of the query life-time, and hence is unjustified. More-

over, since the decision depends on the accuracy of the

statistics, this approach is highly volatile. Smooth Scan,

on the other hand, manages to approach near-optimal

performance throughout the entire selectivity interval

as shown in Figure 25, while being statistics-oblivious.

7.8 Statistics collection overheads

An alternative to correcting suboptimal plans with intra-

operator adaptivity presented in Section 3 would be to

avoid suboptimal paths in the first place. One could ar-

gue this can be achieved by having perfectly accurate

statistics representing data; we show, however, that re-

peatedly collecting statistics is prohibitively expensive,

since this effort usually involves full table access.

For this experiment we use a table with 40M tuples

from the micro-benchmark, with a non-clustered index

built on columns (c2, c3). Throughout the experiment

we employ the following query:

Q2: select * from relation where c2=X and c3=X;

We perform a constant update of data introducing the

skew between columns c2 and c3 (i.e., we update both

columns to value X). With this setting we want to sim-

ulate a sensor processing environment where data is

ingested constantly 24/7, causing a frequent change of

data statistics. Completely accurate statistics are rarely

present in such a system.

Figure 26 shows the statistics collection times on

the table, comparing them against the execution time

of query Q2 run on DBMS-X. We have measured statis-

tics collection time on a commercial system, since this

system supports a wider spectrum of possibilities than

PostgreSQL. We compare the performance of Bitmap

Scan, Full Scan and the optimizer’s choice against the

time to collect statistics. The three graphs demonstrate

the three levels of database statistics, namely: a) base

statistics (the table size, tuple size, number of tuples,

etc.); b) single column distribution statistics (histograms

on each column separately); c) joint-data distributions

(a histogram on the group of columns (c2, c3)).

Despite being the cheapest alternative, the basic

statistics could still lead to the choice of suboptimal

plans as shown in Figure 26a, since they cannot accu-

rately detect neither skew nor the presence of column

correlations. In the case of basic statistics presence,

the optimizer kept the original access path choice (i.e.,

Bitmap Scan) throughout the entire selectivity range.

On the other hand, one could observe that obtaining

histograms on all columns introduces a higher cost as

shown in Figure 26b. Having histograms on all columns

could solve the problem of suboptimal decisions in the

case of skewed data. Nevertheless, it will still not detect

the correlation between different columns (notice the

suboptimal decision for selectivity 40% in Figure 26b).

Therefore, whenever a query contains multiple filtering

predicates over different columns, joint-data distribu-

tions are required. Figure 26c shows the statistics collec-

tion time on the group of two columns from the query.

Performing this collection once could be tolerated. Cal-

culating all possible joint distributions for the workload

consisting of many queries, however, is an unattainable

goal, especially since applications today have hundreds

of columns in each table [75].

Query Q2 is a simple query that showcases the prob-

lem with cardinality estimation. Assuming no accurate

statistics exist on the table, the optimizer would fall

into a trap of using the index regardless of the actual

result cardinality. This is happening because the unifor-

mity assumption assumes the selectivity of each predi-

cate to be 10−5 (1/100K), while the independence fur-

ther assumes the overall selectivity to be 10−10 (10−5 ∗
10−5) [29]. Therefore, the optimizer would always opt

for the index look-up, severely hurting performance in

the case of higher selectivity [37,58,59,61–63,65].

8 Related work

The volatility of query optimizers does not only af-

fect the quality of plans but it might significantly de-

crease the overall user experience. Anecdotal evidence

from the industrial leaders states that the angriest calls

are from customers unsatisfied with their query perfor-

mance [44, 63]. With queries being increasingly com-

plex, statistics being less available and more expensive

to gather and data being even stored remotely, it is

clear that the traditional optimize-then-execute query

paradigm is becoming insufficient [12, 37, 56–59, 62, 65,

67]. This has led to the need for having adaptive query

processing techniques, where runtime feedback is used
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to monitor the current query execution strategy with a

purpose of correcting the choice and providing a better

query response time [8, 35, 50, 81]. Adaptive query pro-

cessing is an active area of database research that comes

in several flavors [35], ranging from runtime statistics

refinement, dynamic plan change through shuffling or

reoptimization, and robust or multiple plans selection

to the fine-grained adjustment within operators.

Run-time statistics refinement. Missing or im-

precise statistical information could be obtained at run-

time usually with low overhead, if the statistics collec-

tion procedure gets piggybacked on the query execu-

tion. Learned statistical information then can be in-

jected [24] back in the planning procedure and exploited

by the current or future queries [2,20,21,25–27,74,75].

A step further is to explicitly trigger subplans to collect

statistical information for particular parts of the plan

search space (i.e., sensitive query fragments) [1, 51, 53,

68] in order to remove uncertainty. In such cases, the

execution and statics collection are usually interleaved,

where newly gathered knowledge, helps proposing bet-

ter plans. Despite improving the quality of plans, there

are environments where statistical information cannot

be fully gathered (e.g. remote data sources, frequent

data ingest [52], streaming, etc.). In such environments

plans need to be changed dynamically at run-time.

Change through subplan shuffling. Subplan shuf-

fling is employed to deal with unexpected data arrival

delays, usually due to effects of network transfer from

remote sources typical for data integration systems. The

employed techniques minimize the idle time during query

processing by rescheduling the order of the subplans of

the original plan [3,56,57,77]. The latter ultimately re-

sults in join reordering of the original plan. A step fur-

ther is to fully interleave the scheduling and execution

phase and trigger scheduling every time a data item be-

comes unavailable or a subplan finishes [19]. The high-

est level of adaptivity is achieved in Ingres [80] and with

Eddies [6,70] where the order among the existing (pre-

determined) operators is reassessed and changed based

on the data arrival and the observed selectivities of op-

erators of the query plan.

Change through reoptimization. Unlike shuf-

fling, reoptimization performs full query optimization

usually upon detecting a cardinality estimate violation

[9, 40, 59, 62, 65]. When performing reoptimization, a

special attention has to be paid to the treatment of

intermediate results (already done work) that could be

fully exploited or discarded [82]. It is also important to

know when is a possible time to perform reoptimization

to ensure the correctness of results [40,62].

Multiple plan choices. Multi-plan techniques have

been explored in the database community for the past

decade. Multi-plan approaches choose a set of possible

plans and execute them either in parallel [4, 5] or each

one on a disjoint subset of data [12, 22, 58, 67, 82]. Spe-

cial cases of multi-plan choices are parametric [55], and

dynamic plans [31, 46], where from a set of plans de-

termined at compile time, a specific plan or operator

implementation is chosen based on the value of param-

eter markers obtained at run-time. Similarly, Plan Bou-

quets [37] choose from a discretized space of parametric

optimal plans the subset based on observed selectivity

at run-time, while Proactive Reoptimization proposes a

set of switchable plans that could be safely interchanged

without losing already processed work [9].

Robust plan selection. Robust plans take into ac-

count the uncertainty of the optimization process and

choose plans more resilient to the cardinality misesti-

mates [7,30]. The plan search space can be pruned leav-

ing only a subset of plans more resilient to the optimizer

misestimates [33,34].

Adaptive operators. All mentioned approaches

that perform dynamic plan changes are examples of

inter-operator adaptivity, where the adaptation mech-

anism is employed between operators, i.e., it mostly

pertains to the operator order. Adaptive operators, on

the other hand, are more fine-grained as they encapsu-

late the adaptation mechanism within their own algo-

rithm [16,48,78,79].

Robustness and adaptation to data characteristics

at the intra-operator level are considered in [4,5,11,28,

42,66]. Despite a lot of efforts in fixing suboptimal deci-

sions, little attention has been paid to the access path

selection problem. Nonetheless, a suboptimal decision

at the level of access paths has a highly detrimental

effect on the overall query performance [14], since the

access paths touch most of the data before any filtering

has been applied.

Improving IO access. Index-lookups cause poor

disk performance due to random-access latency. Asyn-

chronous IO with prefetching [39] improves performance

of such pattern but still suffers from repeated page

reads. Partial sorting of tuples [36, 39] can improve ac-

cess locality and size, but unless the entire input is

sorted, repeated page reads are still possible.

In this paper, we fill the need for adaptation at the

access path level by introducing a hybrid adaptive ac-

cess path called Smooth Scan. Smooth Scan guaran-

tees nearly optimal performance throughout the entire

range of possible selectivities, thereby preventing poor

execution cases as a consequence of suboptimal deci-

sions. Unlike [4, 5], however, Smooth Scan does not

waste any resources by doing double work, nor does

it require a serious change of the database architec-

ture. Moreover, since the high risk of having incomplete
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statistics in the case of ever increasing data sets still re-

mains, Smooth Scan is completely statistics-oblivious.

9 Concluding remarks and the future ahead

With the increase in complexity of modern workloads

and the technology shift towards cloud environments,

robustness in query processing is gaining momentum.

Still current systems remain sensitive to the quality of

statistics. As a result, the run-time execution of queries

may fluctuate severely as a result of marginal changes in

the underlying data. For a productive user experience,

the performance of every query must be robust, i.e.,

close to the expected performance, even with missing,

stale, or insufficient statistics.

This paper introduces Smooth Scan, a statistics-

oblivious access path that continuously morphs between

the two access path extremes: an index look-up and a

full table scan. As Smooth Scan processes data dur-

ing query execution, it understands the properties of

the data and morphs its behavior to the preferred ac-

cess path. We implement Smooth Scan in PostgreSQL

and through both synthetic benchmarks and TPC-H we

show that it achieves near-optimal performance over the

entire range of possible selectivities.

We believe that the impact of techniques presented

in this paper could reach far beyond traditional (rela-

tional) DBMS, as similar access patterns with the same

trade-off between the random and sequential I/O are

observed in NoSQL database solutions [71, 72]. Addi-

tionally, recent research has shown that access path se-

lection is equally important for column stores and in

memory analytics systems [60]. Similarly, it would be

worth considering the adjustments of Smooth Scan to
storage tiering hierarchy where data is spread across

multiple tiers with different access latency properties.
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