Report from Dagstuhl Seminar 17222

Robust Performance in Database Query Processing

Edited by
Renata Borovica-Gajicl, Goetz Graefe?, and Allison Lee3

1 The University of Melbourne, AU, renata.borovica@unimelb.edu.au
2 Google — Madison, US, goetzg@google.com
3 Snowflake Computing Inc. — San Mateo, US, allison.lee@snowflake.net

—— Abstract

The Dagstuhl Seminar 17222 on “Robust performance in database query processing”, held from
28 /May until 02/June 2017, brought together researchers from academia and industry to discuss
aspects of robustness in database management systems that have not been addressed by the

previous instances of the seminar. This article summarizes the main discussion topics, and
presents the summary of the outputs of four work groups that discussed: i) updates and database
utilities, ii) parallelism, partitioning and skew, iii) dynamic join sequences, and iv) machine
learning techniques used to explain unexpected performance observations.

Seminar May 28-2, 2017 — http://www.dagstuhl.de/17222

1998 ACM Subject Classification H.2 DATABASE MANAGEMENT; H.2.2 Physical Design:
Access Methods, H.2.4 Systems: Parallel databases, Query processing, Relational databases

Keywords and phrases Robust Query Performance, Database Management Systems, Adaptive
Query Processing, Query Optimization, Query Execution, Updates, Parallelism, Data Skew

Digital Object Identifier 10.4230/DagRep.7.5.169

1 Executive Summary

Renata Borovica-Gagjic
Goetz Graefe

Allison Lee

Glenn Paulley

License @ Creative Commons BY 3.0 Unported license
© Renata Borovica-Gajic, Goetz Graefe, Allison Lee, and Glenn Paulley

The Dagstuhl Seminar 17222 on “Robust performance in database query processing” as-
sembled researchers from industry and academia for the third time to discuss robustness
issues in database query performance. The seminar gathered 24 researchers around the
world working on plan generation and plan execution in database query processing and
in cloud-based massively parallel systems with the purpose to address the open research
challenges with respect to the robustness of database management systems.

Delivering robust query performance is well known to be a difficult problem for database
management systems. All experienced DBAs and database users are familiar with sudden
disruptions in data centers due to poor performance of queries that have performed perfectly
well in the past. The goal of the seminar is to discuss the current state-of-the-art, to identify
specific research opportunities in order to improve the state-of-affairs in query processing,
and to develop new approaches or even solutions for these opportunities.

Unlike the previous seminars, the organizers (Renata Borovica-Gajic, Goetz Graefe and
Allison Lee) this time attempted to have a focused subset of topics that the participants

Except where otherwise noted, content of this report is licensed
37 under a Creative Commons BY 3.0 Unported license

Robust Performance in Database Query Processing, Dagstuhl Reports, Vol. 7, Issue 05, pp. 169-180
Editors: Renata Borovica-Gajic, Goetz Graefe, and Allison Lee

\\v pagstunL Dagstuhl Reports
rReporTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17222
http://dx.doi.org/10.4230/DagRep.7.5.169
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

170

17222 — Robust Performance in Database Query Processing

discussed and analyzed in more depth. From the proposed topics on algorithm choices,
join sequences, updates, database utilities, parallelism and skew, column stores, physical
database design, and explainability of non-robust query performance, the participants chose
four topics and formed four work groups: i) one discussing updates and database utilities, ii)
one discussing parallelism and skew, iii) one discussing join sequences, and iv) one focusing
on the explanations of the sources of non-robust performance.

Upon choosing the topics of interest, the organizers then guided the participants to
approach the topic through a set of steps: by first considering related work in the area; then
introducing metrics and tests that will be used for testing the validity and robustness of
the solution; after metrics, the focus was on proposing specific mechanisms for the proposed
approaches; and finally the last step focused on the implementation policies.

The seminar thus spent its first day on reviewing prior related work, with a special
emphasis on the pieces of work that appeared following the previous instances of the seminar:
benchmarks (Dagstuhl 12321 [4, 6, 7]), Smooth Scan [2], and Generalized join [3]. Tuesday
was spent on defining metrics and tests. On Wednesday, the participants discussed possible
alternative approaches and hiked together in the woods. Thursday was focused on driving
one chosen approach to specific mechanisms. Finally, we spent Friday on discussing the
policies and presented the overall progress.

At the end of the week, each group was hoping to continue their work towards a research
publication. The group on parallelism and skew was hoping to publish first a survey on
forms of skew and existing remedies for skew. The work group on dynamic join sequences
even had a working prototype by the end of the seminar. The reports of work groups are
presented next.

Renata Borovica-Gajic, Goetz Graefe, and Allison Lee 171

2 Table of Contents

Executive Summary
Renata Borovica-Gajic, Goetz Graefe, Allison Lee, and Glenn Paulley 169

Working groups

Updates and database utilities
Ilia Petrov, Jiagi Yan, Thanh Do, Knut Stolze, John Cieslewicz, and Goetz Graefe 172

Parallel Join Processing with Skew
Peter A. Boncz, Alfons Kemper, Angelos Anadiotis, J. Christoph Freytag, Kai-Uwe
Sattler, and G. N. Paulley 172

Explaining unexpected performance in database query execution

Surajit Chaudhuri, Anisoara Nica, Marcin Zukowski, Fabian Hueske, Immanuel
Trummer, Tahir Azim, and Renata Borovica-Gajic 174
Dynamic join sequences

Campbell Fraser, Bart Samwel, Thomas Neumann, Srinivas Karthik, and Allison Leel75

17222

172

17222 — Robust Performance in Database Query Processing

3 Working groups

3.1 Updates and database utilities
Ilia Petrov, Jiaqi Yan, Thanh Do, Knut Stolze, John Cieslewicz, and Goetz Graefe

License) Creative Commons BY 3.0 Unported license
© Ilia Petrov, Jiagi Yan, Thanh Do, Knut Stolze, John Cieslewicz, and Goetz Graefe

Within Dagstuhl Seminar 17222, the work group on updates and database utilities explored
mechanisms and policies for database updates including very large updates as common in
load utilities. The principal mechanisms for improving performance and scalability focus on
avoiding write amplification, e.g., reading and writing an entire database page for an update-
in-place modifying just a few bytes, doing the same in multiple indexes and materialized
views, logging updates of a few bytes in log records with large headers, etc. Instead of
updates-in-place, many systems use variations of very traditional master tapes and change
tapes, often called deltas and sometimes forced by append-only file systems. For ordered
indexes, the resulting storage structures are log-structured merge trees (really forests with
many trees!) and partitioned b-trees (a single b-tree with many internal partitions).

These storage structures may improve not only efficiency and scalability but also robustness
of performance, which we understand to mean linear or near-linear (eg N log N) execution
costs when expressed as function of size of database or table, size of input or change set, and
size of transactions (bulk load vs trickle load). The opposite of robust performance are cost
functions with cliffs. Our focus here is on measured performance rather than theoretical
performance of algorithms or data structures; we expect that the measured performance
correlate very highly with a linear or near-linear regression line.

We hope to capture and extend our results in a publication, e.g., to a workshop on
performance benchmarking or on database query processing. Rather than focus on any
one proprietary system or on a specific set of techniques, this publication will be about
benchmarking and metrics for updates and for database utilities; and rather than focus on
single-thread efficiency or multi-node scalability, it will be about measuring robustness of
performance.

3.2 Parallel Join Processing with Skew

Peter A. Boncz, Alfons Kemper, Angelos Anadiotis, J. Christoph Freytag, Kai-Uwe Sattler,
and G. N. Paulley
License) Creative Commons BY 3.0 Unported license

© Peter A. Boncz, Alfons Kemper, Angelos Anadiotis, J. Christoph Freytag, Kai-Uwe Sattler, and
G. N. Paulley

The Dagstuhl Workshop 17222 workgroup on Parallelism and Skew explored a range of
topics surrounding the ability for a database system to mitigate the problems of data skew
in processing join queries in both tightly- and loosely-coupled database systems. While the
problems surrounding data skew have been studied over the past thirty years, and some work
has documented well some of the fundamental aspects of data skew in join processing, the
workgroup felt that an in-depth look at the state of the art was necessary, for a number of
reasons. First, much of the work on joins with skewed data was published between 25 and 30
years ago when system performance tradeoffs — for example, the relative speed of disk to
main memory — was considerably different than it is today. Second, our workgroup focus

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Renata Borovica-Gajic, Goetz Graefe, and Allison Lee

was not merely on raw performance but on characterizing robust behaviour, a viewpoint
largely missing from prior work. Third, it quickly became desirable to define a robustness
benchmark for joins over skewed data so that we could measure performance degradation
and compare systems using a common, agreed-upon metric. Fourth, we were aware of some
recent research in the literature, notably Flow-Join from this year’s ICDE conference in
Helsinki and co- authored by two of the members of seminar 17222, that offered advantages
over existing, more well-known approaches [10].

During the seminar the workgroup explored three closely-related ideas: a robustness
benchmark for join processing in the face of data skew; a survey of existing techniques from
the literature; and improvements to current techniques to further mitigate the presence of
skew by either avoiding known ‘performance cliffs’ at query optimization time, or adapting
to circumstances at query execution time to avoid such cliffs on one or more threads or
processes that will causes overall query latency to increase. During the seminar, the group
concentrated on the first two topics. Our primary goal during the seminar was to define
a robustness benchmark for join processing in the face of skew, as our feeling was that
customers and users have expectations of linear or near-linear (e.g. N lg N) execution costs
when expressed as a function of the size of a database or table, and as well expect near-linear
performance with respect to increases in memory size and the relative number of CPU cores.
The group considered several possible functions, but eventually decided upon a metric R
that exponentially degrades as query execution times become less predictable. We then
considered options about to construct such a benchmark, and looked at several promising and
existing options: the Social Network benchmark, the Star Schema benchmark, TPC-DS, and
a modified version of TPC-H. We decided upon the latter option, and discussed the different
types of skew that could be placed into the benchmark. We also discussed modifying the
benchmark’s existing queries, or changing them outright, to determine how best to illustrate
the effects of skew.

In the case of skewed column distributions, it makes sense to have different parameter
equivalence classes; for example, in the TPC-DS benchmark, these are values from the same
step in the step functions that it uses. These are parameters from a skewed distribution,
that despite being skewed, still has multiple individual values with the same frequency. The
goal is to be able to run a particular query variant with different parameters but mostly
identical behavior; that is, values with the same frequency imply similar intermediate result
cardinalities.

However, in a skewed distribution, there may be multiple such equivalence classes, e.g.
some highly frequent values (all the same frequency) and some low frequency values (all the
same frequency). This leads to the concepts of query variants, e.g. Q2 of the benchmark may
now have two variants, Q2a and Q2b, where variant 2a binds with the frequent parameter
values, and 2b with the infrequent ones. Subsequent to the Workshop our focus group plans
to modify the DBGEN utility of the TPC-H benchmark to determine the feasibility of our
ideas and their usefulness in deriving a robustness metric for a DBMS [11].

Our second thrust during our meetings was to examine the state-of-the-art in parallel join
processing to determine how query processing performance could be improved. We identified
a collection of seminal papers from the existing literature as a starting point for our survey.
We plan to augment these papers to develop a much more comprehensive survey that we
hope will be of value to the research community.

173

17222

174

17222 — Robust Performance in Database Query Processing

3.3 Explaining unexpected performance in database query execution

Surajit Chaudhuri, Anisoara Nica, Marcin Zukowski, Fabian Hueske, Immanuel Trummer,
Tahir Azim, and Renata Borovica-Gajic
License) Creative Commons BY 3.0 Unported license

© Surajit Chaudhuri, Anisoara Nica, Marcin Zukowski, Fabian Hueske, Immanuel Trummer, Tahir
Azim, and Renata Borovica-Gajic

Within Dagstuhl Seminar 17222, the work group on “Explaining unexpected performance
in database query execution” explored mechanisms for informing users about the source
of performance deviation (typically degradation) of a query with respect to prior query
executions. The goal of this effort is to increase the user satisfaction and develop trust toward
the database management systems by providing explanation for poor query performance.
The existence of such a tool would also be highly beneficial for database vendors as a way to
mitigate costs of database support, since the tool would reduce the number of angry calls
from users requesting justification for query performance change.

In general, the work group divided the source of deviation into two broad categories: i)
expected deviation because of larger query inputs or reduced resources (e.g. lower memory
budget), ii) unexpected deviation as a typical consequence of a plan change or a performance
cliff in the cost model that triggered higher resource usage (e.g. intermediate results spilling to
disk). The first category encompasses “robust”, i.e. expected and justified query performance
given the query’s inputs and outputs, while the second group displays “non-robust” behaviour
where the query input is not the reason for observed performance degradation.

Within this particular problem, the group especially focused on a somewhat easier problem
of detecting and explaining deviation of a single query template over a sequence of observed
query invocations. Templatized queries are typical in modern decision support systems
characterized by a frequent repeat of the same plan template with different parameter values
(e.g. reports or user-defined functions). Given this context, our problem can be formulated
as: Given the past X executions of query Q, detect whether and explain why the invocation
X+1 deviates from the expected performance of query Q given the input X+1.

A crucial question to answer is what we consider as “expected” given the new input
characteristics and prior query executions. An approach that the group discussed during
the seminar is the approach of employing machine learning techniques to train a model of
the behavior of the query given its past executions. The group discussed in detail what
should constitute a model, which features should be extracted, etc. Alternatively, the group
discussed whether techniques such as learning cost models or statistical models could be
sufficient to explain the source of performance deviation.

At a high-level, the group settled on an operator-level approach for modeling query
performance. For each operator in each query template, the system collects statistics on
a variety of metrics, including input and output cardinalities and physical resource usage
(CPU, memory, I0). A machine learning model trained for each metric then characterizes its
behavior over the query history seen thus far. If a subsequent query is unexpectedly slow,
consulting these models provides clues on which metrics were anomalous and could provide a
possible explanation for the slowdown. Furthermore, the operator-level approach prevents
anomalies from getting compounded or merged up the query tree. Thus, any unexpectedly
slow operator can be detected as close to the leaves as possible.

As part of the discussion into this approach, the group reviewed a number of recent
papers related to the use of machine learning for modeling and predicting query performance.
The goal of this review was two-fold: first, to familiarize the group with the most relevant

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Renata Borovica-Gajic, Goetz Graefe, and Allison Lee

work in the domain and, second, to check if existing work had previously tackled the problem
of explainable query performance. In summary, we found a substantial amount of work on
using machine learning for query performance modeling and prediction, but almost no work
on explaining the causes when query performance deviates from the trained models.

Malik et al [8] parse out features from the query text of SkyServer queries and combine
them with previously seen output cardinalities to train a model for future cardinality
estimation. Tzoumas et al [13, 12] use graph theory and machine learning to detect correlations
in the input data and thus improve cardinality estimation. Akdere et al [1] demonstrate the
effectiveness of machine learning to predict query execution time by using plan-level and
operator-level models based on optimizer cost estimates, query parameters and actual runtime
statistics. Finally, Wu et al [5] avoid machine learning approaches and instead use additional
statistics to predict query execution time by building on PostgreSQL’s optimizer cost models.
They use offline profiling to estimate the unit cost of reading pages and tuples using different
access paths. They then use online sampling for each query to estimate how many pages and
tuples will be read by a query. In a series of follow-up papers [14, 15], they incorporate more
sophisticated statistical models to improve query performance prediction in the presence of
uncertainty and concurrency. Microsoft’s Adaptive Query Processing feature [9] adds the
ability to test a query’s performance with different plans and visually inspect operators for
estimated and actual statistics along with possible performance warnings. However, it does
not correlate the current query performance with what the user has seen in the past. While
each of these techniques improves the state-of-the-art in query performance estimation, the
task of explaining why many queries deviate from the estimates remains out of their scope.

The group also gave considerable attention towards proposing benchmarks that will
model realistic use cases, while at the same time would catch all sources of “unexpected”
performance behavior. As a first step to this goal the work group proposed a benchmark
based on significant data correlation and workload skew. As a future step, we plan to consider
the impact of resources as well and incorporate them into the test benchmark.

The overall work group plan is to pursue a publication on this topic followed by a
supporting software tool whose main focus would be on explaining unexpected performance
to the user either graphically or in the form of natural language text.

3.4 Dynamic join sequences
Campbell Fraser, Bart Samwel, Thomas Neumann, Srinivas Karthik, and Allison Lee

License @@ Creative Commons BY 3.0 Unported license
© Campbell Fraser, Bart Samwel, Thomas Neumann, Srinivas Karthik, and Allison Lee

The workgroup on operator sequencing in Dagstuhl Seminar 17222 explored techniques
to avoid catastrophically bad performance due to poor join order selection by the query
optimizer. In a conventional SQL Query Processing engine, the Query Optimizer generates
a single execution plan for each query. For a host of reasons, this often results in query
performance that is orders of magnitude worse than that of the fastest possible performance
for the query. The models used to estimate the cardinalities at intermediate stages of query
execution are often too simple to provide accurate estimates, and the statistics on which
they rely can be out of date. Parameterised queries are particularly vulnerable because, even
with perfect statistics and a rich estimation model, it may be true that no single plan is
capable of providing acceptable performance for all possible parameters, for a given query.

175

17222

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

176

17222 — Robust Performance in Database Query Processing

The workgroup reviewed existing adaptive execution techniques that have been proposed
to overcome this architectural limitation, including re-optimizing fragments of the plan
during execution, tuple routing, dynamically rearranging the order of joins, and parameter
sensitive plans. Based on previous work and initial ideas for solutions, we generated a list
of limitations to the scope of solutions, that we could use to evaluate the usefulness of a
solution for a given use case. For instance, previous work on tuple routing was limited to
certain join methods (e.g. symmetric hash join), and work on dynamically rearranging the
order of joins was limited to linear plans of indexed nested-loops joins.

The group proposed a simple test query and data set that could be used to evaluate the
performance of proposed solutions.

SELECT =*
FROM nations n

join customers c using (n_id)

join orders o using (c_id)

join suppliers s on s.n_id = c.n_id and s.s_id = o_sid
WHERE n.name = :n

The query contains a join which can substantially blow up the size of intermediate results,
depending on the value of a query parameter (: n). For most (less frequent) parameter
values, any join order performs adequately, while for more frequent values, the wrong join
order will result in performance that is orders of magnitude worse than other join orders.
Throughout our discussions, this query was used to evaluate the potential of various ideas
that were proposed. We also proposed a more general technique to evaluate a workload
against a proposed solution, which involved generating a large set of random join orders for
each query, detecting the “cliff” in the distribution of runtimes of those join orders, and then
evaluating the impact of a solution on join orders falling on either side of the cliff.

After brainstorming several possible solutions, we focused on a novel tuple-routing
approach. The bookkeeping for the routing is simple, does not increase in size or complexity
with the number of joins in the query, and requires only inexpensive telemetry that is
already gathered by some query processing engines. An intuitive system of back pressure and
coordination is used to route tuples away from inefficient join orders and through efficient
orders. The method is primarily aimed at linear indexed nested-loop joins but can also work
with bushy plans and with hash tables functioning as “indexes on the fly”. Unlike previous
adaptive techniques, this method is not index restrictive; a different index can be used for
the same table when it appears in different join orders. The algorithm is always making
forward progress; it never backtracks or throws away partial results. Figures 1la and 1b show
two plan options for our simple test query above. For a frequently occurring value of nation
(e.g. 'US’), the plan in Figure la performs well, while the plan in Figure 1b performs very
badly. Figure 2 shows a tuple-routing plan for this query, with the “good” and “bad” paths
annotated. Back pressure will cause most tuples to be routed through the left-most path.

During the seminar, we implemented a prototype inside of a teaching database, which
handled linear indexed nested-loops joins only. We compared performance (measured as
the total number of tuples produced as intermediate results) of all possible join orders for
our test query against our tuple routing scheme. As expected, we found a worst case 2X
degradation in intermediate tuples produced versus a good plan, and orders of magnitude
improvement in the worst plans.

Renata Borovica-Gajic, Goetz Graefe, and Allison Lee

JOIN JOIN
{nation_id, supp._id) {cust ig, supp_id)
JOIN INDEX JOIN INDEX
{cust_id) supplier (nation_id) order
JOIN INDEX JOIN INDEX
(nation_id) order (nation_id) supplier
FILTER INDEX FILTER INDEX
name =:n customer name =:n customer
SCAN SCAN
nation nation
(a) Good plan (b) Bad plan

Figure 1 An example of a good and bad plan

JOIN JOIN JOIN JOIN
(nation_id, supp_id) (cust_id, supp_id) (cust_id, supp_id) (nation_id, cust_id)

| JON | | INDEX | | JOIN | | INDEX | | JOIN | | INDEX | | JOIN | | INDEX |

supplier (nation_id) order (nation_id) order (supp_id) customer
INDEX INDEX INDEX INDEX
order supplier customer order
<
JOIN JOIN
(nation_id) (nation_id)
INDEX INDEX
customer supplier

———-"bad plan"

*="g00d plan’ route === == == mmmmmm e e
FILTER
nan

1
1
1
1
1
1
1
1
1
1
\.

Figure 2 A tuple routing plan

177

17222

178 17222 — Robust Performance in Database Query Processing

There are several open issues which the group plans to continue work on after the seminar,

including:

4

policies for when to start to route tuples, to decrease the performance degradation when
the optimizer chooses a good plan, and when to stop or decrease tuple routing once a
good plan has been found

implementing back-pressure for non-linear plans,

allowing hash joins in the plan,

techniques for swapping the driving table,

techniques for choosing a subset of join orders in the plan,

prototyping the solution in a real database system.

Summary

State-of-the-art approaches in query processing are oriented toward achieving high perform-

ance while robustness of these approaches is often neglected. This may result in queries whose

run time fluctuates severely as a result of marginal changes in the underlying data. When

talking about robust performance, stable and expected or close to expected performance

has to be provided every single time, even in the presence of changes in the selectivity of

operators or changes in the system state between compile time and run time. This report

presents four approaches toward improving the robustness of database management systems

by looking at the impact of updates, parallelism and skew, join orders and explainability of

non-robust query performance.

References

1

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.
Learning-based query performance modeling and prediction. pages 390-401, 2012.

Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin Zukowski, and Camp-
bell Fraser. Smooth Scan: Statistics-oblivious access paths. In ICDE, 2015.

Goetz Graefe. New algorithms for join and grouping operations. Computer Science - R€D,
27(1):3-27, 2012.

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. Robust query processing
(dagstuhl seminar 12321). Dagstuhl Reports, 2(8):1-15, 2012.

Hakan Hacigumus, Yun Chi, Wentao Wu, Shenghuo Zhu, Junichi Tatemura, and Jeffrey F.
Naughton. Predicting query execution time: Are optimizer cost models really unusable?
pages 1081-1092, 2013.

Martin L. Kersten, Alfons Kemper, Volker Markl, Anisoara Nica, Meikel Poess, and Kai-
Uwe Sattler. Tractor pulling on data warehouses. In Proceedings of the Fourth International
Workshop on Testing Database Systems, DBTest '11, pages 7:1-7:6, New York, NY, USA,
2011. ACM.

Martin L. Kersten, Alfons Kemper, Volker Markl, Anisoara Nica, Meikel Poess, and Kai-
Uwe Sattler. Tractor pulling on data warehouses. In Proceedings of the Fourth International
Workshop on Testing Database Systems, DBTest '11, pages 7:1-7:6, New York, NY, USA,
2011. ACM.

Tanu Malik, Randal C. Burns, and Nitesh V. Chawla. A black-box approach to query
cardinality estimation. pages 5667, 2007.

Microsoft. Microsoft adaptive query processing and diagnostics.
https://www.youtube.com/watch?v=szTmo6rTUjM.

Renata Borovica-Gajic, Goetz Graefe, and Allison Lee 179

10 Wolf Rédiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. Flow-join: Adaptive
skew handling for distributed joins over high-speed networks. In ICDE, pages 1194-1205,
2016.

11 TPC. Tpc-h benchmark. http://www.tpc.org/tpch/.

12 Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. Lightweight graphical models
for selectivity estimation without independence assumptions. PVLDB, page 2011, 2011.

13 Kostas Tzoumas, Amol Deshpande, and Christian S. Jensen. Efficiently adapting graphical
models for selectivity estimation. The VLDB Journal, 22(1):3-27, 2013.

14 Wentao Wu, Yun Chi, Hakan Hacigiimiig, and Jeffrey F. Naughton. Towards predicting
query execution time for concurrent and dynamic database workloads. PVLDB, 6(10):925-
936, 2013.

15 Wentao Wu, Xi Wu, Hakan Hacigiimiig, and Jeffrey F. Naughton. Uncertainty aware query
execution time prediction. PVLDB, 7(14):1857-1868, 2014.

17222

180

17222 — Robust Performance in Database Query Processing

Participants

= Angelos-Christos Anadiotis
EPFL — Lausanne, CH

= Tahir Azim

EPFL - Lausanne, CH

- Peter A. Boncz

CWI — Amsterdam, NL

- Renata Borovica-Gajic
The University of Melbourne, AU
= Surajit Chaudhuri
Microsoft Research —
Redmond, US

= John Cieslewicz

Google Mountain View, US

= Thanh Do

Google — Madison, US

= Campbell Fraser

Google — Kirkland, US

= Johann-Christoph Freytag
HU Berlin, DE

= Goetz Graefe

Google — Madison, US

- Fabian Hiiske

data Artisans — Berlin, DE
= Alfons Kemper

TU Miinchen, DE

= Allison Lee

Snowflake Computing Inc. —
San Mateo, US

= Thomas Neumann

TU Miinchen, DE

= Anisoara Nica

SAP SE — Waterloo, CA

= Glenn Paulley
SAP SE — Waterloo, CA

= llia Petrov

Hochschule Reutlingen, DE
- Bart Samwel

Google — Amsterdam, NL

= Kai-Uwe Sattler
TU Ilmenau, DE

= Knut Stolze
IBM Deutschland —
Boblingen, DE

= Immanuel Trummer
Cornell University — Ithaca, US

= Srinivas Karthik Venkatesh
Indian Institute of Science —
Bangalore, IN

= Jiaqi Yan
Snowflake Computing Inc. —
San Mateo, US

= Marcin Zukowski
Snowflake Computing Inc. —
San Mateo, US

	Executive Summary Renata Borovica-Gajic, Goetz Graefe, Allison Lee, and Glenn Paulley
	Table of Contents
	Working groups
	Updates and database utilities Ilia Petrov, Jiaqi Yan, Thanh Do, Knut Stolze, John Cieslewicz, and Goetz Graefe
	Parallel Join Processing with Skew Peter A. Boncz, Alfons Kemper, Angelos Anadiotis, J. Christoph Freytag, Kai-Uwe Sattler, and G. N. Paulley
	Explaining unexpected performance in database query execution Surajit Chaudhuri, Anisoara Nica, Marcin Zukowski, Fabian Hueske, Immanuel Trummer, Tahir Azim, and Renata Borovica-Gajic
	Dynamic join sequences Campbell Fraser, Bart Samwel, Thomas Neumann, Srinivas Karthik, and Allison Lee

	Summary
	Participants

