
Updatable Learned Indexes Meet Disk-
Resident DBMS - From

Evaluations to Design Choices

Hai Lan1, Zhifeng Bao1, J. Shane Culpepper1, Renata Borovica-Gajic2

1 RMIT University
2 The University of Melbourne



Motivation

2

Promising Performance of Learned Indexes

(compared to B+-tree)

3x performance

10x smaller index size

Widely Used Disk-based DBMSs

Indexes’ size can be quite large

Main memory is a crucial resource

Existing Studies on Disk

Work on LSM Tree [1, 2]

Tend to suffer from a bad read performance

Can the idea of learned index benefit the on-disk 

updatable indexing techniques, with the hope of 

uprooting B+-tree?

[1] Hussam Abu-Libdeh, et al. 2020. Learned Indexes for a Google-scale Disk-based Database. CoRR abs/2012.12501 (2020)

[2] Yifan Dai, et al. 2020. From WiscKey to Bourbon: A Learned Index for Log-Structured Merge Trees. In OSDI. 155–171



Questions

3

Q1 - How good are updatable learned indexes when compared to a B+-tree?

Q2 - How much storage do learned indexes require on disk?

Q3 - What impact do different block sizes have on performance?

Q4 - Do the learned indexes show consistent performance among different 

datasets when disk-resident?

Q5 - What impact do the buffers have?

For the first time, we develop the on-disk version of the typical in-
memory learned indexes and conduct a comprehensive evaluation.



Representative Learned Indexes’ Design

4

[1] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, Tim Kraska: FITing-Tree: A Data-aware Index Structure. SIGMOD 2019.

[2] Paolo Ferragina, Giorgio Vinciguerra: The PGM-index: a fully-dynamic compressed learned index with provable worst-case bounds. VLDB 2020.

[3] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald 

Kossmann, David B. Lomet, Tim Kraska: ALEX: An Updatable Adaptive Learned Index. SIGMOD 2020

[4] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, Chunxiao Xing: Updatable Learned Index with Precise Positions. VLDB 2021.

[2]

gapped array

packed array

[1]

[3]

[4]



Implementation on Disk

5

• ALEX

• Meta block pointing to the root node.

• Two separated files for inner nodes and data nodes.

• Store the data continuously

• FITing-tree

• Adopt the segmentation algorithm in PGM to partition the data

• For scan operation, store the physical addresses of siblings for each leaf node, which is 

same as a B+-tree

• Introduce an extra block to hold the keys that are smaller than current domain.

• LIPP

• Replace the bitmap (to indelicate the slot types) in LIPP with the flag in each item.

(a) ALEX Structure (b) ALEX Layout on Disk



From Memory-Resident to Disk-Resident

6

(a) ALEX Structure (b) ALEX Layout on Disk

S1: Model-slot overhead. 
I/O Cost for Search

Large Insert Overhead

S2: Search Overhead.

S3: Utility Structure Overhead.

S4: SMO Overhead.

S5: Other Index-Specific Overheads



Evaluation – Setup

• Dataset statistics
• Number of segments under a given error bound

• Conflict degree

7



Evaluation – Setup

• Workload Design

• Performance Metrics

8

Lookup-Only Scan-Only Write-Only Write-Heavy Balanced Read-Heavy

100% lookups 100% scans 100% inserts 90% inserts

10% lookups

50% inserts

50% lookups

10% inserts

90% lookups

Q1

Q2

Q3

Q4

Q5

Throughput (number of operations per second)

Fetched block count from disk

Storage size

P99 latency & standard deviation

Smaller is better

Larger is better



Evaluation – Q1: How Good Compared to B+-tree

• Lookup-Only Workload

9

✓ The throughput of these indexes is 

determined by the number of fetched 

blocks from disk.

✓ Most existing learned indexes are 

competitive or outperforming B+-tree.

✓ B+-tree exhibits stable performance, while 

the performance of the learned indexes

fluctuates.



Evaluation – Q1: How Good Compared to B+-tree

• Scan-Only Workload

10

✓ Regardless of the dataset hardness, 

B+-tree outperforms others across all 

datasets.

✓ ALEX and LIPP exhibit the worst 

performance in the Scan-Only workload.



Evaluation – Q1: How Good Compared to B+-tree

• Fetched Block Breakdown for Read-Only Workload

11

✓ ALEX and PGM can store more than one inner nodes into one block. Thus, the number of 

fetched blocks is smaller than the number node.

✓ ALEX fetches more blocks on leaf nodes for scan due to the need for bitmap access.

✓ LIPP fetches much more nodes and blocks for scan queries due to its single node type 

design.



Evaluation – Q1: How Good Compared to B+-tree

• How Good A Hybrid Design, where we adopt a B+-tree styled leaf 
nodes?

12

✓ These learned indexes can achieve similar or better performance than a B+-tree.

✓ The fetched blocks of LIPP and ALEX on scan-only workload are reduced significantly.



Evaluation – Q1: How Good Compared to B+-tree

• Write-Only Workload

13

✓ The relative ranking of all indexes is 

consistent across all datasets, with 

PGM significantly outperforming other 

methods.

✓ Other than PGM, B+-tree significantly 

outperforms other learned indexes.



Evaluation – Q1: How Good Compared to B+-tree

• Write-Only Workload

14

✓ PGM has the smallest search overhead.

✓ FITing-tree has the similar search overhead with a B+-tree while a large insertion overhead.

✓ ALEX shows a large insertion overhead.

✓ LIPP has a large maintenance overhead and even larger than ALEX.



Evaluation – Q1: How Good Compared to B+-tree

• Mixed Workload

15

✓ In most cases (6 out of 9), the B+-tree 

outperforms learned indexes.

✓ B+-tree and PGM exhibit consistently 

performance among different datasets 

while the performance of other learned 

indexes fluctuates significantly.

✓ As the read ratio increases, the 

throughput of PGM degrades severely, 

unlike the alternatives where it 

increases.



Evaluation – Q2: Storage Usage

16

✓ Learned indexes usually require more storage space than B+-tree.

✓ The index sizes of FITing-tree and LIPP highly depend on the distribution 

of the dataset indexed.



Evaluation – Q3: Impact of Block Size

17

✓ The block size variation has different impacts on different Indexes. The 

number of blocks fetched by LIPP does not change when the block size is 

varied while other indexes tend to fetch fewer blocks with a large size.



Evaluation – Q4: Robust Performance Profile

18

✓ Learned indexes usually have greater p99 

latency than the B+-tree for Lookup-Only 

and Write-Only workloads, and exhibit less 

stable performance.



Evaluation – Q5: Impact of Buffer

19

✓ With zero or only a small buffer size, LIPP has the smallest fetched.

✓ A larger buffer size can boost other indexes significantly.



Summary of Evaluation

• B+-tree is a most-of-the-time winner in both workload performance 
and storage cost!

• B+ tree shows more stable performance across different data 
distributions and workloads, while learned indexes fluctuate.

20



Our Guided Design Principles

21

S1: Model-slot overhead. 
I/O Cost for Search

Large Insert Overhead

S2: Search Overhead.

S3: Utility Structure Overhead.

S4: SMO Overhead.

S5: Other Index-Specific Overheads

P1

P3

P2

P4

P5

P1: Reducing the Tree Height of the Index.

P2: Light-weight structural modification operation. 

P3: Lower overhead in fetching next item.

P4: Storage Layout design

P5: Co-design learned index when using buffer.



More…

• Experiments on other datasets

• Experiments on SSD, inner nodes in main memory, …

22



Conclusion

• Revisited and implemented representative learned indexes

• Conducted a comprehensive experiment study across various

workloads and settings.

• Identified the shortcomings and proposes a guideline for design 

choice towards building a better learned index on disk

23

https://github.com/rmitbggroup/LearnedIndexDiskExp



Thanks!

24


	Slide 1: Updatable Learned Indexes Meet Disk-Resident DBMS - From Evaluations to Design Choices
	Slide 2: Motivation
	Slide 3: Questions
	Slide 4: Representative Learned Indexes’ Design
	Slide 5: Implementation on Disk
	Slide 6: From Memory-Resident to Disk-Resident
	Slide 7: Evaluation – Setup
	Slide 8: Evaluation – Setup
	Slide 9: Evaluation – Q1: How Good Compared to B+-tree
	Slide 10: Evaluation – Q1: How Good Compared to B+-tree
	Slide 11: Evaluation – Q1: How Good Compared to B+-tree
	Slide 12: Evaluation – Q1: How Good Compared to B+-tree
	Slide 13: Evaluation – Q1: How Good Compared to B+-tree
	Slide 14: Evaluation – Q1: How Good Compared to B+-tree
	Slide 15: Evaluation – Q1: How Good Compared to B+-tree
	Slide 16: Evaluation – Q2: Storage Usage
	Slide 17: Evaluation – Q3: Impact of Block Size
	Slide 18: Evaluation – Q4: Robust Performance Profile
	Slide 19: Evaluation – Q5: Impact of Buffer
	Slide 20: Summary of Evaluation
	Slide 21: Our Guided Design Principles
	Slide 22: More…
	Slide 23: Conclusion
	Slide 24: Thanks!

