HMAB: Self-Driving Hierarchy of Bandits for Integrated Physical Database Design Tuning

Malinga Perera, Bastian Oetomo, Ben Rubinstein, and <u>Renata Borovica-Gajic</u>

Physical design (PD) tuning is hard [VLDBJ'18, ICDE'15, DBTest'12]

Setting: TPC-H, SF10, DBMS-X, Tuning tool 5GB space for indexes

Cause for sub-optimal plans

Cardinality errors

Cost model

Order of magnitude more tuples

Wrong decision of cost model

Optimizer's mistakes -> hurt predictability

Physical design tuning under looking glass

Broken pipeline....

Multi-armed bandits (MAB) to the rescue

- Pull an arm (slot machine) observe a reward (win/lose)
- Explore vs exploit
- Find a sequence of arms to maximize reward
- Many variants, but **C²UCB** most interesting

Optimism in the face of uncertainty

Benefits of C²UCB

- UCB guarantees to converge to optimal policy
- C (contextual) learns benefit of arms without pulling them
- **C** (combinatorial) pulls a set of arms per round given constraints, observes *individual* reward

Fast convergence with guarantees

Automated tuning with provable guarantees ³

MAB for Index Tuning: An Example Physical Design

Design too complex, too large action space

HMAB - Hierarchical Bandit Architecture

L1 Bandits

Smaller bandits for faster convergence Knowledge sharing via central bandit

HMAB in Action

Setting: TPCH, TPCH skew, TPC DS, IMDb datasets; static (repetitive) vs random (ad hoc) queries, MAB vs PDTool, 25 rounds, tuning indices and materialised views

Up to 96% speed-up, and 67% on average

HMAB Convergence

Setting: **TPC-DS**, *static* vs *ad hoc* queries, MAB vs PDTool, 25 rounds, tuning materialised views and indices

Static

Random

Index Only Tuning

Outperforming baselines over a single DS as well

index selection algorithms

Materialised View Only Tuning

Setting: **TPC-H**, static, MAB vs ICDE'21* baselines, 25 rounds, tuning materialised views

*[ICDE'21] An Autonomous Materialized View Management System with Deep Reinforcement Learning 14

Conclusions

- HMAB is a lightweight MAB solution for *(integrated)* physical database design tuning
- HMAB is the first learned solution to work in the combined space of indices and views
- HMAB successfully tackles tuning challenges: optimizer *misestimates, unpredictable* workloads
- Up to 40% and 70% average improvement for integrated view and index tuning under static and random settings compared against a SOTA commercial tuning tool

THANK YOU!

Code: https://github.com/malingaperera/HMAB

Email: renata.borovica@unimelb.edu.au

Looking for a postdoc! DB + ML

*This work is supported by the Australian Research Council Discovery Project DP220102269, and Discovery Early Career Researcher Award DE230100366.